用户名: 密码: 验证码:
哺乳动物雷帕霉素靶蛋白(mTOR)信号通路对脂多糖所致急性肺损伤的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:哺乳动物雷帕霉素靶蛋白(mTOR)是细胞内多种重要信号传导通路的枢纽,具有调节细胞的生存、增殖和凋亡等重要生理功能。目前越来越多的研究显示mTOR信号通路在炎症反应的起始和发展中也扮演了重要角色,但其在急性肺损伤(acute lung injury, ALI)中的作用尚不明确。
     目的:建立气管内注射脂多糖(LPS)诱导小鼠急性肺损伤模型。明确ALI时mTOR活性的变化,应用雷帕霉素抑制mTOR活性,观察雷帕霉素对急性肺损伤的可能干预作用。
     方法:应用单次气管内注入脂多糖(20mg/kg体重)的方法诱导小鼠急性肺损伤模型,并通过连续腹腔内注射雷帕霉素(Rapa,4mg/kg体重)5天来实现对小鼠ALI的干预。在气管内注射LPS 8小时后收集肺组织和灌洗液标本,通过观测小鼠的一般情况,肺部病理表现,肺泡灌洗液炎症细胞和炎症因子的表达,肺水肿的程度和ALI小鼠的生存预后等多项指标,来评价雷帕霉素对ALI的干预作用。
     结果:肺组织中mTOR的下游蛋白pS6在LPS诱导的急性肺损伤模型中表达明显增强,而雷帕霉素的干预能够显著抑制pS6的过度活化。同时,雷帕霉素能够显著减少肺泡灌洗液中TNF-α(LPS vs LPS+Rapa:1672.74±193.73 vs 539.17±140.47pg/ml, P<0.01)和IL-6 (LPS+Rapa vs LPS:1672.74±193.73pg/ml, P<0.01)的表达水平;以及降低肺组织中IL-1β水平的上调(LPS vs LPS+Rapa:6394.20±904.59 vs 3196.08±487.46, pg/mg protein, P<0.01),增加了ALI时MMP-9的水平(LPS vs LPS+Rapa:17.98±3.17 vs 37.86±19.00, pg/mg protein, P<0.05)。但是,雷帕霉素不能改善ALI的严重程度。无论是中性粒细胞的浸润、还是肺水肿程度或病理的改变,雷帕霉素组和赋形剂组均无显著性差异。而且,雷帕霉素对ALI小鼠的生存预后也没有明显的干预作用。
     结论:雷帕霉素能够抑制ALI时mTOR的过度活化,但对LPS诱导的ALI发生发展整个过程的干预作用甚微。本研究提示,单纯应用雷帕霉素抑制mTOR可能并不是ALI的潜在治疗方法。
Background:A growing body of evidence indicates that the mammalian target of rapamycin (mTOR) pathway, a key cellular signaling pathway associated with cellular functions, has distinct effects also in the in inflammatory process. However, the role of the mTOR pathway in lippolysaccharide (LPS) induced acute lung injury (ALI) is far of being elucidated. Objective:In this study, selective mTOR inhibitor rapamycin (Rapa) was used to test whether mTOR activation is critical in a murine model of LPS-induced ALI.
     Methods:To examine the issue, mice were received LPS (20mg/kg) by intratracheal administration. Rapamycin-pretreated (8mg/kg body weight for consecutive five days) mice were compared to mice injected with vehicle alone. Lung tissues and bronchoalveolar lavage (BAL) were obtained 8 hours after LPS instillation. Levels of local inflammatory cytokines, cell numbers in BAL fluid, pulmonary edema, histopathology change, and ALI survival (40mg/kg LPS was used) were evaluated.
     Results:The phosphorylation of S6, a major downstream target of mTOR, increased significantly in murine lung tissue after LPS stimulation compared to control, which was blocked by rapamycin. Administration of rapamycin diminished the levels of TNF-α(LPS vs LPS+Rapa:1672.74±193.73 vs 539.17±140.47 pg/ml,P<0.01)and IL-6 (LPS vs LPS+Rapa:7790.88±1170.54 vs 1968.57±474.62, pg/ml, P<0.01) in BAL fluid, and abrogated IL-1βup-regulation (LPS vs LPS+Rapa:6394.20±904.59 vs 3196.08±487.46, pg/mg protein, P<0.01) but reinforced MMP-9 up-regulation (LPS vs LPS+Rapa:17.98±3.17 vs 37.86±19,00, pg/mg protein, P<0.05) induced by LPS in lung tissue. However, rapamycin had little effects on the development and severity of lung injury after intratracheal LPS administration, as determined by pulmonary edema, inflammatory cell influx, and histopathology changes of ALI as well as the thickness of alveolar septum. And most important, there was no difference in lethality of LPS-mediated ALI between the rapamycin and vehicle pretreated mice.
     Conclusion:These results indicate that inhibition of mTOR activation has a limited effect in ALI process. Our data indicated that rapamycin appears not be a candidate drug in treating ALI if it is used alone. Grant support:This work was supported by 973 Program of China (2009CB522106).
引文
[1]马晓春,王辰,方强,等.急性肺损伤/急性呼吸窘迫综合征诊断和治疗指南(2006)[J].中国危重病急救医学,2006,18(12):706-710.
    [2]Matthay M. A., Zimmerman G. A., Esmon C., et al. Future research directions in acute lung injury:summary of a National Heart, Lung, and Blood Institute working group. [J]. Am J Respir Crit Care Med, 2003,167(7):1027-1035.
    [3]Ware L. B., Matthay M. A. The acute respiratory distress syndrome. [J]. N Engl J Med,2000,342(18):1334-1349.
    [4]Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network.[J]. N Engl J Med,2000,342(18):1301-1308.
    [5]Krafft P., Fridrich P., Pernerstorfer T., et al. The acute respiratory distress syndrome:definitions, severity and clinical outcome. An analysis of 101 clinical investigations. [J]. Intensive Care Med,1996,22 (6):519-529.
    [6]Lu Y., Song Z., Zhou X., et al. A 12-month clinical survey of incidence and outcome of acute respiratory distress syndrome in Shanghai intensive care units. [J]. Intensive Care Med, 2004,30(12):2197-2203.
    [7]Matute-Bello G., Frevert C. W., Martin T. R. Animal models of acute lung injury. [J]. Am J Physiol Lung Cell Mol Physiol, 2008,295(3):L379-L399.
    [8]Seki H., Fukunaga K., Arita M., et al. The anti-inflammatory and proresolving mediator resolvin El protects mice from bacterial pneumonia and acute lung injury. [J]. J Immunol,2010,184(2):836-843.
    [9]Kim S. R., Lee K. S., Park S. J., et al. Angiopoietin-1 variant, COMP-Angl attenuates hydrogen peroxide-induced acute lung injury.[J]. Exp Mol Med,2008,40(3):320-331.
    [10]Ather J. L., Alcorn J. F., Brown A. L., et al. Distinct Functions of Airway Epithelial NF-{kappa}B Activity Regulate Nitrogen Dioxide-induced Acute Lung Injury. [J]. Am J Respir Cell Mol Biol,2009.
    [11]Yoon H. K., Cho H. Y., Kleeberger S. R. Protective role of matrix metalloproteinase-9 in ozone-induced airway inflammation.[J]. Environ Health Perspect,2007,115(11):1557-1563.
    [12]Xu R. F., Li T. T., Feng X. Y., et al. Therapeutic effect of hyperoxygenated solution on acute lung injury induced by oleic acid. [J]. Eur Surg Res,2008,41(1):37-43.
    [13]Lomas J. L., Chung C. S., Grutkoski P. S., et al. Differential effects of macrophage inflammatory chemokine-2 and keratinocyte-derived chemokine on hemorrhage-induced neutrophil priming for lung inflammation:assessment by adoptive cells transfer in mice. [J]. Shock, 2003,19 (4):358-365.
    [14]Tarhan 0. R., Ceylan B. G., Kapucuoglu N., et al. Activated Protein C and Normal Saline Infusion Might Prevent Deleterious Effects of Remote Acute Lung Injury Caused by Intestinal Ischemia-Reperfusion:An Experimental Study in the Rat Model. [J]. J Surg Res,2009.
    [15]Schmitz F., Heit A., Dreher S., et al. Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells. [J]. Eur J Immunol,2008,38(11):2981-2992.
    [16]Opal S. M., Sypek J. P., Keith JC Jr, et al. Evaluation of the safety of recombinant P-selectin glycoprotein ligand-immunoglobulin G fusion protein in experimental models of localized and systemic infection. [J]. Shock,2001,15 (4):285-290.
    [17]El-Ferzli G. T., Philips JB Rd, Bulger A., et al. A pumpless lung assist device reduces mechanical ventilation-induced lung injury in juvenile piglets. [J]. Pediatr Res,2009,66(6):671-676.
    [18]Venet F., Huang X., Chung C. S., et al. Plasmacytoid dendritic cells control lung inflammation and monocyte recruitment in indirect acute lung injury in mice. [J]. Am J Pathol,2010,176(2):764-773.
    [19]Frank A. J., Thompson B. T. Pharmacological treatments for acute respiratory distress syndrome. [J]. Curr Opin Crit Care, 2010,16(1):62-68.
    [20]蒋建新主编.细菌内毒素基础与临床[M].人民军医出版社,2004.
    [21]Akira S., Takeda K. Toll-like receptor signalling. [J]. Nat Rev Immunol,2004,4(7):499-511.
    [22]Zhou Z. H., Sun B., Lin K., et al. Prevention of rabbit acute lung injury by surfactant, inhaled nitric oxide, and pressure support ventilation. [J]. Am J Respir Crit Care Med,2000,161(2 Pt 1):581-588.
    [23]Mirzapoiazova T., Moitra J., Moreno-Vinasco L., et al. The Non Muscle Myosin Light Chain Kinase Isoform is a Viable Molecular Target in Acute Inflammatory Lung Injury. [J]. Am J Respir Cell Mol Biol,2010.
    [24]Quintero P. A., Knolle M. D., Cala L. F., et al. Matrix metalloproteinase-8 inactivates macrophage inflammatory protein-1 alpha to reduce acute lung inflammation and injury in mice. [J]. J Immunol, 2010,184(3):1575-1588.
    [25]Aggarwal N. R., D'Alessio F. R., Tsushima K., et al. Moderate oxygen augments lipopolysaccharide-induced lung injury in mice. [J]. Am J Physiol Lung Cell Mol Physiol,2010,298(3):L371-L381.
    [26]Sharma S., Smith A., Kumar S., et al. Mechanisms of nitric oxide synthase uncoupling in endotoxin-induced acute lung injury:Role of asymmetric dimethylarginine. [J]. Vascul Pharmacol,2009.
    [27]Martin T. R. Direct lung injury by bacteria:clarifying the tools of the trade. [J]. Crit Care Med,2004,32(11):2360-2361.
    [28]Gordon J. R., Zhang X., Li F., et al. Amelioration of pathology by ELR-CXC chemokine antagonism in a swine model of airway endotoxin exposure. [J]. J Agromedicine,2009,14(2):235-241.
    [29]Pirrone F., Mazzola S. M., Pastore C., et al. Activated protein C protection from lung inflammation in endotoxin-induced injury. [J]. Exp Biol Med (Maywood),2008,233(11):1462-1468.
    [30]Wang J., Jiao L., Ma J., et al. Effects of intravenous infusion of lipopolysaccharide on plasma micromineral, magnesium, and cytokine concentrations and serum cortisol concentrations in lactating goats. [J]. Am J Vet Res,2007,68(5):529-534.
    [31]Moreira A. L., Wang J., Sarno E. N., et al. Thalidomide protects mice against LPS-induced shock. [J]. Braz J Med Biol Res, 1997,30(10):1199-1207.
    [32]Moreira A. L., Wang J., Sarno E. N., et al. Thalidomide protects mice against LPS-induced shock. [J]. Braz J Med Biol Res, 1997,30(10):1199-1207.
    [33]Xiao X., Zuo X., Davis A. A., et al. HSFI is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. [J]. EMBO J,1999,18(21):5943-5952.
    [34]Lorne E., Zhao X., Zmijewski J. W., et al. Participation of mammalian target of rapamycin complex 1 in Toll-like receptor 2-and 4-induced neutrophil activation and acute lung injury.[J]. Am J Respir Cell Mol Biol,2009,41(2):237-245.
    [35]Heremans H., Dillen C., Groenen M., et al. Role of interferon-gamma and nitric oxide in pulmonary edema and death induced by lipopolysaccharide. [J]. Am J Respir Crit Care Med,2000,161(1):110-117.
    [36]Matute-Bello G., Frevert C. W., Martin T. R. Animal models of acute lung injury. [J]. Am J Physiol Lung Cell Mol Physiol, 2008,295(3):L379-L399.
    [37]Martin T. R. Recognition of bacterial endotoxin in the lungs. [J]. Am J Respir Cell Mol Biol,2000,23(2):128-132.
    [38]Koay M. A., Gao X., Washington M. K., et al. Macrophages are necessary for maximal nuclear factor-kappa B activation in response to endotoxin. [J]. Am J Respir Cell Mol Biol,2002,26(5):572-578.
    [39]Li X., Jiang S., Tapping R. I. Toll-like receptor signaling in cell proliferation and survival. [J]. Cytokine,2010,49(1):1-9.
    [40]黄宏.LPS受体及其信号传导通路[J].免疫学杂志,2002,18(B06):84-87.
    [41]李新甫,汪建新.内毒素与急性肺损伤[J].军医进修学院学报,2005,26(6):484-485.
    [42]Cao W., Manicassamy S., Tang H., et al. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. [J]. Nat Immunol, 2008,9(10):1157-1164.
    [43]Weichhart T., Costantino G., Poglitsch M., et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. [J]. Immunity,2008,29(4):565-577.
    [44]Sun Q., Liu Q., Zheng Y., et al. Rapamycin suppresses TLR4-triggered IL-6 and PGE(2) production of colon cancer cells by inhibiting TLR4 expression and NF-kappaB activation. [J]. Mol Immunol, 2008,45 (10):2929-2936.
    [45]Vinciguerra M., Veyrat-Durebex C., Moukil M. A., et al. PTEN down-regulation by unsaturated fatty acids triggers hepatic steatosis via an NF-kappaBp65/mTOR-dependent mechanism. [J]. Gastroenterology, 2008,134(1):268-280.
    [46]Mendes Sdos S., Candi A., Vansteenbrugge M., et al. Microarray analyses of the effects of NF-kappaB or PI3K pathway inhibitors on the LPS-induced gene expression profile in RAW264.7 cells:synergistic effects of rapamycin on LPS-induced MMP9-overexpression. [J]. Cell Signal,2009,21(7):1109-1122.
    [47]Carracedo A., Ma L., Teruya-Feldstein J., et al. Inhibition of mTORCl leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. [J]. J Clin Invest,2008,118(9):3065-3074.
    [48]Kinkade C. W., Castillo-Martin M., Puzio-Kuter A., et al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. [J]. J Clin Invest, 2008,118(9):3051-3064.
    [49]Kharas M. G., Janes M. R., Scarfone V. M., et al. Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+leukemia cells. [J]. J Clin Invest, 2008,118(9):3038-3050.
    [50]Oliveira-Junior I. S., Maganhin C. C., Carbonel A. A., et al. Effects of pentoxifylline on TNF-alpha and lung histopathology in HCL-induced lung injury. [J]. Clinics (Sao Paulo),2008,63(1):77-84.
    [51]Oliveira W. R., Silva I., Simoes R. S., et al. Effects of prone and supine position on-oxygenation and inflammatory mediator in a hydrochloric acid-induced lung dysfunction in rats. [J]. Acta Cir Bras, 2008,23 (5):451-455.
    [52]Van de Louw A., Jean D., Frisdal E., et al. Neutrophil proteinases in hydrochloric acid-and endotoxin-induced acute lung injury: evaluation of interstitial protease activity by in situ zymography. [J]. Lab Invest,2002,82(2):133-145.
    [1]Ware L. B., Matthay M. A. The acute respiratory distress syndrome. [J]. N Engl J Med,2000,342(18):1334-1349.
    [2]Matthay M. A., Zimmerman G. A., Esmon C., et al. Future research directions in acute lung injury:summary of a National Heart, Lung, and Blood Institute working group. [J]. Am J Respir Crit Care Med, 2003,167(7):1027-1035.
    [3]李新甫,汪建新.内毒素与急性肺损伤[J].军医进修学院学报,2005,26(6):484-485.
    [4]Hay N., Sonenberg N. Upstream and downstream of mTOR. [J]. Genes Dev, 2004,18(16):1926-1945.
    [5]Ma X. M., Blenis J. Molecular mechanisms of mTOR-mediated translational control.[J]. Nat Rev Mol Cell Biol,2009,10(5):307-318.
    [6]综述张超,综述杨娜,审校章雄文,等.靶向P13K—Akt—mTOR信号通路抑制剂的研究进展[J].中国癌症杂志,2006,16(12):1064-1070.
    [7]Lorne E., Zhao X., Zmijewski J. W., et al. Participation of mammalian target of rapamycin complex 1 in Toll-like receptor 2-and 4-induced neutrophil activation and acute lung injury. [J]. Am J Respir Cell Mol Biol,2009,41 (2):237-245.
    [8]Weinstein S. L., Finn A. J., Dave S. H., et al. Phosphatidylinositol 3-kinase and mTOR mediate lipopolysaccharide-stimulated nitric oxide production in macrophages via interferon-beta. [J]. J Leukoc Biol, 2000,67 (3):405-414.
    [9]Weichhart T., Costantino G., Poglitsch M., et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. [J]. Immunity,2008,29(4):565-577.
    [10]Yost C. C., Denis M. M., Lindemann S., et al. Activated polymorphonuclear leukocytes rapidly synthesize retinoic acid receptor-alpha:a mechanism for translational control of transcriptional events. [J]. J Exp Med,2004,200(5):671-680.
    [11]Lindemann S. W., Yost C. C., Denis M. M., et al. Neutrophils alter the inflammatory milieu by signal-dependent translation of constitutive messenger RNAs. [J]. Proc Natl Acad Sci U S A,2004,101(18):7076-7081.
    [12]Pesce L., Comellas A., Sznajder J. I. Beta-adrenergic agonists regulate Na-K-ATPase via p70S6k. [J]. Am J Physiol Lung Cell Mol Physiol, 2003,285(4):L802-L807.
    [13]Pesce L., Guerrero C., Comellas A., et al. beta-agonists regulate Na, K-ATPase via novel MAPK/ERK and rapamycin-sensitive pathways. [J]. FEBS Lett,2000,486(3):310-314.
    [14]Asnaghi L., Calastretti A., Bevilacqua A., et al. Bcl-2 phosphorylation and apoptosis activated by damaged microtubules require mTOR and are regulated by Akt. [J]. Oncogene,2004,23(34):5781-5791.
    [15]Schmitz F., Heit A., Dreher S., et al. Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells. [J]. Eur J Immunol,2008,38(11):2981-2992.
    [16]Zhou Z. H., Sun B., Lin K., et al. Prevention of rabbit acute lung injury by surfactant, inhaled nitric oxide, and pressure support ventilation. [J]. Am J Respir Crit Care Med,2000,161(2 Pt 1):581-588.
    [17]Abraham R. T., Eng C. H. Mammalian target of rapamycin as a therapeutic target in oncology. [J]. Expert Opin Ther Targets, 2008,12 (2):209-222.
    [18]Choi J., Chen J., Schreiber S. L., et al. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. [J]. Science,1996,273(5272):239-242.
    [19]Chen J., Zheng X. F., Brown E. J.,et al. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. [J]. Proc Natl Acad Sci U S A,1995,92(11):4947-4951.
    [20]McAlister V. C., Gao Z., Peltekian K., et al. Sirolimus-tacrolimus combination immunosuppression. [J]. Lancet,2000,355(9201):376-377.
    [21]Kahan B. D. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection:a randomised multicentre study. The Rapamune US Study Group. [J]. Lancet,2000,356(9225):194-202.
    [22]Spaulding C., Henry P., Teiger E., et al. Sirolimus-eluting versus uncoated stents in acute myocardial infarction.[J]. N Engl J Med, 2006,355(11):1093-1104.
    [23]Moses J. W., Leon M. B., Popma J. J., et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. [J]. N Engl J Med,2003,349(14):1315-1323.
    [24]Dancey J. mTOR signaling and drug development in cancer. [J]. Nat Rev Clin Oncol,2010,7(4):209-219.
    [25]Marinov M., Fischer B., Arcaro A. Targeting mTOR signaling in lung cancer. [J]. Crit Rev Oncol Hematol,2007,63(2):172-182.
    [26]Saemann M. D., Haidinger M., Hecking M., et al. The multifunctional role of mTOR in innate immunity:implications for transplant immunity. [J]. Am J Transplant,2009,9(12):2655-2661.
    [27]Weichhart T., Saemann M. D. The multiple facets of mTOR in immunity. [J]. Trends Immunol,2009,30(5):218-226.
    [28]Portnoy J., Curran-Everett D., Mason R. J. Keratinocyte growth factor stimulates alveolar type II cell proliferation through the extracellular signal-regulated kinase and phosphatidylinositol 3-0H kinase pathways. [J]. Am J Respir Cell Mol Biol,2004,30(6):901-907.
    [29]Raaz U., Kuhn H., Wirtz H., et al. Rapamycin reduces high-amplitude, mechanical stretch-induced apoptosis in pulmonary microvascular endothelial cells. [J]. Microvasc Res,2009,77(3):297-303.
    [30]Fielhaber J. A., Han Y. S., Tan J., et al. Inactivation of mammalian target of rapamycin increases STATl nuclear content and transcriptional activity in alpha4-and protein phosphatase 2A-dependent fashion. [J]. J Biol Chem,2009,284(36):24341-24353.
    [31]Maeda K., Shioi T., Kosugi R., et al. Rapamycin ameliorates experimental autoimmune myocarditis. [J].Int Heart J, 2005,46 (3):513-530.
    [32]Mendes Sdos S., Candi A., Vansteenbrugge M., et al. Microarray analyses of the effects of NF-kappaB or PI3K pathway inhibitors on the LPS-induced gene expression profile in RAW264.7 cells:synergistic effects of rapamycin on LPS-induced MMP9-overexpression. [J]. Cell Signal,2009,21 (7):1109-1122.
    [33]Opdenakker G. On the roles of extracellular matrix remodeling by gelatinase B. [J]. Verh K Acad Geneeskd Belg,1997,59(6):489-514.
    [34]Van den Steen P. E., Dubois B., Nelissen I., et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). [J]. Crit Rev Biochem Mol Biol,2002,37(6):375-536.
    [35]Albaiceta G. M., Gutierrez-Fernandez A., Parra D., et al. Lack of matrix metalloproteinase-9 worsens ventilator-induced lung injury. [J]. Am J Physiol Lung Cell Mol Physiol,2008,294(3):L535-L543.
    [36]Yoon H. K., Cho H. Y., Kleeberger S. R. Protective role of matrix metalloproteinase-9 in ozone-induced airway inflammation. [J]. Environ Health Perspect,2007,115(11):1557-1563.
    [37]Rauktys A., Lee N., Lee L., et al. Topical rapamycin inhibits tuberous sclerosis tumor growth in a nude mouse model. [J]. BMC Dermatol,2008,8:1.
    [38]Bastarache J. A., Blackwell T. S. Development of animal models for the acute respiratory distress syndrome. [J]. Dis Model Mech, 2009,2 (5-6):218-223.
    [39]Carracedo A., Ma L., Teruya-Feldstein J., et al. Inhibition of mTORCl leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer.[J]. J Clin Invest,2008,118(9):3065-3074.
    [40]Kharas M. G., Janes M. R., Scarfone V. M., et al. Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+leukemia cells. [J]. J Clin Invest, 2008,118(9):3038-3050.
    [1][Guideline for the management of ALI/ARDS][J]. Nihon Kokyuki Gakkai Zasshi, 2005,Suppl:1-65.
    [2]Rubenfeld G. D., Caldwell E., Peabody E., et al. Incidence and outcomes of acute lung injury.[J]. N Engl J Med,2005,353(16):1685-1693.
    [3]Nagai A. [Guideline for COPD management and prevention] [J]. Nippon Rinsho, 2007,65(4):594-598.
    [4]Bateman E. D., Hurd S. S., Barnes P. J., et al. Global strategy for asthma management and prevention:GINA executive summary.[J]. Eur Respir J,2008,31(1):143-178.
    [5]Fernandez Perez ER, Daniels C. E., Schroeder D. R., et al. Incidence, prevalence, and clinical course of idiopathic pulmonary fibrosis:a population-based study.[J]. Chest,2010,137(1):129-137.
    [6]Gribbin J., Hubbard R. B., Le Jeune I., et al. Incidence and mortality of idiopathic pulmonary fibrosis and sarcoidosis in the UK.[J]. Thorax,2006,61(11):980-985.
    [7]Barst R. J. Pulmonary hypertension:Past, present and future.[J]. Ann Thorac Med, 2008,3(1):1-4.
    [8]Lin H. H., Murray M., Cohen T., et al. Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China:a time-based, multiple risk factor, modelling study.[J]. Lancet, 2008,372(9648):1473-1483.
    [9]Balsara B. R., Pei J., Mitsuuchi Y., et al. Frequent activation of AKT in non-small cell lung carcinomas and preneoplastic bronchial lesions.[J]. Carcinogenesis,2004,25(11):2053-2059.
    [10]Han S., Khuri F. R., Roman J. Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKBl/AMP-activated protein kinase signal pathways.[J]. Cancer Res,2006,66(1):315-323.
    [11]Soria J. C., Shepherd F. A., Douillard J. Y., et al. Efficacy of everolimus (RAD001) in patients with advanced NSCLC previously treated with chemotherapy alone or with chemotherapy and EGFR inhibitors.[J]. Ann Oncol,2009,20(10):1674-1681.
    [12]Bianco R., Garofalo S., Rosa R., et al. Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs.[J]. Br J Cancer, 2008,98(5):923-930.
    [13]Sabers C. J., Martin M. M., Brunn G. J., et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells.[J]. J Biol Chem,1995,270(2):815-822.
    [14]Wullschleger S., Loewith R., Hall M. N. TOR signaling in growth and metabolism.[J]. Cell, 2006,124(3):471-484.
    [15]Ohtani M., Nagai S., Kondo S., et al. Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells.[J]. Blood,2008,112(3):635-643.
    [16]Hay N., Sonenberg N. Upstream and downstream of mTOR.[J]. Genes Dev, 2004,18(16):1926-1945.
    [17]Tee A. R., Blenis J. mTOR, translational control and human disease.[J]. Semin Cell Dev Biol, 2005,16(1):29-37.
    [18]Peng T., Golub T. R., Sabatini D. M. The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation.[J]. Mol Cell Biol, 2002,22(15):5575-5584.
    [19]Jacinto E., Loewith R., Schmidt A., et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive.[J]. Nat Cell Biol,2004,6(11):1122-1128.
    [20]Schmelzle T., Hall M. N. TOR, a central controller of cell growth.[J]. Cell, 2000,103(2):253-262.
    [21]Grant S., Qiao L., Dent P. Roles of ERBB family receptor tyrosine kinases, and downstream signaling pathways, in the control of cell growth and survival.[J]. Front Biosci,2002,7:d376-d389.
    [22]Kozma S. C., Thomas G. Regulation of cell size in growth, development and human disease: PI3K, PKB and S6K.[J]. Bioessays,2002,24(1):65-71.
    [23]Bae G. U., Seo D. W., Kwon H. K., et al. Hydrogen peroxide activates p70(S6k) signaling pathway.[J]. J Biol Chem,1999,274(46):32596-32602.
    [24]Weichhart T., Saemann M. D. The PI3K/Akt/mTOR pathway in innate immune cells:emerging therapeutic applications.[J]. Ann Rheum Dis,2008,67 Suppl 3:i70-i74.
    [25]Fingar D. C., Blenis J. Target of rapamycin (TOR):an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression.[J]. Oncogene, 2004,23(18):3151-3171.
    [26]Potter C. J., Pedraza L. G., Xu T. Akt regulates growth by directly phosphorylating Tsc2.[J]. Nat Cell Biol,2002,4(9):658-665.
    [27]Huang J., Manning B. D. A complex interplay between Akt, TSC2 and the two mTOR complexes.[J]. Biochem Soc Trans,2009,37(Pt 1):217-222.
    [28]Dancey J. mTOR signaling and drug development in cancer.[J]. Nat Rev Clin Oncol, 2010,7(4):209-219.
    [29]McAlister V. C. Gao Z., Peltekian K., et al. Sirolimus-tacrolimus combination immunosuppression.[J]. Lancet,2000,355(9201):376-377.
    [30]Kahan B. D. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection:a randomised multicentre study. The Rapamune US Study Group.[J]. Lancet, 2000,356(9225):194-202.
    [31]Spaulding C., Henry P., Teiger E., et al. Sirolimus-eluting versus uncoated stents in acute myocardial infarction.[J]. N Engl J Med,2006,355(11):1093-1104.
    [32]Moses J. W., Leon M. B., Popma J. J., et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery.[J]. N Engl J Med,2003,349(14):1315-1323.
    [33]Pal S. K., Figlin R. A., Reckamp K. L. The role of targeting mammalian target of rapamycin in lung cancer.[J]. Clin Lung Cancer,2008,9(6):340-345.
    [34]Ware L. B., Matthay M. A. The acute respiratory distress syndrome.[J]. N Engl J Med, 2000,342(18):1334-1349.
    [35]Ware L. B., Matthay M. A. The acute respiratory distress syndrome.[J]. N Engl J Med, 2000,342(18):1334-1349.
    [36]Pittet J. F., Mackersie R. C., Martin T. R., et al. Biological markers of acute lung injury: prognostic and pathogenetic significance.[J]. Am J Respir Crit Care Med,1997,155(4):1187-1205.
    [37]Yost C. C., Denis M. M., Lindemann S., et al. Activated polymorphonuclear leukocytes rapidly synthesize retinoic acid receptor-alpha:a mechanism for translational control of transcriptional events.[J]. J Exp Med,2004,200(5):671-680.
    [38]Lindemann S. W., Yost C. C., Denis M. M., et al. Neutrophils alter the inflammatory milieu by signal-dependent translation of constitutive messenger RNAs.[J]. Proc Natl Acad Sci U S A, 2004,101(18):7076-7081.
    [39]Tsushima K., King L. S., Aggarwal N. R., et al. Acute lung injury review.[J]. Intern Med, 2009,48(9):621-630.
    [40]Gomez-Cambronero J., Horn J., Paul C. C., et al. Granulocyte-macrophage colony-stimulating factor is a chemoattractant cytokine for human neutrophils:involvement of the ribosomal p70 S6 kinase signaling pathway.[J]. J Immunol,2003,171(12):6846-6855.
    [41]Lome E., Zhao X., Zmijewski J. W., et al. Participation of mammalian target of rapamycin complex 1 in Toll-like receptor 2-and 4-induced neutrophil activation and acute lung injury.[J]. Am J Respir Cell Mol Biol,2009,41(2):237-245.
    [42]Weinstein S. L., Finn A. J., Dave S. H., et al. Phosphatidylinositol 3-kinase and mTOR mediate lipopolysaccharide-stimulated nitric oxide production in macrophages via interferon-beta.[J]. J Leukoc Biol,2000,67(3):405-414.
    [43]Weichhart T., Costantino G., Poglitsch M., et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response.[J]. Immunity.2008,29(4):565-577.
    [44]Weichhart T., Costantino G., Poglitsch M., et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response.[J]. Immunity,2008,29(4):565-577.
    [45]Honda K., Yanai H., Mizutani T., et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling.[J]. Proc Natl Acad Sci U S A, 2004,101(43):15416-15421.
    [46]Takaoka A., Yanai H., Kondo S., et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors.[J]. Nature,2005,434(7030):243-249.
    [47]Schoenemeyer A., Barnes B. J., Mancl M. E., et al. The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. [J]. J Biol Chem,2005,280(17):17005-17012.
    [48]Kawai T., Sato S., Ishii K. J., et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6.[J]. Nat Immunol, 2004,5(10):1061-1068.
    [49]Lome E., Zhao X., Zmijewski J. W., et al. Participation of mammalian target of rapamycin complex 1 in Toll-like receptor 2-and 4-induced neutrophil activation and acute lung injury.[J]. Am J Respir Cell Mol Biol,2009,41(2):237-245.
    [50]Matthay M. A., Zimmerman G. A., Esmon C., et al. Future research directions in acute lung injury:summary of a National Heart, Lung, and Blood Institute working group.[J]. Am J Respir Crit Care Med,2003,167(7):1027-1035.
    [51]Omura T., Yoshiyama M., Izumi Y., et al. Involvement of c-Jun NH2 terminal kinase and p38MAPK in rapamycin-mediated inhibition of neointimal formation in rat carotid arteries.[J]. J Cardiovasc Pharmacol,2005,46(4):519-525.
    [52]Sun Q., Liu Q., Zheng Y., et al. Rapamycin suppresses TLR4-triggered IL-6 and PGE(2) production of colon cancer cells by inhibiting TLR4 expression and NF-kappaB activation.[J]. Mol Immunol,2008,45(10):2929-2936.
    [53]Vinciguerra M., Veyrat-Durebex C., Moukil M. A., et al. PTEN down-regulation by unsaturated fatty acids triggers hepatic steatosis via an NF-kappaBp65/mTOR-dependent mechanism.[J]. Gastroenterology,2008,1134(1):268-280.
    [54]Minhajuddin M., Fazal F., Bijli K. M., et al. Inhibition of mammalian target of rapamycin potentiates thrombin-induced intercellular adhesion molecule-1 expression by accelerating and stabilizing NF-kappa B activation in endothelial cells.[J]. J Immunol,2005,174(9):5823-5829.
    [55]Mendes Sdos S., Candi A., Vansteenbrugge M., et al. Microarray analyses of the effects of NF-kappaB or PI3K pathway inhibitors on the LPS-induced gene expression profile in RAW264.7 cells:synergistic effects of rapamycin on LPS-induced MMP9-overexpression.[J]. Cell Signal, 2009,21(7):1109-1122.
    [56]Portnoy J., Curran-Everett D., Mason R. J. Keratinocyte growth factor stimulates alveolar type Ⅱ cell proliferation through the extracellular signal-regulated kinase and phosphatidylinositol 3-OH kinase pathways.[J]. Am J Respir Cell Mol Biol,2004,30(6):901-907.
    [57]Pesce L., Comellas A., Sznajder J. I. Beta-adrenergic agonists regulate Na-K-ATPase via p70S6k.[J]. Am J Physiol Lung Cell Mol Physiol,2003,285(4):L802-L807.
    [58]Pesce L., Guerrero C, Comellas A., et al. beta-agonists regulate Na,K-ATPase via novel MAPK/ERK and rapamycin-sensitive pathways.[J]. FEBS Lett,2000,486(3):310-314.
    [59]Asnaghi L., Calastretti A., Bevilacqua A., et al. Bcl-2 phosphorylation and apoptosis activated by damaged microtubules require mTOR and are regulated by Akt.[J]. Oncogene, 2004,23(34):5781-5791.
    [60]Schmitz F., Heit A., Dreher S., et al. Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells.[J]. Eur J Immunol,2008,38(11):2981-2992.
    [61]Maddox L., Schwartz D. A. The pathophysiology of asthma.[J]. Annu Rev Med, 2002,53:477-498.
    [62]Ward C., Johns D. P., Bish R., et al. Reduced airway distensibility, fixed airflow limitation, and airway wall remodeling in asthma.[J]. Am J Respir Crit Care Med,2001,164(9):1718-1721.
    [63]Sehgal S. N. Rapamune (RAPA, rapamycin, sirolimus):mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression.[J]. Clin Biochem,1998,31(5):335-340.
    [64]Powell N., Till S., Bungre J., et al. The immunomodulatory drugs cyclosporin A, mycophenolate mofetil, and sirolimus (rapamycin) inhibit allergen-induced proliferation and IL-5 production by PBMCs from atopic asthmatic patients. [J]. J Allergy Clin Immunol, 2001,108(6):915-917.
    [65]Kim H. S., Raskova J., Degiannis D., et al. Effects of cyclosporine and rapamycin on immunoglobulin production by preactivated human B cells.[J]. Clin Exp Immunol, 1994,96(3):508-512.
    [66]Nagai H., Maeda Y., Tanaka H. The effect of anti-IL-4 monoclonal antibody, rapamycin and interferon-gamma on airway hyperreactivity to acetylcholine in mice.[J]. Clin Exp Allergy, 1997,27(2):218-224.
    [67]Haczku A., Alexander A., Brown P., et al. The effect of dexamethasone, cyclosporine, and rapamycin on T-lymphocyte proliferation in vitro:comparison of cells from patients with glucocorticoid-sensitive and glucocorticoid-resistant chronic asthma.[J]. J Allergy Clin Immunol, 1994,93(2):510-519.
    [68]Powell N., Till S., Bungre J., et al. The immunomodulatory drugs cyclosporin A, mycophenolate mofetil, and sirolimus (rapamycin) inhibit allergen-induced proliferation and IL-5 production by PBMCs from atopic asthmatic patients.[J]. J Allergy Clin Immunol, 2001,108(6):915-917.
    [69]Fujitani Y., Trifilieff A. In vivo and in vitro effects of SAR 943, a rapamycin analogue, on airway inflammation and remodeling.[J]. Am J Respir Crit Care Med,2003,167(2):193-198.
    [70]Huang T. J., Eynott P., Salmon M., et al. Effect of topical immunomodulators on acute allergic inflammation and bronchial hyperresponsiveness in sensitised rats.[J]. Eur J Pharmacol, 2002,437(3):187-194.
    [71]Eynott P. R., Salmon M., Huang T. J., et al. Effects of cyclosporin A and a rapamycin derivative (SAR943) on chronic allergic inflammation in sensitized rats.[J]. Immunology, 2003,109(3):461-467.
    [72]Fujitani Y., Trifilieff A. In vivo and in vitro effects of SAR 943, a rapamycin analogue, on airway inflammation and remodeling.[J]. Am J Respir Crit Care Med,2003,167(2):193-198.
    [73]Fernandes D., Guida E., Koutsoubos V., et al. Glucocorticoids inhibit proliferation, cyclin D1 expression, and retinoblastoma protein phosphorylation, but not activity of the extracellular-regulated kinases in human cultured airway smooth muscle.[J]. Am J Respir Cell Mol Biol,1999,21(1):77-88.
    [74]Rabe K. F., Hurd S., Anzueto A., et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease:GOLD executive summary.[J]. Am J Respir Crit Care Med,2007,176(6):532-555.
    [75]Yost C. C., Denis M. M., Lindemann S., et al. Activated polymorphonuclear leukocytes rapidly synthesize retinoic acid receptor-alpha:a mechanism for translational control of transcriptional events.[J]. J Exp Med,2004,200(5):671-680.
    [76]Gomez-Cambronero J., Horn J., Paul C. C., et al. Granulocyte-macrophage colony-stimulating factor is a chemoattractant cytokine for human neutrophils:involvement of the ribosomal p70 S6 kinase signaling pathway.[J]. J Immunol,2003,171(12):6846-6855.
    [77]Lindemann S. W., Yost C. C., Denis M. M., et al. Neutrophils alter the inflammatory milieu by signal-dependent translation-of constitutive messenger RNAs.[J]. Proc Natl Acad Sci U S A, 2004,101(18):7076-7081.
    [78]Kim M. S., Kuehn H. S., Metcalfe D. D., et al. Activation and function of the mTORC1 pathway in mast cells.[J]. J Immunol,2008,180(7):4586-4595.
    [79]Tunon M. J., Sanchez-Campos S., Gutierrez B., et al. Effects of FK506 and rapamycin on generation of reactive oxygen species, nitric oxide production and nuclear factor kappa B activation in rat hepatocytes.[J]. Biochem Pharmacol,2003,66(3):439-445.
    [80]Opdenakker G. On the roles of extracellular matrix remodeling by gelatinase B.[J]. Verh K Acad Geneeskd Belg,1997,59(6):489-514.
    [81]Van den Steen P. E., Dubois B., Nelissen I., et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9).[J]. Crit Rev Biochem Mol Biol, 2002,37(6):375-536.
    [82]Han S., Ritzenthaler J. D., Sitaraman S. V., et al. Fibronectin increases matrix metalloproteinase 9 expression through activation of c-Fos via extracellular-regulated kinase and phosphatidylinositol 3-kinase pathways in human lung carcinoma cells.[J]. J Biol Chem, 2006,281 (40):29614-29624.
    [83]Bissler J. J., McCormack F. X., Young L. R., et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis.[J]. N Engl J Med,2008,358(2):140-151.
    [84]Mehrad B., Burdick M. D., Strieter R. M. Fibrocyte CXCR4 regulation as a therapeutic target in pulmonary fibrosis.[J]. Int J Biochem Cell Biol,2009,41 (8-9):1708-1718.
    [85]Shegogue D., Trojanowska M. Mammalian target of rapamycin positively regulates collagen type I production via a phosphatidylinositol 3-kinase-independent pathway.[J]. J Biol Chem, 2004,279(22):23166-23175.
    [86]Phillips R. J., Mestas J., Gharaee-Kermani M., et al. Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1 alpha. [J]. J Biol Chem, 2005,280(23):22473-22481.
    [87]Willis B. C., Borok Z. TGF-beta-induced EMT:mechanisms and implications for fibrotic lung disease.[J]. Am J Physiol Lung Cell Mol Physiol,2007,293(3):L525-L534.
    [88]Kalluri R., Neilson E. G. Epithelial-mesenchymal transition and its implications for fibrosis.[J]. J Clin Invest,2003,112(12):1776-1784.
    [89]Willis B. C., Liebler J. M., Luby-Phelps K., et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-betal:potential role in idiopathic pulmonary fibrosis.[J]. Am J Pathol,2005,166(5):1321-1332.
    [90]-Kim K. K., Kugler M. C., Wolters P. J., et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix.[J]. Proc Natl Acad Sci U S A,2006,103(35):13180-13185.
    [91]Kasai H., Allen J. T., Mason R. M., et al. TGF-betal induces human alveolar epithelial to mesenchymal cell transition (EMT).[J]. Respir Res,2005,6:56.
    [92]Lamouille S., Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway.[J]. J Cell Biol,2007,178(3):437-451.
    [93]Copeland J. W., Beaumont B. W., Merrilees M. J., et al. Epithelial-to-mesenchymal transition of human proximal tubular epithelial cells:effects of rapamycin, mycophenolate, cyclosporin, azathioprine, and methylprednisolone.[J]. Transplantation,2007,83(6):809-814.
    [94]Lloberas N., Cruzado J. M., Franquesa M., et al. Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats.[J]. J Am Soc Nephrol, 2006,17(5):1395-1404.
    [95]Kramer S., Wang-Rosenke Y., Scholl V., et al. Low-dose mTOR inhibition by rapamycin attenuates progression in anti-thyl-induced chronic glomerulosclerosis of the rat.[J]. Am J Physiol Renal Physiol,2008,294(2):F440-F449.
    [96]Wu M. J., Wen M. C., Chiu Y. T., et al. Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis.[J]. Kidney Int,2006,69(11):2029-2036.
    [97]Parsons C. J., Takashima M., Rippe R. A. Molecular mechanisms of hepatic fibrogenesis.[J]. J Gastroenterol Hepatol,2007,22 Suppl 1:S79-S84.
    [98]Neef M., Ledermann M., Saegesser H., et al. Low-dose oral rapamycin treatment reduces fibrogenesis, improves liver function, and prolongs survival in rats with established liver cirrhosis.[J]. J Hepatol,2006,45(6):786-796.
    [99]Simler N. R., Howell D. C., Marshall R. P., et al. The rapamycin analogue SDZ RAD attenuates bleomycin-induced pulmonary fibrosis in rats.[J]. Eur Respir J,2002,19(6):1124-1127.
    [100]Korfhagen T. R., Le Cras T. D., Davidson C. R., et al. Rapamycin prevents transforming growth factor-alpha-induced pulmonary fibrosis.[J]. Am J Respir Cell Mol Biol,2009,41(5):562-572.
    [101]Humbert M., Morrell N. W., Archer S. L., et al. Cellular and molecular pathobiology of pulmonary arterial hypertension.[J]. J Am Coll Cardiol,2004,43(12 Suppl S):13S-24S.
    [102]Runo J. R., Loyd J. E. Primary pulmonary hypertension.[J]. Lancet,2003,361(9368):1533-1544.
    [103]Humar R., Kiefer F. N., Berns H., et al. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. [J]. FASEB J,2002,16(8):771-780.
    [104]Gerasimovskaya E. V., Tucker D. A., Stenmark K. R. Activation of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin is necessary for hypoxia-induced pulmonary artery adventitial fibroblast proliferation.[J]. J Appl Physiol,2005,98(2):722-731.
    [105]Huang H. Q., Zhang P., Jiang Z., et al. [Overexpression of endothelin-1 induces hypertrophy of rat pulmonary arterial microvascular smooth muscle cells via Akt/mTOR pathway][J]. Zhonghua Jie He He Hu Xi Za Zhi,2009,32(4):287-291.
    [106]Vinals F., Chambard J. C., Pouyssegur J. p70 S6 kinase-mediated protein synthesis is a critical step for vascular endothelial cell proliferation.[J]. J Biol Chem,1999,274(38):26776-26782.
    [107]Yu Y., Sato J. D. MAP kinases, phosphatidylinositol 3-kinase, and p70 S6 kinase mediate the mitogenic response of human endothelial cells to vascular endothelial growth factor.[J]. J Cell Physiol, 1999,178(2):235-246.
    [108]Weis M., Heeschen C., Glassford A. J., et al. Statins have biphasic effects on angiogenesis.[J]. Circulation,2002,105(6):739-745.
    [109]Burke S. E., Lubbers N. L., Chen Y. W., et al. Neointimal formation after balloon-induced vascular injury in Yucatan minipigs is reduced by oral rapamycin.[J]. J Cardiovasc Pharmacol, 1999,33(6):829-835.
    [110]Paddenberg R., Stieger P., von Lilien A. L., et al. Rapamycin attenuates hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy in mice.[J]. Respir Res,2007,8:15.
    [111]Nishimura T., Faul J. L., Berry G. J., et al.40-O-(2-hydroxyethyl)-rapamycin attenuates pulmonary arterial hypertension and neointimal formation in rats.[J]. Am J Respir Crit Care Med, 2001,163(2):498-502.
    [112]Minamino T., Christou H., Hsieh C. M., et al. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia.[J]. Proc Natl Acad Sci U S A,2001,98(15):8798-8803.
    [113]Christou H., Morita T., Hsieh C. M., et al. Prevention of hypoxia-induced pulmonary hypertension by enhancement of endogenous heme oxygenase-1 in the rat.[J]. Circ Res, 2000,86(12):1224-1229.
    [114]Zhou H., Liu H., Porvasnik S. L., et al. Heme oxygenase-1 mediates the protective effects of rapamycin in monocrotaline-induced pulmonary hypertension.[J]. Lab Invest,2006,86(1):62-71.
    [115]McMurtry M. S., Bonnet S., Michelakis E. D., et al. Statin therapy, alone or with rapamycin, does not reverse monocrotaline pulmonary arterial hypertension:the rapamcyin-atorvastatin-simvastatin study. [J]. Am J Physiol Lung Cell Mol Physiol, 2007,293(4):L933-L940.
    [116]Johnson S. R. Lymphangioleiomyomatosis.[J]. Eur Respir J,2006,27(5):1056-1065.
    [117]Tapon N., Ito N., Dickson B. J., et al. The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation.[J]. Cell,2001,105(3):345-355.
    [118]Potter C. J., Huang H., Xu T. Drosophila Tscl functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size.[J]. Cell,2001,105(3):357-368.
    [119]Ito N., Rubin G. M. gigas, a Drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle.[J]. Cell,1999,96(4):529-539.
    [120]McCormack F. X. Lymphangioleiomyomatosis:a clinical update.[J]. Chest, 2008,133(2):507-516.
    [121]Kenerson H. L., Aicher L. D., True L. D., et al. Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors.[J]. Cancer Res, 2002,62(20):5645-5650.
    [122]Kwiatkowski D. J., Zhang H., Bandura J. L., et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells.[J]. Hum Mol Genet,2002,11(5):525-534.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700