用户名: 密码: 验证码:
新型栓塞剂温敏纳米凝胶的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分PIB纳米凝胶温敏相变特性及其生物相容性的实验研究
     目的:研究聚(N-异丙基丙烯酰胺-co-甲基丙烯酸丁酯)(PIB)纳米凝胶的温敏相转变特性及其生物相容性。
     材料和方法:采用目视法结合瓶倒转法和体外推注试验来观察PIB纳米凝胶的温敏溶胶-凝胶相转变特性。体外培养L929细胞,以不同浓度的PIB纳米凝胶浸提液培养细胞3天后,采用CCK-8比色试验法检测PIB纳米凝胶浸提液对L929细胞活性的影响。体外培养L929细胞,以不同浓度的PIB纳米凝胶培养细胞2天,采用钙黄绿素-AM/碘化丙啶荧光双染活/死细胞后,激光共聚焦显微镜下观察、细胞计数的方法评价PIB纳米凝胶对L929细胞存活率的影响。日本大耳白兔15只,在其背部一侧肌肉注射PIB纳米凝胶,另一侧注射生理盐水,观察术后1、2、4、12、26周材料周围的组织反应情况。
     结果:PIB纳米凝胶在36.5℃时发生溶胶-凝胶相转变。它对L929细胞具有良好的细胞相容性且无明显细胞毒性存在。兔背部植入部位肌肉组织无异常病变,没有严重的炎症反应,组织病理学检查结果符合材料植入后局部反应的国家标准。
     结论:PIB纳米凝胶具有良好的生物相容性和温度敏感的相转变特性。
     第二部分PIB纳米凝胶栓塞兔肾动脉的实验研究
     目的:我们研发了一种新型液体栓塞剂,聚(N-异丙基丙烯酰胺-co-甲基丙烯酸丁酯)(PIB)温敏纳米凝胶,它可以在体温下通过溶胶-凝胶相变转变而固化。我们进一步用兔肾动脉栓塞模型,研究它在血管内的分布模式、炎症反应及栓塞血管的持久性。
     材料和方法:实验1中,PIB纳米凝胶栓塞18只实验兔的右肾动脉,按不同的注射速度均分为3组。栓塞后1小时处死动物,取出肾脏,接触X线和组织学观察评价PIB纳米凝胶在肾动脉内的分布模式。实验2中,PIB纳米凝胶以合适的注射速度注射,栓塞20只实验兔的右肾动脉,按栓塞后不同的处死时间点(1周、1月、2月、3月)均分成4组,每组5只。处死前复查血管造影评价血管再通,处死后病理学评价栓塞的有效性和对PIB纳米凝胶的炎症反应。
     结果:所有实验兔均能成功栓塞。在实验1中,注射速度越高,PIB纳米凝胶越能到达更小的动脉分支。以0.10ml/s的速度注射,可以使PIB纳米凝胶均匀地分布在段动脉到肾小球毛细血管前水平。在实验2中,后续的血管造影复查未发现血管再通。没有发现血管壁的破裂和血管内膜下出血,没有发现栓塞剂的外溢和新生血管形成。组织学上只有轻微的炎症反应,表现为少数淋巴细胞和单核细胞浸润,无异物肉芽肿形成。
     结论:PIB纳米凝胶栓塞肾动脉容易而可控,可以产生均匀和持久的栓塞效果,不伴有严重的炎症反应。因此,PIB纳米凝胶是一种较理想的栓塞材料。
     第三部分PIB纳米凝胶栓塞免VX2移植性肝癌模型的实验研究
     目的:观察聚(M异丙基丙烯酰胺-co-甲基丙烯酸丁酯)(PIB)温敏纳米凝胶经肝动脉栓塞对兔肝功能及VX2肝癌生长的影响。
     材料和方法:MR已证实的30只兔VX2肝癌模型随机分为3组,每组10只,经肝动脉分别给予生理盐水(A组)、超液态碘油+明胶海绵粉(B组)、PIB纳米凝胶(C组)。治疗前1天及治疗后3、7天检测血清ALT和AST水平。治疗后7天处死动物,取肝肿瘤组织进行病理学观察,计算肿瘤坏死率。处死前MR扫描,计算肿瘤体积、生长率。
     结果:治疗前1天的肿瘤体积,治疗前1天及治疗后7天的ALT、AST水平,3组之间互相对比无统计学差异(P>0.05)。治疗后3天血清ALT和AST水平,C组低于B组、大于A组,组间对比均有统计学差异(P<0.05)。治疗后7天A组肿瘤生长率为(392.79±40.39)%,B组为(157.47±26.25)%,C组为(111.85±20.16)%,组间对比均有统计学差异(P<0.05)。
     结论:PIB纳米凝胶肝动脉栓塞对兔VX2肝癌生长有较明显的抑制作用,而对其肝功能影响较小。
PART I:An experimental study on the thermosensitive phase transition characteristics and biocompatibility of PIB nanogel
     Purpose:To study the thermosensitive phase transition characteristics and biocompatibility of poly(N-isopropylacrylamide-co-butyl methylacrylate)(PIB) nanogel.
     Materials and methods:The thermosensitive sol-gel phase transitions characteristics of PIB nanogel was measured by the inverting-vial method and in vitro injection test. L929cells were in vitro cultured. The Cells were treated with different concentrations of aqueous extract of PIB nanogel for3days. Cell viability was determined by Cell Counting-8assay. The Cells were also treated with different concentrations of PIB nanogel aqueous for2days. Calcein-AM and propidium iodide Double Staining Kit was utilized for simultaneous fluorescence staining of viable and dead cells. Cell survival rate was determined by cell count method, which was observed under laser confocal microscope. PIB nanogel was injected in one side of the back muscle of15rabbits, and normal saline was injected in another side. Pathological examination of the operative muscle was performed at1,2,4,12and26weeks after operation to evaluate the histocompatibility of PIB nanogel.
     Results:PIB nanogel underwent a sol-gel transition at its lower critical solution temperature of36.5℃. PIB nanogels have good cytocompatibility to L929cells, demonstrating no obvious cytotoxicity of the material. There was no severe inflammatory response and no evidence of abnormal pathological changes was found in muscular tissue. The postoperative histopathologic changes were within the authoritative ranges according to the national standards for local effects after implanation.
     Conclusions:PIB nanogel has good biocompatibility and showed satisfactory thermosensitive sol-gel phase transitions character.
     PART II:An experimental study on the embolization of rabbit renal arteries with PIB nanogel
     Purpose:We have developed a new thermosensitive liquid embolic agent, poly(N-isopropylacrylamide-co-butyl methylacrylate)(PIB) nanogel that can be solidfied by a sol-gel phase transition at body temperature. We thus further investigated the distribution, durability of vascular occlusion, and inflammatory reactions of PIB in embolization of the renal artery of rabbits.
     Materials and methods:In experiment1,18rabbits were evenly divided into3groups according to the injection rate. The right renal arteries were embolized by PIB with various injection rates. The animals were sacrificed at1hour after embolization. To evaluate the distribution pattern of PIB, the kidneys were examined by contact radiography and tissue section microscopy. In experiment2. we embolized the right renal artery of20rabbits with PIB with the injection rate of0.10ml/s. Angiography was performed before sacrifice1week (n=5),1month (n=5),2months and3months (n=5) after embolization. Pathologic and histologic examination of the kidneys was performed to assess the embolization efficacy and the specific inflammatory response of PIB.
     Results:The procedure was performed successfully in all rabbits. In experiment1. the higher injection rate, the smaller arteries PIB could reach, and the rate of0.10ml/s produced a homogeneous distribution of PIB from segmental arteries to the precapillary level. In experiment2, no angiographic recanalization appeared during follow-up. We found no disruption of the vessel wall and subintimal bleeding, no extravasation of PIB and no evidence of neocapillarization. Histologically, there was only mild inflammatory response manifested by few lymphocytic and monocellular infiltration, without foreign body granuloma formation.
     Conclusions:Embolization renal artery with PIB was easy and controllable, which could lead to a homogeneous and persistent occlusion without severe inflammatory changes. PIB might be a suitable material for intravascular embolization.
     PART Ⅲ:An experimental study on the embolization of rabbit VX2liver tumors with PIB nanogel
     Purpose:To observe the effect of transcatheter arterial embolization using thermosensitive poly(N-isopropylacrylamide-co-butyl methacrylate)(PIB) nanogel on hepatic function and growth of hepatic tumor of rabbits bearing VX2tumor.
     Materials and methods:Thirty rabbits implanted liver VX2tumors diagnosed by MR were randomly divided into3groups of10each. A microcatheter was inserted into the hepatic artery and injection was performed via the hepatic artery using physiological saline (group A), lipiodol and gelfoam (group B), and PIB nanogel (group C), respectively. The level of AST and ALT in serum was respectively tested at1day before treatment,3and7days after treatment. All experimental rabbits were sacrificed7days after treatment. Hepatic tumor tissue was obtained for pathological examination to calculate necrotic rate of tumors. The volume and growth rate of tumors were calculated by the examination of MR before sacrifice.
     Results:There was no significant difference in the volume of tumors at1day before treatment, the level of AST and ALT at1day before treatment and7days after treatment, among3groups (P>0.05). There was significant difference in the level of AST and ALT between each group3days after treatment (P<0.05). The level of AST and ALT in group C was lower than that in group B and higher than that in group A. There was significant difference in the growth rate of tumor between each group7days after treatment (P<0.05). The growth rate of tumor was (392.79±40.39)%in group A,(157.47±26.25)%in group B, and (111.85±20.16)%in group C.
     Conclusions:Transcatheter arterial embolization using PIB nanogel can inhibit the growth of the implanted VX2tumor, and there is no obvious liver toxicity related it.
引文
[1]Pollak JS, White RI, Jr. The use of cyanoacrylate adhesives in peripheral embolization. J Vasc Interv Radiol,2001,12(8):907-913.
    [2]Loffroy R, Guiu B, Cercueil JP, et al. Endovascular therapeutic embolisation:an overview of occluding agents and their effects on embolised tissues. Curr Vasc Pharmacol,2009,7(2):250-263.
    [3]Lewandowski RJ, Geschwind JF, Liapi E, et al. Transcatheter intraarterial therapies: rationale and overview. Radiology,2011,259(3):641-657.
    [4]Jordan O, Doelker E, Rufenacht DA. Biomaterials used in injectable implants (liquid embolics) for percutaneous filling of vascular spaces. Cardiovasc Intervent Radiol,2005,28(5):561-569.
    [5]Senturk C, Cakir V, Yorukoglu K, et al. Looking for the ideal particle:an experimental embolization study. Cardiovasc Intervent Radiol,2010,33(2):336-345.
    [6]Kang QK, An YH, Moreira PL, et al. Arterial embolization using poly-N-acetyl glucosamine gel in a rat kidney model. Anat Rec A Discov Mol Cell Evol Biol, 2005,284(1):454-459.
    [7]Sheng XZ, Liu ZQ, Wu LB, et al. Technical feasibility and histopathologic studies of poly (N-isopropylacrylamide) as a non-adhesive embolic agent in swine rete mirabile. Chin Med J (Engl),2006,119(5):391-396.
    [8]Pothmann D, Ulusans S, Prols F, et al. Liquid 2-P-HEMA for endovascular tumor therapy:in vivo feasibility study. Med Sci Monit,2004,10(8):BR286-293.
    [9]冯敢生,郑传胜,周汝明,等.白芨与明胶海绵治疗肝癌疗效的对比研究.中华放射学杂志,1996,30(2):135-137.
    [10]Bakar B, Oruckaptan HH, Hazer BD, et al. Evaluation of the toxicity of onyx compared with n-butyl 2-cyanoacrylate in the subarachnoid space of a rabbit model: an experimental research. Neuroradiology,2010,52(2):125-134.
    [11]Gant RM, Abraham AA, Hou Y, et al. Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors. Acta Biomater, 2010,6(8):2903-2910.
    [12]Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm,2008,68(1):34-45.
    [13]Sabnis A, Wadajkar AS, Aswath P, et al. Factorial analyses of photopolymerizable thermoresponsive composite hydrogels for protein delivery. Nanomedicine, 2009,5(3):305-315.
    [14]Zhou YM, Ishikawa A, Okahashi R, et al. Deposition transfection technology using a DNA complex with a thermoresponsive cationic star polymer. J Control Release, 2007,123(3):239-246.
    [15]Wang Q, Zhao YB, Yang YJ, et al. Thermo sensitive phase behavior and drug release of in situ gelable poly (N-isopropylacrylamide-co-acrylamide) microgels. Colloid Polym Sci,2007.285(5):515-521.
    [16]Matsumaru Y, Hyodo A. Nose T, et al. Application of thermosensitive polymers as a new embolic material for intravascular neurosurgery. J Biomater Sci Polym Ed, 1996.7(9):795-804.
    [17]Raymond J, Metcalfe A, Salazkin I, et al. Temporary vascular occlusion with poloxamer 407. Biomaterials,2004,25(18):3983-3989.
    [18]盛希忠,刘作勤,武乐斌,等.温度敏感型液体栓塞材料的动物实验研究.中华神经外科杂志,2006.22(2):123-126.
    [19]Zhao Y, Zheng C, Wang Q, et al. Permanent and peripheral embolization: temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as a novel blood-vessel-embolic material in the interventional therapy of liver tumors. Adv Funct Mater,2011,21 (11):2035-2042.
    [20]王芹,徐辉碧,杨祥良,等.可显影原位凝胶化温敏纳米凝胶的制备及性能.医药导报,2008,27(10):1243-1247.
    [1]Gant RM, Abraham AA, Hou Y, et al. Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors. Acta Biomater, 2010,6(8):2903-2910.
    [2]Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm,2008,68(1):34-45.
    [3]Sabnis A, Wadajkar AS, Aswath P, et al. Factorial analyses of photopolymerizable thermoresponsive composite hydrogels for protein delivery. Nanomedicine,2009,5(3):305-315.
    [4]Zhou YM, Ishikawa A, Okahashi R, et al. Deposition transfection technology using a DNA complex with a thermoresponsive cationic star polymer. J Control Release,2007,123(3):239-246.
    [5]Wang Q, Zhao YB, Yang YJ, et al. Thermosensitive phase behavior and drug release of in situ gelable poly (N-isopropylacrylamide-co-acrylamide) microgels. Colloid Polym Sci,2007.285(5):515-521.
    [6]盛希忠,刘作勤,武乐斌,等.温度敏感型液体栓塞材料的动物实验研究.中华神经外科杂志,2006,22(2):123-126.
    [7]Li X, Liu W, Ye G, et al. Thermosensitive N-isopropylacrylamide-N-propylacrylamide-vinyl pyrrolidone terpolymers: synthesis, characterization and preliminary application as embolic agents. Biomaterials,2005.26(34):7002-7011.
    [8]Zhao Y. Zheng C, Wang Q, et al. Permanent and peripheral embolization: temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as a novel blood-vessel-embolic material in the interventional therapy of liver tumors. Adv Funct Mater,2011,21(11):2035-2042.
    [9]王芹,徐辉碧,杨祥良,等.可显影原位凝胶化温敏纳米凝胶的制备及性能.医药导报,2008,27(10):1243-1247.
    [10]Raymond J, Metcalfe A, Salazkin I, et al. Temporary vascular occlusion with poloxamer 407. Biomaterials,2004,25(18):3983-3989.
    [11]GB/T 16886.5-2003.医疗器械生物学评价第5部分:体外细胞毒性试验.
    [12]GB/T 16886.12-2005,医疗器械生物学评价第12部分:样品制备与参照样品.
    [13]Wang B, Wu Y, Shao Z, et al. Functionalized self-assembling peptide nanofiber hydrogel as a scaffold for rabbit nucleus pulposus cells. J Biomed Mater Res A, 2012,100(3):646-653.
    [14]GB/T 16886.6-1997,医疗器械生物学评价第6部分:植入后局部反应试验.
    [15]GB/T 16175-1996,医用有机硅材料生物学评价试验方法.
    [16]Heskins M, Guillet JE. Solution properties of poly (N-isopropylacrylamide). J Macrono Sci Chem,1968,A(2):1441-1455
    [17]Matsumaru Y, Hyodo A, Nose T, et al. Application of thermosensitive polymers as a new embolic material for intravascular neurosurgery. J Biomater Sci Polym Ed,1996,7(9):795-804.
    [18]Ichikawa H. Fukumori Y. A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix. J Control Release,2000,63(1-2):107-119.
    [19]Zhao Y, Cao Y, Yang Y, et al. Rheological study of the sol-gel transition of hybrid gels. Macromolecules,2003,36(3):855-859.
    [20]Shin Y, Chang JH, Liu J, et al. Hybrid nanogels for sustainable positive thermosensitive drug release. J Control Release,2001.73(1):1-6.
    [21]汤京龙,奚廷斐.纳米羟基磷灰石生物安全性的研究现状.中国组织工程研究与临床康复,2007,11(5):936-939.
    [22]DeYulia GJ, Jr., Carcamo JM, et al. Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling. Proc Natl Acad Sci U S A, 2005,102(14):5044-5049.
    [23]Chakraborty N, Biswas D, Parker W, et al. A role for microwave processing in the dry preservation of mammalian cells. Biotechnol Bioeng, 2008,100(4):782-796.
    [24]Xie Y, Sproule T, Li Y, et al. Nanoscale modifications of PET polymer surfaces via oxygen-plasma discharge yield minimal changes in attachment and growth of mammalian epithelial and mesenchymal cells in vitro. J Biomed Mater Res, 2002,61(2):234-245.
    [25]S. A, Wadajkar., Koppolu. B, et al. Cytotoxic evaluation of N-isopropylacrylamide monomers and temperature-sensitive poly (N-isopropylacrylamide) nanoparticles. J Nanopart Res,2009,11:1375-1382.
    [26]Lee BH, West B, McLemore R, et al. In-situ injectable physically and chemically gelling NIPAAm-based copolymer system for embolization. Biomacromolecules, 2006,7(6):2059-2064.
    [27]Hsiue GH, Hsu SH, Yang CC, et al. Preparation of controlled release ophthalmic drops, for glaucoma therapy using thermosensitive poly-N-isopropylacrylamide. Biomaterials,2002,23(2):457-462.
    [28]Sadato A, Taki W, Ikada Y, et al. Experimental study and clinical use of poly(vinyl acetate) emulsion as liquid embolisation material. Neuroradiology, 1994,36(8):634-641.
    [29]Laing PG, Ferguson AB, Jr., et al. Tissue reaction in rabbit muscle exposed to metallic implants. J Biomed Mater Res,1967,1(1):135-149.
    [30]Sadato A, Wakhloo AK, Hopkins LN. Effects of a mixture of a low concentration of n-butylcyanoacrylate and ethiodol on tissue reactions and the permanence of arterial occlusion after embolization. Neurosurgery,2000,47(5):1197-1203; discussion 1204-1195.
    [31]Hench LL, Polak JM. Third-generation biomedical materials. Science, 2002.295(5557):1014-1017.
    [32]胡晓兵,王志维,蒋学俊,等.温度敏感性水凝胶Dex的生物相容性.武汉大学学报(医学版),2009,30(5):570-573.
    [33]何宇,杨述华,李涛.温敏凝胶聚-N-异丙基丙烯酰胺-co-N-羟甲基丙烯酰胺的制备及体内生物相容性评价.中国组织工程研究与临床康复,2008,12(1)69-72.
    [34]Weng H, Zhou J, Tang L, et al. Tissue responses to thermally-responsive hydrogel nanoparticles. J Biomater Sci Polym Ed,2004,15(9):1167-1180.
    [1]Pollak JS, White RI, Jr. The use of cyanoacrylate adhesives in peripheral embolization. J Vasc Interv Radiol,2001,12(8):907-913.
    [2]Loffroy R, Guiu B, Cercueil JP, et al. Endovascular therapeutic embolisation:an overview of occluding agents and their effects on embolised tissues. Curr Vase Pharmacol,2009,7(2):250-263.
    [3]Lewandowski RJ, Geschwind JF, Liapi E. et al. Transcatheter intraarterial therapies:rationale and overview. Radiology,2011.259(3):641-657.
    [4]冯敢生,郑传胜,周汝明,等.白芨与明胶海绵治疗肝癌疗效的对比研究.中华放射学杂志,1996,30(2):135-137.
    [5]Jordan O. Doelker E, Rufenacht DA. Biomaterials used in injectable implants (liquid embolics) for percutaneous filling of vascular spaces. Cardiovasc Intervent Radiol,2005,28(5):561-569.
    [6]Bakar B, Oruckaptan HH, Hazer BD, et al. Evaluation of the toxicity of onyx compared with n-butyl 2-cyanoacrylate in the subarachnoid space of a rabbit model:an experimental research. Neuroradiology,2010,52(2):125-134.
    [7]Sabnis A, Wadajkar AS, Aswath P, et al. Factorial analyses of photopolymerizable thermoresponsive composite hydrogels for protein delivery. Nanomedicine, 2009,5(3):305-315.
    [8]Wang Q, Zhao YB, Yang YJ, et al. Thermosensitive phase behavior and drug release of in situ gelable poly (N-isopropylacrylamide-co-acrylamide) microgels. Colloid Polym Sci,2007,285(5):515-521.
    [9]Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm,2008,68(1):34-45.
    [10]Gant RM, Abraham AA, Hou Y, et al. Design of a self-cleaning thermoresponsive nanocomposlte hydrogel membrane for implantable biosensors. Acta Biomater, 2010,6(8):2903-2910.
    [11]Matsumaru Y, Hyodo A, Nose T, et al. Application of thermosensitive polymers as a new embolic material for intravascular neurosurgery. J Biomater Sci Polym Ed, 1996,7(9):795-804.
    [12]Raymond J, Metcalfe A, Salazkin I, et al. Temporary vascular occlusion with poloxamer 407. Biomaterials,2004,25(18):3983-3989.
    [13]盛希忠,刘作勤,武乐斌,等.温度敏感型液体栓塞材料的动物实验研究.中华神经外科杂志,2006,22(2):123-126.
    [14]Zhao Y, Zheng C, Wang Q, et al. Permanent and peripheral embolization: temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as a novel blood-vessel-embolic material in the interventional therapy of liver tumors. Adv Funct Mater,2011,21(11):2035-2042.
    [15]Ichikawa H. Fukumori Y. A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix. J Control Release,2000,63(1-2):107-119.
    [16]Zhao Y, Cao Y, Yang Y, et al. Rheological study of the sol-gel transition of hybrid gels. Macromolecules,2003,36(3):855-859.
    [17]Shin Y, Chang JH, Liu J, et al. Hybrid nanogels for sustainable positive thermosensitive drug release. J Control Release,2001,73(1):1-6.
    [18]Senturk C,Cakir V, Yorukoglu K, et al. Looking for the ideal particle:an experimental embolization study. Cardiovasc Intervent Radiol, 2010.33(2):336-345.
    [19]Kwak BK, Shim HJ, Han SM, et al. Chitin-based embolic materials in the renal artery of rabbits:pathologic evaluation of an absorbable particulate agent. Radiology,2005,236(1):151-158.
    [20]Konya A, Van Pelt CS, Wright KC. Ethiodized oil-ethanol capillary embolization in rabbit kidneys:temporal histopathologic findings. Radiology, 2004,232(1):147-153.
    [21]Sadato A, Wakhloo AK, Hopkins LN. Effects of a mixture of a low concentration of n-butylcyanoacrylate and ethiodol on tissue reactions and the permanence of arterial occlusion after embolization. Neurosurgery,2000,47(5):1197-1203; discussion 1204-1195.
    [22]Mawad ME, Mawad JK, Cartwright J, et al. Long-term histopathologic changes in canine aneurysms embolized with Guglielmi detachable coils. AJNR Am J Neuroradiol,1995,16(1):7-13.
    [23]Murayama Y, Vinuela F, Tateshima S, et al. Bioabsorbable polymeric material coils for embolization of intracranial aneurysms:a preliminary experimental study. J Neurosurg,2001,94(3):454-463.
    [24]Leveille R, Hardy J, Robertson JT, et al. Transarterial coil embolization of the internal and external carotid and maxillary arteries for prevention of hemorrhage from guttural pouch mycosis in horses. Vet Surg,2000,29(5):389-397.
    [25]Grifka RG, Mullins CE, Gianturco C, et al. New Gianturco-Grifka vascular occlusion device. Initial studies in a canine model. Circulation, 1995,91 (6):1840-1846.
    [26]Ishikawa M, Yogita S, Iuchi M, et al. Experimental and clinical studies on liver regeneration following transcatheter portal embolization. Hepatogastroenterology, 2000,47(31):226-233.
    [27]Wright KC, Greff RJ, Price RE. Experimental evaluation of cellulose acetate NF and ethylene-vinyl alcohol copolymer for selective arterial embolization. J Vasc Interv Radiol,1999,10(9):1207-1218.
    [28]Kalman D, Varenhorst E. The role of arterial embolization in renal cell carcinoma. Scand J Urol Nephrol,1999,33(3):162-170.
    [29]Bavinzski G, Richling B, Binder BR, et al. Histopathological findings in experimental aneurysms embolized with conventional and thrombogenic/antithrombolytic Guglielmi coils. Minim Invasive Neurosurg, 1999,42(4):167-174.
    [30]Kai Y, Hamada J, Morioka M, et al. The utility of the microcrystalline cellulose sphere as a particulate embolic agent:an experimental study. AJNR Am J Neuroradiol,2000,21(6):1160-1163.
    [31]Gobin YP, Vinuela F, Vinters HV, et al. Embolization with radiopaque microbeads of polyacrylonitrile hydrogel:evaluation in swine. Radiology. 2000,214(1):113-119.
    [32]Konya A, Wright KC. Capillary embolization using ethiodol-ethanol for complete renal ablation in Swine. Invest Radiol,2002,37(9):512-520.
    [33]Klisch J, Yin L, Requejo F, et al. Liquid 2-poly-hydroxyethyl-methacrylate embolization of experimental arteriovenous malformations:feasibility study. AJNR Am J Neuroradiol,2002,23(3):422-429.
    [34]Gobin YP, Murayama Y, Milanese K, et al. Head and neck hypervascular lesions: embolization with ethylene vinyl alcohol copolymer--laboratory evaluation in Swine and clinical evaluation in humans. Radiology,2001,221 (2):309-317.
    [1]Klisch J, Yin L, Requejo F, et al. Liquid 2-poly-hydroxyethyl-methacrylate embolization of experimental arteriovenous malformations:feasibility study. AJNR Am J Neuroradiol,2002,23(3):422-429.
    [2]Senturk C. Cakir V, Yorukoglu K. et al. Looking for the ideal particle:an experimental embolization study. Cardiovasc Intervent Radiol, 2010,33(2):336-345.
    [3]Schwartz RS, Huber KC, Murphy JG, et al. Restenosis and the proportional neointimal response to coronary artery injury:results in a porcine model. J Am Coll Cardiol,1992,19(2):267-274.
    [4]Kwak BK, Shim HJ, Han SM, et al. Chitin-based embolic materials in the renal artery of rabbits:pathologic evaluation of an absorbable particulate agent. Radiology,2005,236(1):151-158.
    [5]Laurent A, Wassef M, Namur J, et al. Recanalization and particle exclusion after embolization of uterine arteries in sheep:a long-term study. Fertil Steril, 2009,91(3):884-892.
    [6]Kang QK, An YH, Moreira PL, et al. Arterial embolization using poly-N-acetyl glucosamine gel in a rat kidney model. Anat Rec A Discov Mol Cell Evol Biol, 2005,284(1):454-459.
    [7]Sheng XZ, Liu ZQ, Wu LB, et al. Technical feasibility and histopathologic studies of poly (N-isopropylacrylamide) as a non-adhesive embolic agent in swine rete mirabile. Chin Med J (Engl),2006,119(5):391-396.
    [8]Pothmann D, Ulusans S, Prols F. et al. Liquid 2-P-HEMA for endovascular tumor therapy:in vivo feasibility study. Med Sci Monit,2004,10(8):BR286-293.
    [9]Kai Y, Hamada J, Morioka M. et al. The utility of the microcrystalline cellulose sphere as a particulate embolic agent:an experimental study. AJNR Am J Neuroradiol,2000,21 (6):1160-1163.
    [10]Levrier O, Mekkaoui C, Rolland PH, et al. Efficacy and low vascular toxicity of embolization with radical versus anionic polymerization of n-butyl-2-cyanoacrylate (NBCA). An experimental study in the swine. J Neuroradiol,2003,30(2):95-102.
    [11]Pollak JS, White RI, Jr. The use of cyanoacrylate adhesives in peripheral embolization. J Vasc Interv Radiol,2001,12(8):907-913.
    [12]Jordan O, Doelker E, Rufenacht DA. Biomaterials used in injectable implants (liquid embolics) for percutaneous filling of vascular spaces. Cardiovasc Intervent Radiol,2005,28(5):561-569.
    [13]Murayama Y, Vinuela F, Ulhoa A, et al. Nonadhesive liquid embolic agent for cerebral arteriovenous malformations:preliminary histopathological studies in swine rete mirabile. Neurosurgery,1998,43(5):1164-1175.
    [14]Loffroy R, Guiu B, Cercueil JP, et al. Endovascular therapeutic embolisation:an overview of occluding agents and their effects on embolised tissues. Curr Vasc Pharmacol,2009,7(2):250-263.
    [15]Becker TA, Preul MC, Bichard WD, et al. Calcium alginate gel as a biocompatible material for endovascular arteriovenous malformation embolization:six-month results in an animal model. Neurosurgery, 2005,56(4):793-801; discussion 793-801.
    [16]Killer M, Kallmes DF, McCoy MR, et al. Angiographic and histologic comparison of experimental aneurysms embolized with hydrogel filaments. AJNR Am J Neuroradiol,2009,30(8):1488-1495.
    [17]Gobin YP, Vinuela F, Vinters HV, et al. Embolization with radiopaque microbeads of polyacrylonitrile hydrogel:evaluation in swine. Radiology, 2000,214(1):113-119.
    [18]Li X, Liu W, Ye G, et al. Thermosensitive N-isopropylacrylamide-N-propylacrylamide-vinyl pyrrolidone terpolymers: synthesis, characterization and preliminary application as embolic agents. Biomaterials,2005,26(34):7002-7011.
    [19]Raymond J, Metcalfe A, Salazkin I, et al. Temporary vascular occlusion with poloxamer 407. Biomaterials.2004.25(18):3983-3989.
    [20]Becker TA, Kipke DR. Flow properties of liquid calcium alginate polymer injected through medical microcatheters for endovascular embolization. J Biomed Mater Res,2002,61(4):533-540.
    [21]de Luis E, Bilbao JI, de Ciercoles JA, et al. In vivo evaluation of a new embolic spherical particle (HepaSphere) in a kidney animal model. Cardiovasc Intervent Radiol,2008.31(2):367-376.
    [22]Arakawa H, Murayama Y, Davis CR, et al. Endovascular embolization of the swine rete mirabile with Eudragit-E 100 polymer. AJNR Am J Neuroradiol, 2007,28(6):1191-1196.
    [23]Konya A, Van Pelt CS, Wright KC. Ethiodized oil-ethanol capillary embolization in rabbit kidneys:temporal histopathologic findings. Radiology, 2004.232(1):147-153.
    [24]Zhao Y, Zheng C, Wang Q, et al. Permanent and peripheral embolization: temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as a novel blood-vessel-embolic material in the interventional therapy of liver tumors. Adv Funct Mater.2011,21(11):2035-2042.
    [25]Vinters HV, Lundie MJ, Kaufmann JC. Long-term pathological follow-up of cerebral arteriovenous malformations treated by embolization with bucrylate. N Engl J Med,1986,314(8):477-483.
    [26]Germano IM. Davis RL, Wilson CB, et al. Histopathological follow-up study of 66 cerebral arteriovenous malformations after therapeutic embolization with polyvinyl alcohol. J Neurosurg,1992,76(4):607-614.
    [27]Bilbao JI, de Luis E, Garcia de Jalon JA, et al. Comparative study of four different spherical embolic particles in an animal model:a morphologic and histologic evaluation. J Vasc Interv Radiol,2008,19(11):1625-1638.
    [28]Bakar B, Oruckaptan HH, Hazer BD, et al. Evaluation of the toxicity of onyx compared with n-butyl 2-cyanoacrylate in the subarachnoid space of a rabbit model:an experimental research. Neuroradiology,2010,52(2):125-134.
    [29]Chaloupka JC, Vinuela F, Vinters HV, et al. Technical feasibility and histopathologic studies of ethylene vinyl copolymer (EVAL) using a swine endovascular embolization model. AJNR Am J Neuroradiol, 1994,15(6):1107-1115.
    [30]Sadato A, Wakhloo AK, Hopkins LN. Effects of a mixture of a low concentration of n-butvlcyanoacrylate and ethiodol on tissue reactions and the permanence of arterial occlusion after embolization. Neurosurgery,2000,47(5):1197-1203; discussion 1204-1195.
    [31]Takao H, Murayama Y, Yuki I, et al. Endovascular treatment of experimental aneurysms using a combination of thermoreversible gelation polymer and protection devices:feasibility study. Neurosurgery,2009,65(3):601-609; discussion 609.
    [32]Wang Q, Zhao YB, Yang YJ, et al. Thermosensitive phase behavior and drug release of in situ gelable poly (N-isopropylacrylamide-co-acrylamide) microgels. Colloid Polym Sci,2007,285(5):515-521.
    [33]Sabnis A, Wadajkar AS, Aswath P, et al. Factorial analyses of photopolymerizable thermoresponsive composite hydrogels for protein delivery. Nanomedicine.2009,5(3):305-315.
    [34]Zhou YM. Ishikawa A, Okahashi R, et al. Deposition transfection technology using a DNA complex with a thermoresponsive cationic star polymer. J Control Release,2007,123(3):239-246.
    [1]Lewandowski RJ, Geschwind JF, Liapi E, et al. Transcatheter intraarterial therapies:rationale and overview. Radiology,2011,259(3):641-657.
    [2]李欣,冯敢生,郑传胜,等.经肝动脉注射5-FU白芨微球治疗兔VX2移植性肝癌.世界华人消化杂志,2003,11(9):1337-1340.
    [3]王芹,徐辉碧,杨祥良,等.可显影原位凝胶化温敏纳米凝胶的制备及性能.医药导报,2008,27(10):1243-1247.
    [4]Zhao Y, Zheng C, Wang Q, et al. Permanent and peripheral embolization: temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as a novel blood-vessel-embolic material in the interventional therapy of liver tumors. Adv Funct Mater,2011,21(11):2035-2042.
    [5]Cao W, Wan Y, Liang ZH, et al. Heated lipiodol as an embolization agent for transhepatic arterial embolization in VX2 rabbit liver cancer model. Eur J Radiol, 2010,73(2):412-419.
    [6]Yoon CJ, Chung JW, Park JH. et al. Transcatheter arterial chemoembolization with paclitaxel-lipiodol solution in rabbit VX2 liver tumor. Radiology, 2003,229(1):126-131.
    [7]Hamuro M, Nakamura K, Sakai Y, et al. New oily agents for targeting chemoembolization for hepatocellular carcinoma. Cardiovasc Intervent Radiol, 1999,22(2):130-134.
    [8]Yoon CJ, Chung JW, Park JH, et al. Transcatheter arterial embolization with 188Rhenium-HDD-labeled iodized oil in rabbit VX2 liver tumor. J Vase Interv Radiol,2004,15(10):1121-1128.
    [9]Carlsson G, Gullberg B, Hafstrom L. Estimation of liver tumor volume using different formulas-an experimental study in rats. J Cancer Res Clin Oncol, 1983,105(1):20-23.
    [10]Trubenbach J, Pereira PL, Graepler F, et al. [Animal experiment studies on the effectiveness of permanent occlusion of the hepatic artery in transarterial chemoembolization]. Rofo,2000,172(3):274-277.
    [11]钱骏,吴汉平,郑传胜,等.白芨在经肝动脉化疗栓塞术治疗大鼠肝细胞癌实验中的应用.中华放射学杂志,2005,39(3):310-312.
    [12]Germer CT, Isbert C, Albrecht D, et al. Laser-induced thermotherapy combined with hepatic arterial embolization in the treatment of liver tumors in a rat tumor model. Ann Surg,1999,230(1):55-62.
    [13]Wright KC, Greff RJ, Price RE. Experimental evaluation of cellulose acetate NF and ethylene-vinyl alcohol copolymer for selective arterial embolization. J Vasc Interv Radiol,1999,10(9):1207-1218.
    [14]van Es RJ, Franssen O, Dullens HF, et al. The VX2 carcinoma in the rabbit auricle as an experimental model for intra-arterial embolization of head and neck squamous cell carcinoma with dextran microspheres. Lab Anim, 1999,33(2):175-184.
    [15]Moroz P, Jones SK, Winter J, et al. Targeting liver tumors with hyperthermia: ferromagnetic embolization in a rabbit liver tumor model. J Surg Oncol, 2001,78(1):22-29; discussion 30-21.
    [16]Liang B, Zheng C, Feng G, et al. Experimental evaluation of inhibitory effect of 10-hydroxycamptothecin on hypoxia-inducible factor-1 alpha expression and angiogenesis in liver tumors after transcatheter arterial embolization. J Vasc Interv Radiol,2010.21(10):1565-1572.
    [17]Nagata Y, Fujiwara K, Okajima K, et al. Transcatheter arterial embolization for malignant osseous and soft-tissue sarcomas. I. A rabbit experimental model. Cardiovasc Intervent Radiol,1998,21(3):205-207.
    [18]曾晓华,冯敢生,王颂章,等.建立兔移植性Vx-2肝癌模型的改进.介入放射学杂志,2004,13(6):551-553.
    [19]Laurent A. Materials and biomaterials for interventional radiology. Biomed Pharmacother,1998,52(2):76-88.
    [20]Kang QK, An YH, Moreira PL, et al. Arterial embolization using poly-N-acetyl glucosamine gel in a rat kidney model. Anat Rec A Discov Mol Cell Evol Biol, 2005,284(1):454-459.
    [21]Senturk C, Cakir V, Yorukoglu K, et al. Looking for the ideal particle:an experimental embolization study. Cardiovasc Intervent Radiol, 2010,33(2):336-345.
    [22]Loffroy R, Guiu B, Cercueil JP, et al. Endovascular therapeutic embolisation:an overview of occluding agents and their effects on embolised tissues. Curr Vasc Pharmacol,2009,7(2):250-263.
    [23]Xiong W, Wang W, Wang Y, et al. Dual temperature/pH-sensitive drug delivery of poly(N-isopropylacrylamide-co-acrylic acid) nanogels conjugated with doxorubicin for potential application in tumor hyperthermia therapy. Colloids Surf B Biointerfaces,2011,84(2):447-453.
    [24]Morimoto N, Endo T, Iwasaki Y, et al. Design of hybrid hydrogels with self-assembled nanogels as cross-linkers:interaction with proteins and chaperone-like activity. Biomacromolecules,2005.6(4):1829-1834.
    [25]盛希忠,刘作勤,武乐斌,等.温度敏感型液体栓塞材料的动物实验研究.中华神经外科杂志,2006,22(2):123-126.
    [26]Lee BH, West B, McLemore R, et al. In-situ injectable physically and chemically gelling NIPAAm-based copolymer system for embolization. Biomacromolecules, 2006,7(6):2059-2064.
    [27]Li X, Liu W, Ye G, et al. Thermo sensitive N-isopropylacrylamide-N-propylacrylamide-vinyl pyrrolidone terpolymers: synthesis, characterization and preliminary application as embolic agents. Biomaterials,2005,26(34):7002-7011.
    [28]Ruel-Gariepy E, Leroux JC. In situ-forming hydrogels--review of temperature-sensitive systems. Eur J Pharm Biopharm,2004,58(2):409-426.
    [29]Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev,2002,54(1):37-51.
    [30]Chan AO, Yuen MF, Hui CK, et al. A prospective study regarding the complications of transcatheter intraarterial lipiodol chemoembolization in patients with hepatocellular carcinoma. Cancer,2002,94(6):1747-1752.
    [31]Lo CM, Ngan H, Tso WK, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology,2002,35(5):1164-1171.
    [32]Becker TA, Kipke DR. Flow properties of liquid calcium alginate polymer injected through medical microcatheters for endovascular embolization. J Biomed Mater Res,2002,61(4):533-540.
    [1]Lewandowski RJ, Geschwind JF, Liapi E, et al. Transcatheter intraarterial therapies:rationale and overview. Radiology,2011,259(3):641-657.
    [2]Loffroy R, Guiu B, Cercueil JP, et al. Endovascular therapeutic embolisation:an overview of occluding agents and their effects on embolised tissues. Curr Vasc Pharmacol,2009,7(2):250-263.
    [3]Pollak JS, White RI, Jr. The use of cyanoacrylate adhesives in peripheral embolization. J Vasc Interv Radiol,2001,12(8):907-913.
    [4]Jordan O, Doelker E, Rufenacht DA. Biomaterials used in injectable implants (liquid embolics) for percutaneous filling of vascular spaces. Cardiovasc Intervent Radiol,2005,28(5):561-569.
    [5]Kai Y, Hamada J, Morioka M, et al. The utility of the microcrystalline cellulose sphere as a particulate embolic agent:an experimental study. AJNR Am J Neuroradiol,2000,21 (6):1160-1163.
    [6]Pothmann D, Ulusans S, Prols F, et al. Liquid 2-P-HEMA for endovascular tumor therapy:in vivo feasibility study. Med Sci Monit,2004,10(8):BR286-293.
    [7]Sheng XZ, Liu ZQ, Wu LB, et al. Technical feasibility and histopathologic studies of poly (N-isopropylacrylamide) as a non-adhesive embolic agent in swine rete mirabile. Chin Med J (Engl),2006,119(5):391-396.
    [8]Kang QK, An YH, Moreira PL, et al. Arterial embolization using poly-N-acetyl glucosamine gel in a rat kidney model. Anat Rec A Discov Mol Cell Evol Biol, 2005,284(1):454-459.
    [9]Senturk C, Cakir V, Yorukoglu K, et al. Looking for the ideal particle:an experimental embolization study. Cardiovasc Intervent Radiol, 2010,33(2):336-345.
    [10]Berthelsen B, Lofgren J. Svendsen P. Embolization of cerebral arteriovenous malformations with bucrylate. Experience in a first series of 29 patients. Acta Radiol,1990,31(1):13-21.
    [11]Szmigielski W, Klamut M, Wolski T, et al. Urogranoic acid as a radiopaque additive to the cyanoacrylic adhesive in transcatheter obliteration of renal arteries. Invest Radiol.1981,16(1):65-70.
    [12]Gunther R, Schubert U, Bohl J, et al. Transcatheter embolization of the kidney with butyl-2-cyanoacrylate:experimental and clinical results. Cardiovasc Radiol, 1978,1(2):101-108.
    [13]Stoesslein F, Ditscherlein G, Romaniuk PA. Experimental studies on new liquid embolization mixtures (histoacryl-lipiodol, histoacryl-panthopaque). Cardiovasc Intervent Radio],1982,5(5):264-267.
    [14]Kerber CW, Wong W. Liquid acrylic adhesive agents in interventional neuroradiology. Neurosurg Clin N Am,2000,11(1):85-99, viii-ix.
    [15]Paulsen RD, Steinberg GK, Norbash AM, et al. Embolization of basal ganglia and thalamic arteriovenous malformations. Neurosurgery,1999,44(5):991-996; discussion 996-997.
    [16]Gruber A, Mazal PR, Bavinzski G, et al. Repermeation of partially embolized cerebral arteriovenous malformations:a clinical, radiologic, and histologic study. AJNR Am J Neuroradiol,1996,17(7):1323-1331.
    [17]Laurent A. Materials and biomaterials for interventional radiology. Biomed Pharmacother,1998,52(2):76-88.
    [18]Barr JD, Hoffman EJ, Davis BR, et al. Microcatheter adhesion of cyanoacrylates: comparison of normal butyl cyanoacrylate to 2-hexyl cyanoacrylate. J Vasc Interv Radiol,1999,10(2 Pt 1):165-168.
    [19]Oowaki H, Matsuda S, Sakai N, et al. Non-adhesive cyanoacrylate as an embolic material for endovascular neurosurgery. Biomaterials,2000.21 (10):1039-1046.
    [20]Murayama Y, Vinuela F, Ulhoa A, et al. Nonadhesive liquid embolic agent for cerebral arteriovenous malformations:preliminary histopathological studies in swine rete mirabile. Neurosurgery,1998,43(5):1164-1175.
    [21]Chaloupka JC, Huddle DC, Alderman J, et al. A reexamination of the angiotoxicity of superselective injection of DMSO in the swine rete embolization model. AJNR Am J Neuroradiol,1999,20(3):401-410.
    [22]Taki W, Yonekawa Y, Iwata H, et al. A new liquid material for embolization of arteriovenous malformations. AJNR Am J Neuroradiol,1990,11(1):163-168.
    [23]Gobin YP, Murayama Y, Milanese K, et al. Head and neck hypervascular lesions: embolization with ethylene vinyl alcohol copolymer--laboratory evaluation in Swine and clinical evaluation in humans. Radiology,2001,221 (2):309-317.
    [24]Gao K, Yang XJ, Mu SQ, et al. Embolization of brain arteriovenous malformations with ethylene vinyl alcohol copolymer:technical aspects. Chin Med J (Engl),2009,122(16):1851-1856.
    [25]Numan F, Omeroglu A, Kara B, et al. Embolization of peripheral vascular malformations with ethylene vinyl alcohol copolymer (Onyx). J Vasc Interv Radol,2004,15(9):939-946.
    [26]Molyneux AJ, Cekirge S, Saatci I, et al. Cerebral Aneurysm Multicenter European Onyx (CAMEO) trial:results of a prospective observational study in 20 European centers. AJNR Am J Neuroradiol,2004,25(1):39-51.
    [27]Ayad M, Eskioglu E, Mericle RA. Onyx:a unique neuroembolic agent. Expert Rev Med Devices,2006,3(6):705-715.
    [28]Cognard C, Januel AC, Silva NA, et al. Endovascular treatment of intracranial dural arteriovenous fistulas with cortical venous drainage:new management using Onyx. AJNR Am J Neuroradiol,2008.29(2):235-241.
    [29]Tokunaga K, Kinugasa K, Meguro T, et al. Embolization of cerebral arteriovenous malformations with cellulose acetate polymer. Histological study of the resected specimens. Interv Neuroradiol,1998,4 Suppl 1:117-120.
    [30]Kinugasa K, Mandai S, Terai Y, et al. Direct thrombosis of aneurysms with cellulose acetate polymer. Part II:Preliminary clinical experience. J Neurosurg, 1992,77(4):501-507.
    [31]Sugawara T, Takahashi A, Su CC, et al. Experimental investigations concerning a new liquid embolization method:combined administration of ethanol-estrogen and poly vinyl acetate. Neurol Med Chir (Tokyo),1993,33(2):71-76.
    [32]Park S, Yoon HK, Lee N, et al. Portal vein embolization with use of a new liquid embolic material:an experimental study. J Vasc Interv Radiol, 1999.10(3):339-345.
    [33]Ko GY, Sung KB, Yoon HK, et al. Preoperative portal vein embolization with a new liquid embolic agent. Radiology,2003,227(2):407-413.
    [34]Kazekawa K, Iwata H, Shimozuru T, et al. Nontoxic embolic liquids for treatment of arteriovenous malformations. J Biomed Mater Res, 1997,38(2):79-86.
    [35]Kawaguchi T, Kawano T, Kaneko Y, et al. Transarterial embolization with HEMA-MMA of variant convexity-superior sagittal sinus dural arteriovenous fistula--case report. Neurol Med Chir (Tokyo),2000,40(7):366-368.
    [36]Kazekawa K, Kawano T, Kawaguchi T, et al. Newly synthesized liquid embolization material for arteriovenous malformation. J Clin Neurosci,1998,5 Suppl:45-48.
    [37]Klisch J, Schellhammer F, Zitt J, et al. Combined stent implantation and embolization with liquid 2-polyhydroxyethyl methacrylate for treatment of experimental canine wide-necked aneurysms. Neuroradiology, 2002,44(6):503-512.
    [38]Klisch J, Yin L, Requejo F, et al. Liquid 2-poly-hydroxyethyl-methacrylate embolization of experimental arteriovenous malformations:feasibility study. AJNR Am J Neuroradiol,2002,23(3):422-429.
    [39]Shi Z, Huang Z, Zhang Y, et al. Experimental study of Eudragit mixture as a new nonadhesive liquid embolic material. Chin Med J (Engl),2002.115(4):555-558.
    [40]Hamada J, Kai Y, Morioka M, et al. A mixture of ethylene vinyl alcohol copolymer and ethanol yielding a nonadhesive liquid embolic agent to treat cerebral arteriovenous malformations:initial clinical experience. J Neurosurg, 2002,97(4):881-888.
    [41]Sadato A, Taki W, Ikada Y, et al. Experimental study and clinical use of poly(vinyl acetate) emulsion as liquid embolisation material. Neuroradiology, 1994,36(8):634-641.
    [42]Becker TA, Kipke DR, Preul MC, et al. In vivo assessment of calcium alginate gel for endovascular embolization of a cerebral arteriovenous malformation model using the Swine rete mirabile. Neurosurgery,2002,51(2):453-458; discussion 458-459.
    [43]Becker TA, Kipke DR, Brandon T. Calcium alginate gel:a biocompatible and mechanically stable polymer for endovascular embolization. J Biomed Mater Res, 2001,54(1):76-86.
    [44]Kim IM, Yim MB, Lee CY, et al. Merits of intralesional fibrin glue injection in surgery for cavernous sinus cavernous hemangiomas. Technical note. J Neurosurg,2002,97(3):718-721.
    [45]Probst EN, Grzyska U, Westphal M, et al. Preoperative embolization of intracranial meningiomas with a fibrin glue preparation. AJNR Am J Neuroradiol, 1999,20(9):1695-1702.
    [46]Zhou YM, Ishikawa A, Okahashi R, et al. Deposition transfection technology using a DNA complex with a thermoresponsive cationic star polymer. J Control Release,2007.123(3):239-246.
    [47]Sabnis A, Wadajkar AS, Aswath P, et al. Factorial analyses of photopolymerizable thermoresponsive composite hydrogels for protein delivery. Nanomedicine,2009,5(3):305-315.
    [48]Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm,2008.68(1):34-45.
    [49]Gant RM, Abraham AA, Hou Y, et al. Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors. Acta Biomater, 2010.6(8):2903-2910.
    [50]Raymond J, Metcalfe A, Salazkin I, et al. Temporary vascular occlusion with poloxamer 407. Biomaterials,2004,25(18):3983-3989.
    [51]Matsumaru Y, Hyodo A, Nose T, et al. Application of thermosensitive polymers as a new embolic material for intravascular neurosurgery. J Biomater Sci Polym Ed,1996,7(9):795-804.
    [52]盛希忠,刘作勤,武乐斌,等.温度敏感型液体栓塞材料的动物实验研究.中华神经外科杂志,2006,22(2):123-126.
    [53]王芹,徐辉碧,杨祥良,等.可显影原位凝胶化温敏纳米凝胶的制备及性能.医药导报,2008,27(10):1243-1247.
    [54]Zhao Y, Zheng C, Wang Q, et al. Permanent and peripheral embolization: temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as a novel blood-vessel-embolic material in the interventional therapy of liver tumors. Adv Funct Mater,2011,21 (11):2035-2042.
    [55]Becker TA, Kipke DR. Flow properties of liquid calcium alginate polymer injected through medical microcatheters for endovascular embolization. J Biomed Mater Res,2002,61 (4):533-540.
    [56]Li X, Liu W, Ye G, et al. Thermosensitive N-isopropylacrylamide-N-propylacrylamide-vinyl pyrrolidone terpolymers: synthesis, characterization and preliminary application as embolic agents. Biomaterials,2005,26(34):7002-7011.
    [57]Yakes WF, Luethke JM, Merland JJ, et al. Ethanol embolization of arteriovenous fistulas:a primary mode of therapy. J Vasc Interv Radiol,1990,1 (1):89-96.
    [58]Huang JY, Yang WZ, Li JJ, et al. Portal vein embolization induces compensatory hypertrophy of remnant liver. World J Gastroenterol,2006.12(3):408-414.
    [59]Ellman BA, Parkhill BJ, Curry TS, et al. Ablation of renal tumors with absolute ethanol:a new technique. Radiology,1981,141 (3):619-626.
    [60]Konya A, Van Pelt CS, Wright KC. Ethiodized oil-ethanol capillary embolization in rabbit kidneys:temporal histopathologic findings. Radiology, 2004,232(1):147-153.
    [61]Mason KP, Michna E, Zurakowski D, et al. Serum ethanol levels in children and adults after ethanol embolization or sclerotherapy for vascular anomalies. Radiology,2000,217(1):127-132.
    [62]Saitoh H, Hayakawa K, Nishimura K, et al. Long-term results of ethanol embolization of renal cell carcinoma. Radiat Med,1997,15(2):99-102.
    [63]Yu SC, Hui EP, Wong J, et al. Transarterial ethanol ablation of hepatocellular carcinoma with lipiodol ethanol mixture:phase Ⅱ study. J Vase Interv Radiol, 2008,19(1):95-103.
    [64]Sakuhara Y, Kato F, Abo D, et al. Transcatheter arterial embolization with absolute ethanol injection for enlarged polycystic kidneys after failed metallic coil embolization. J Vasc Interv Radiol,2008,19(2 Pt 1):267-271.
    [65]Hammer FD, Boon LM, Mathurin P, et al. Ethanol sclerotherapv of venous malformations:evaluation of systemic ethanol contamination. J Vasc Interv Radiol,2001,12(5):595-600.
    [66]Dubois JM, Sebag GH, De Prost Y, et al. Soft-tissue venous malformations in children:percutaneous sclerotherapy with Ethibloc. Radiology, 1991,180(1):195-198.
    [67]Richter G, Rassweiler J, Kauffmann GW, et al. Experimental study of the effectiveness of capillary embolization using contrast-enhanced Ethibloc. Invest Radiol,1984,19(1):36-44.
    [68]Matsumaru Y, Hyodo A, Nose T, et al. Embolic materials for endovascular treatment of cerebral lesions. J Biomater Sci Polym Ed,1997,8(7):555-569.
    [69]Komemushi A, Tanigawa N, Okuda Y, et al. A new liquid embolic material for liver tumors. Acta Radiol,2002,43(2):186-191.
    [70]Murayama Y, Vinuela F, Tateshima S, et al. Endovascular treatment of experimental aneurysms by use of a combination of liquid embolic agents and protective devices. AJNR Am J Neuroradiol,2000,21(9):1726-1735.
    [71]He HW, Jiang CH, Liu HB, et al. Endovascular treatment of cerebral arteriovenous malformations with Onyx embolization. Chin Med J (Engl), 2005,118(24):2041-2045.
    [72]Levrier O, Mekkaoui C, Rolland PH, et al. Efficacy and low vascular toxicity of embolization with radical versus anionic polymerization of n-butyl-2-cyanoacrylate (NBCA). An experimental study in the swine. J Neuroradiol,2003,30(2):95-102.
    [73]Sugiu K, Kinugasa K, Mandai S, et al. Direct thrombosis of experimental aneurysms with cellulose acetate polymer (CAP):technical aspects, angiographic follow up, and histological study. J Neurosurg,1995,83(3):531-538.
    [74]Ohyama T, Ko IK, Miura A, et al. ProNectin F-grafted-ethylene vinyl alcohol copolymer (EVAL) as a liquid type material for treating cerebral aneurysm--an in vivo and in vitro study. Biomaterials,2004,25(17):3845-3852.
    [75]Maurer CA, Renzulli P, Baer HU, et al. Hepatic artery embolisation with a novel radiopaque polymer causes extended liver necrosis in pigs due to occlusion of the concomitant portal vein. J Hepatol,2000,32(2):261-268.
    [76]Mottu F, Rufenacht DA, Laurent A, et al. Iodine-containing cellulose mixed esters as radiopaque polymers for direct embolization of cerebral aneurysms and arteriovenous malformations. Biomaterials,2002,23(1):121-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700