用户名: 密码: 验证码:
波斯小麦遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对来源于格鲁吉亚等14个国家(地区)的波斯小麦的蛋白质含量、农艺性状不同年份间的比较、农艺性状与蛋白质含量之间的关系等方面进行了深入分析,同时利用与功能相关的分子标记EST-SSR对来自14个国家(地区)的波斯小麦材料进行遗传多样性分析,以了解其群体遗传结构,分析群体间的遗传分化水平并探讨影响群体遗传分化的主要因素,从而为种质资源的评价、保护与合理利用提供客观依据,并为进一步发掘和利用其中有用的基因资源提供重要依据。主要研究结果如下:
     1.对80份波斯小麦从蛋白质含量分布情况、不同来源地材料的蛋白质含量变化、高分子量谷蛋白亚基与蛋白质含量关系等几方面进行了分析。结果表明,供试材料中蛋白质含量存在较大变异,变幅为7.71%-18.09%,平均值为13.88%;所有材料蛋白质含量方差分析表明,材料间差异显著,F=60.518**;比较不同来源地材料的表现,可以发现来自格鲁吉亚、前苏联、土耳其和加拿大各自内部的材料间存在极显著差异,而伊朗内部材料间差异不显著;基于蛋白质含量表现,采用类平均法,供试材料基于蛋白质含量的平均遗传距离2.41,所有材料被聚为四类。聚类结果也表明,依据蛋白质含量不能区分供试材料的来源。HMW-GS组成不同的小麦品种,其蛋白质含量明显不同。本研究筛选出了部分综合表现优异的材料,如蛋白质含量最高的PI532498和蛋白质含量最低但具有优质2*亚基的PI532510。
     2.对80份波斯小麦农艺性状不同年份间的表现进行了考察与分析,结果表明,各性状变异程度和幅度均较大。供试材料总体植株偏高,分蘖力强,以长穗型为主,小穗数和穗粒数较多,千粒重较低。株高、分蘖数、有效穗数、穗长、小穗数和穗粒数的方差分析结果表明:材料间存在极显著差异;年份间表现也呈极显著差异(F=29.44**)。对来自不同地区的材料间的农艺性状进行揭示了不同地区的材料有不同的优势性状。简单和偏相关分析中分别有22和7对性状达极显著相关。其中千粒重与蛋白质含量呈极显著负相关(r=-0.5908**);揭示了千粒重较低的材料其蛋白质含量一般较高,穗长较长的材料其蛋白质含量较高。分蘖数、有效穗数和小穗数较多的材料其蛋白质含量也有增多的趋势、同时还对主要农艺性状与蛋白质含量进行了逐步回归分析、通径分析、主成分分析。逐步回归分析发现穗长对蛋白质含量的影响最大,通径分析发现,分蘖对数波斯小麦蛋白质含量的贡献最大。主成分分析表明,有五个主成分入选,其累积贡献率为85.09%,其中分蘖因子(因子1)贡献最大,贡献率为37.27%。
     3.利用普通小麦品种川农16与部分波斯小麦进行杂交。结果表明,杂种F1植株千粒重表现出了较大的超亲优势,抽穗期也较双亲大大缩短,同时杂种F1能够正常结实。波斯小麦中的优异基因资源可以通过直接杂交方式在普通小麦育种中利用。本研究的目的是为了将波斯小麦的有益性状引入普通小麦中,从而产生有益的变异。本试验中采取这种策略,表明也是有效的。
     4.利用14对EST-SSR引物对86份波斯小麦遗传多样性进行了分析。其中,共检测到32个等位变异,变幅从3-7个,平均每对引物检测到3.7个等位变异。群体遗传分析表明,不同位点的有效等位基因数、Shannon信息指数、期望杂合度和Wright固定指数等存在差异,同时各参数评价结果较为一致。分析表明,位点SWES179基因分化系数Fst值最小,为0.1535(FST=0.1535),说明在该位点上,其15.35%的遗传变异来自于群体间。各群体间的基因分化系数较大,但Nm值与Fst值刚好相反,大多数位点Nm值平均值小于1,除了位点SWES179的Nm值大于1,说明在该位点各种群已经固定。虽然各位点等位基因在供试材料中倾向于杂合表现,但群体的杂合子比例较低,不同位点间存在差异。Ewens-Watters on中性测验表明在所有位点出现的选择是趋向于群体内杂合,除了位点CAU12外在其余各群体内均位于95%置信区间之间,属于中立性位点。Ohta两位点分析指出各群体间存在有限的基因交流。同时群体内的连锁不平衡变异组分大于群体间。Hardy-Weinberg平衡的卡方和似然比测验均揭示了SWES18和SWES86在波斯小麦材料中处于平衡状态,其余所有位点处于非平衡状态。参试材料间平均遗传相似系数为0.9375,基于平均遗传相似系数(GS=0.6293)材料可被聚为五类,EST-SSR的聚类结果不能区分材料的地理来源。同时还可看出,EST-SSR可以有效的用于评价波斯小麦的群体遗传结构。
The grain protein content, agronomic performance in different years, and the relationship between agronomic traits and protein content among 80 accessions of Triticum turgidum ssp. carthlicum from fourteen countries or areas, including Georgia, Turkey and so on, were investigated.. Moreover, the population genetic diversity based on EST-SSR markers was also estimated. These results might be useful for understanding the genetic structure and diversity of carhtlicum wheat (Persian wheat). Thus, it could provide important information for germplasm evaluation, conservation and reasonable utilization.The results were described as following:
     1. The grain protein contents of 80 persian wheat accessions were investigated. Higher variability for protein contents was observed, and the range of variation was 7.71%-18.09%, with the average of 13.88%. Based on analysis of variance (AVOVA), it was found that the genotype had significantly effects on the protein content (F= 60.518**). Comparing the performance of protein content of all materials from different source, it was found that the accessions from Georgia, the former Soviet union, Turkey and Canada had significant effects on each other. Whereas, no significant difference among the materials from Iran. According to the unweighted pair group with arithmetic average (UPGMA), based on the average genetic distance 2.41, the accessions could be clustered into 4 groups. Cluster analysis indicated that the materials from different origion could not be distinguished. The relationship between protein contents and high molecular weight glutenin subunits (HMW-GS) were studied also. The results showed that grain protein content of the materials with different subunits was different. According to the main characters, some accessions were screen out for one or some superior performance, such as PI532498 and PI532510 with the lowest protein content but with the superior quality subunit 2*.
     2. The agronomic traits of 80 carhtlicum wheat accessions collected from 14 countries or areas including Georgia, Turkey and so on were investigated based on analysis of variance. Higher variations of the nine agronomic traits were observed. The higher plant height, more spikelets and kernels per spike, lower 1000-grains weight and longer spike length were found in Persian wheat. The results suggested that the environment was important for the agronomic performance of wheat. Meanwhile, all the accessions, of which, the agronomic performance in different years and different origion, their difference among all the accessions. Based on analysis of variance (AVOVA), it was found that the genotype and year (F=29.44**) had significant effects on agronomic traits. The agronomic performance of the materials from different countries or areas showed that materials from different origion were with different superior traits. Besides, the agronomic traits and grain protein content were analyzed by correlation, stepwise regression, path, principal component. The correlation analysis indicated that 22 and 7 pairs of agronomic traits had significant effects in simple correlation and partial correlation, respectively. It was found that the negative significant correlation between 1000-grain weight and grain protein content was detected (r=-0.5908**). Lower 1000-grain weight could lead to higher grain protein content, while, longer spike length and more tiller number per plant, spike number per plant, spikelet number per spike might lead to higher grain protein content. Based on stepwise regression analysis, spike length make great contributes to grain protein content and based on path analysis, grain protein content was most affected by tiller number per plant. According to the principle elements analysis, five principle elements were obtained, which contributes variance over 85.09%, especially the tiller number type (37.27%).
     3. The hybrids between Chuannong 16 and some Persian wheat were carried-out. The 1000-grain weight was surpassing the parents, and heading date was much shorter than parents. The seeds were obtained in F1 generation. This experiment showed that the useful genes in Persian wheat could be tranfered into common wheat.
     4. Genetic diversity in 86 carthlicum accessions was investigated using EST-SSR markers. A total of 32 alleles were detected on 14 EST-SSR loci. At each locus, the number of alleles ranged from 3 to 7, with an average of 3.7. There were differences on the effective alleles, Shannon index, heterozygosity and wright fixation index among population. These results based on the different indexes were in consistence. Based on Nm analyzed, most of the average Nm was less than 1 except for locus SWES179 was more than 1, indicating that populations on this locus may inhibit the genetic differentiation. Wright fixation index indicated allelic prefer to heterozygosity performance, but the lower value of heterozygosity in carthlicum wheat was found, Ewens-Watterson tests of neutrality revealed that the high level of genetic diversity within loci was maintained by heterozygosity selection. Except for locus CAU12, all the loci were located in 95% confidence, belonging to neutrality site. Ohta's two-locus analysis suggested there was limited migration among populations. The variance of linkage disequilibrium within population was higher on than that between populations. Selection and migration could lead to all detected loci except SWES18 and SWES86 of triticum carthlicum showed no Hardy-Weinberg equilibrium. The largest genetic similarity (GS) value was 0.9375. On the average GS of 0.6293,86 carthlicum accessions could be custered into five groups. The clustering results had no necessary connection with material origin. The consequence also indicated that the evaluation using in EST-SSR marker was available for Persian wheat genetic structure and diversity.
引文
1. 陈绍军,吴兆苏.论馒头小麦品种的品质要求.[J].种子,1990,4:32-33.
    2. 陈尚安,董玉琛.波斯小麦-粗山羊草双二倍体AM3抗白粉病特性的基因定位.[J].中国农业科学,1990,23(4):17-21.
    3. 车永和,马晓岗.小蛋白质品质研究进展.[J].青海农林科技.2001(4):23-25.
    4. 丁寿康等.我国小麦品种蛋白质与赖氨酸含量的一场与育种问题的探讨.[J].中国农业科学.1985(3):34
    5. 董玉琛,郑殿升编.中国小麦遗传资源.[M].北京:中国农业出版社.2000.
    6. 董玉琛.小麦远缘杂交育种.见:21世纪小麦遗传育种展望—小麦遗传育种国际学术讨论会文集,北京:中国农业科技出版社,2001:12-22.
    7.杜启艳,常重杰,谢龙旭.泥鳅和大鳞副泥鳅酯酶同工酶的比较研究.[J].河南科学,2000,18(4):396-398.
    8. 方宣钧,吴为人,唐纪良著.作物DNA标记辅助育种.[M].北京:科学技术出版社,2001.1-7.
    9.傅晓艺,付艺伟,刘桂茹.小麦遗传多样性的研究进展.[J].华北农学报,2008,23(增刊):142-145.
    10.葛颂,洪德元.遗传多样性及其检测方法.中国科学院生物多样性委员会.生物多样性研究的原理和方法.[M].中国科学技术出版社.1994,123-140.
    11.郭秀焕,赵平,冯承业等.小麦种质资源的引进创新和利用.[J].中国种业,2003(8):41-42.
    12.贾继增.分子标记种质资源和分子标记育种.[J].中国农业科学,1996,29(4):1-10.
    13.贾继增,张正斌,Devos K, G ale M D.小麦21条染色体RFLP作图位点遗传多样性分析.[J].中国科学(C辑),2001.31(1):13-21.
    14.金善宝.中国小麦栽培学.[M].北京:农业出版社.1961.
    15.金善宝.中国小麦品种质.[M].北京:农业出版社.1964.
    16.金善宝.中国小麦品种质(1962-1982).[M].北京:农业出版社.1982.
    17.金善宝.中国小麦品种质(1983-1993).[M].北京:农业出版社.1982.
    18.李德炎.小麦育种学.[M].北京:科学出版社.1976.
    19.李冬梅,田纪春,翟红梅等.小麦蛋白质含量测定方法的比较研究.[J].山东农业科学,2007,(3):83-84.
    20.李宏伟,高丽锋,刘曙东等.用EST-SSRs研究小麦遗传多样性.[J].中国农业科学,2005,38(1):7-12.
    21.李鸿恩,张玉良,李宗智等.我国小麦种质资源主要品质特性鉴定结果及评价.[J].中国农业科学,1995,28(5):29-37.
    22.李立会等译.生物多样性与小麦改良[M].北京:中国农业科技出版社.1996.
    23.李锁平,孟兆江.外源染色体片段及其抗性基因导入小麦的研究进展.[J]武汉植物学研究,1999,17(增刊):25-30.
    24.李永强,李宏伟,高丽锋等.基于表达序列标签的微卫星标记(EST-SSRs)研究进展.[J].植物遗传资源学报,2004,5:91-95.
    25.李志敏,董中东,阎旭霞,杨秋云,崔党群.弱筋小麦农业性状与籽粒蛋白质含量的相关性分析.[J].安徽农业科学.2007,35(31):9805-9806.
    26.黎裕,贾继增,王天宇.分子标记的种类及其发展.[J].生物技术通报,1999,4:9-22.
    27.梁明山,曾宇,周翔等.遗传标记及其在作物品种鉴定中的应用.[J].植物学通报,2001,18(3):257-265.
    28.林海荣,王爱英,李志博,祁亚琴,彭晓玲.小麦蛋白质含量高低的影响因素机器提高途径.[J].种子,2007,26(1):56-58.
    29.林作楫,王光瑞,赖菁茹等.我国小麦品质概况和优质品种评选.[J].麦类文摘,1996,16(5):9-10.
    30.刘洪岭,李兴普.河北省小麦品种选育及利用.[M].石家庄:河北科学技术出版社,1993:18.
    31.麦克尼利等,1990.李文军等译.1992.保护世界的生物多样性.见:中国科学院生物多样性委员会编生物多样性译丛(一).[M].北京:中国科学技术出版社.1-199
    32.牟永和,马晓岗.小麦蛋白质品质研究进展.[J].青海农林科技,2001(4):23-25.
    33.牛荣,商海涛,魏泓,黄中波,曾养志.2001.版纳小耳猪近交系5家系35个微卫星座位的遗传分析.[J].遗传学报,28(6):518-526.
    34.许树军,董玉琛.波斯小麦×节节麦杂种F1直接形成双二倍体的细胞遗传学研究.[J]作物学报.1989,15(3):251-257.
    35.阮成江,何祯祥,周长芳,编.植物分子生态学[M].北京:化学工业出版社,2005.
    36.施立明,嘉旭等.1993.遗传多样性.见:陈灵芝(主编)中国的生物多样性.[M].北京:科学出版社。99-113.
    37.唐启义,冯明光.实用统计分析及其DPS数据处理系统.[M].北京:科学出版社,2002.
    38.田士林.多小穗小麦籽粒蛋白质含量与相关农艺性状的研究.[J].云南农业大学学报.2010.25(3):338-341.
    39.王喜忠,杨玉华,编.群体遗传学原理.[M].成都:四川大学出版社,1992.
    40.王家玉,译.根井正利著.分子群体遗传学与进化论.[M].北京:农业出版社,1983.
    41.魏益民,康立宁,欧阳韶晖等.小麦品种蛋白质品质性状稳定性研究.[J].西北植物学报,2002,22(1):90-96.
    42.翁跃进,董玉琛.普通小麦-顶芒山羊草异源附加系的创建和鉴定.1.小麦花药培养对创建普通小麦-顶芒山羊草异源附加系的作用.[J].作物学报,1995,21(1):39-44.
    43.吴芳,潘志芬,韩兆雪等.普通小麦HMW谷蛋白亚基与蛋白质含量和沉降值的关系.[J]种子,2006,25(7):5-8.
    44.徐兆飞,张惠叶,张定一,编.小麦品质及其改良.[M]北京:气象出版社,2000
    45.许运天,董玉琛.作物品种资源.[M].北京:农业出版社.1981.
    46.许运天,庄巧生译.基因库与世界食物.1990.[M].北京:世界图书出版社.
    47.辛斯卡娅(CHHHCKaя E. H.),小麦的起源.[M]王月兰译.1958.北京:科学出版社.
    48.颜济,杨俊良等主编.小麦族生物系统学:第一卷小麦-山羊草复合群.[M].北京:中国农业出版社,1999.
    49.杨新泉,刘鹏,韩宗福等.普通小麦Genomic-SSR和EST-SSR分子标记遗传差异及其与系谱遗传距离的比较研究.[J].遗传学报,2005,32(4):406-416
    50.杨文雄,刘效华.小麦高蛋白育种的进展及育种途径.[J].甘肃农业科技,2003(5):13-16.
    51.姚大年,徐风,马传喜,等.中国首批面包小麦品质的研究.[J].中国粮油学报,1995,10(4):1-4.
    52.余遥.四川小麦.[M]成都:四川科学技术出版社,1998.
    53.张传军,刘亦肖,肖娅萍.遗传多样性与植物的遗传标记.[J],陕西师范大学学报,2006,34:275-278.
    54.张天真,编.作物育种学总论.[M]北京:中国农业出版社2003:114-128.
    55.张学勇,杨欣明,董玉琛.1995.醇溶蛋白电泳在小麦种质资源遗传分析中的应用[J].中国农业科学.28(4):25-32.
    56.张延滨,孙连发,辛文利等.主栽小麦品种中5+10亚基对品质改良的影响[J].中国农业科学,2003,36(3):242-247.
    57.赵友梅,王淑俭.高分子量麦谷蛋白亚基的SDS-PAGE图谱在小麦品质研究中的应用[J].作物学报,1990,16(3):208-218.
    58.中国农业科学院.农学基础科学发展战略.[M].北京:中国农业科技出版社,1993:15
    59.中国农学会遗传资源分会.中国作物遗传资源.[M]北京;中国农业出版社,1994:40-45.
    60.周延清.生物遗传标记与应用.[M]北京,化学工业出版社,2008.
    61.朱振东,贾继增.SSR标记的发展及应用.[J].遗传,2003,225:355-360.
    62.庄萍萍,张志清,郑有良.波斯小麦种质资源研究进展.[J].麦类作物学报,2005,25(增):92-97.
    63.庄萍萍,郭志富,颜泽洪等.波斯小麦高分子量谷蛋白亚基组成分析.[J].西南农业学报,2006,19(1):5-9.
    64.庄萍萍,李伟,颜泽洪等.波斯小麦农艺性状主成分和聚类分析.[J].麦类作物学报,2006.(4):11-14.
    65.庄萍萍,马昭才,张志清,魏育明,郑有良.波斯小麦醇溶蛋白遗传多样性研究.[J].广西植物,2007(2):231-235.
    66. Alamerew S., Chebotar S., Huang X. Q., Roder M., Andreas. Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers. [J]. Genetic Resources and Crop Evolution,2004,51:559-567.
    67. Al Hakimi A, Monneveux P et al. The use of alien tetraploid wheat species to improve drought tolerance in durum wheat. Evaluation and exploitation of genetic resources: pre-breeding. Proceedings of the Genetic Resources Section Meeting of Eucarpia, 15-18 March 1994, Clermont Ferrand, France.1994,171-186.
    68. Anamthawat Jonsson K. Wide-hybrids between wheat and lymegrass:breeding and agricultural potential. [J]. Buvisindi.1996, No.10,101-113.
    69. Austin, R.B., J. Bingham, R.D. Blackwell, L.T. Evans, M.A. Ford, C.L Morgan, and M. Taylor. Genetic improvement in winter wheat yield since 1900 and associated physiological changes. [J]. J. Agric. Sci.1980,94: 675-689.
    70. Balatero C H, Darvey N L Influence of selected wheat and rye genotypes on the direct synthesis of hexaploid triticale. [J]. Euphytica.1993,66:3,179-185.
    71. Belay G, Merker A, Tesemma T. Cytogenetic studies in Ethiopian landraces of tetraploid wheat (Triticum turgidum L.). I. Spike morphology vs ploidy level and karyomorphology. [J]. Hereditas Landskrona.1994,121:1,45-52.
    72. Bowden, W.M.1959.The taxonomy and nomenclature of the wheats, barleys, and ryes and their wild relatives. [J]. Canadian Journal of Botony 37:657-684.
    73. B. ф.дopoфeeB, O.H.KopoBHHa,1979.пmeHHua, KyлbTypHaя флopa B CCCP, и3д. дeHиHrpaд 《koлoc》
    74. Caballero L., Martin L. M. Alvarez J.B. Intra- and interpopulation diversity for HMW glutenin subunits in Spanish spelt wheat. [J]. Genetic Resources and Crop Evolution,2004,51:175-181.
    75. Cao W. G., Hucl P., Scoles G., Chibbar R. N. Genetic diversity within spelta and macha wheats based on RAPD analysis. [J]. Euphytica,1998,104:181-189.
    76. Cardle L, Ramsay L, Milbourne D. Computational and experimental characterization of physically clustered simple sequence repeats in plants. [J]. Genetics,2000,156: 847-854.
    77. Chapman, C.G.D.1985. The Genetic Resources of Wheat-A survey and strategy for collecting. Rome IBPGR 42pp
    78. Cho YG, Ishii T, Temnykh S and et al. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza Sativa L.). [J]. Theor. Appl. Genet.2000,100:713-722.
    79. Damania, A. B.1993.Biodiversity and Wheat Improvement. ICARDA. John Wiley & Sons.
    80. Dong Pan, Wei YuMing, Chen GuoYue, Li Wei, Wang JiRui, Nevo Eviatar, and Zheng YouLiang. EST-SSR diversity correlated with ecological and genetic factors of wild emmer wheat in Israel. [J]. Hereditas.2009,146:1-10 (IF=1.175)
    81. Dorofeev V.F., Filatenko, A.A., Migushova E.F., Udaczin R.A., and Jakubziner M.M. 1979. Wheat. vol.1. In:Flora of Cultivated Plants (Dorofeev V.F. and Korovina O.N., eds.) Leningrad (St. Petersburg), Russia. Kolos (in Russian).346 pp
    82. Ellneskog Staam P Relationships in the Triticeae:genomes and wide hybridisations. Acta Universitatis Agriculturae Sueciae Agraria.2002, No.357,43+7+8+6+7 +4pp
    83. Eujay I, Sorrells M, Baum M, Wolters P, Powell W. Assessment of genotypic variation among cultivated durum wheat based on EST-SSR and genomic SSRs. [J]. Euphytica, 2001,119:39-43
    84. Eujayl I, Sorrells ME, Baum M, et al. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. [J]. Theor. Appl. Genet., 2002,104: 399-407
    85. Fahima T., Roder M. S., Wendehake K., Kirzhner V. M., Nevo E. Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. [J]. Theor. Appl. Genet.,2002,104:17-29.
    86. Fernandes MIB de M, Zanatta ACA et al. Cytogenetics and immature embryo culture at Embrapa Trigo breeding program:transfer of disease resistance from related species by artificial resynthesis of hexaploid wheat (Triticum aestivum L. em. Thell). Selected papers from the First Latin American Symposium on Plant Cytogenetics and Evolution, Recife, Brazil,20-23 July 1999. [J]. Genetics and Molecular Biology. 2000,23:4,1051-1062
    87. Figliuolo G., Perrino P. Genetic diversity and intra-specific phylogeny of Triticum turgidum L. subsp. dicoccon (Schrank) Thell. revealed by RFLPs and SSRs. [J]. Genetic Resources and Crop Evolution,2004,51:519-527.
    88. Flaksburger C.A.1935. Cereals:Wheat. In:Flora of Cultivated Plants I (Wulf, E.V.). Cos. Izd. Kolkh. Sovkh., Moscow and Leningrad (St. Petersburg). (In Russian). pp263
    89. Freder S., O.Seberg 1992. Phylogenetic analysis of the Triticeae (Poaceae). [J]. Hereditas,116:15-19.
    90. Fu YB, Peterson GW, Richards KW, et al. Allelic reduction and genetic shift in the Canadian hard red spring wheat germplasm released from 1845 to 2004. [J]. Theor Appl Genet,2005,110:1505-1516.
    91. Gandilyan P A. The problem of the origin of the "Persian" wheat, Triticum carthlicum Nevski. Biologichskii Zhurnal Armenii Hayastani Kensabanakan Handes.1972,25:10, 3-4.
    92. Gandilyan P.A.1980. Key to wheat, Aegilops, rye and barley. Academy of Science. Armenian SSR, Erevan 190.
    93. Gol'-denberg Z V. Content of protein and tryptophan in some species of wheat and rye and in wheat-rye amphidiploids. Bulletin of the Academy of Sciences of the Georgian SSR.114:2,373-376.
    94. Gupta PK, Rustgi S, Sharma S, et al. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. [J]. Mol Gen Genomics, 2003,270:315-323.
    95. Gupta P.K., BalyanH.S., SharmaP.C, RameshB. Microsatellite in plants:a new class of molecular markers. [J] Current Science,1996,70:45-54.
    96. Harlan, J.R. and J. M. J. de wet. Toward a rational clas sification of cultivated plants. [J]. TAXON.1971.20(4):509-517.
    97. He, Z.H., Z.J. Lin, L.J. Wang, Z.M. Xiao, F.S. Wan & Q.S. Zhuang. Classification on Chinese wheat regions based on quality. [J]. Scientia Agriculture Sinica,2002,35:359-364.
    98. INRA.1993 [Rooting characters and turgor capacity in wild species of tetraploid wheat [Triticum carthlicum, Triticum polonicum]. Use of them to improve hard wheat for drought tolerance].Institut National de la Recherche Agronomique (France). Tolerance a la secheresse des cereales en zone mediterraneenne. Diversite genetique et amelioration varietale. Montpellier (France),15-17 decembre 1992. Paris (France). INRA.1993. p.321-339.
    99. Jakubziner M.M. New wheat species. In:Proc. First Inter. Wheat Genet. Symp, Winnipeg, Canada.1958. pp.207-220.
    100.Kantety RV, Rota ML, Matthews DE, et al. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. [J]. Plant Mol Biol,2002,48:501-510.
    101.Kellogg, E. A.1994. Systematics of the Triticeae:Problems and germplasm. In Proc. Of 2nd Intern. Triticeae Symp.R.R.C.Wang, K.B. [J]. Jensen and C.Jaussi (Eds.) pp. 201-214.
    102.Kihara H and F.Lilienfeld,1949, Proc.8th Int. Congr. Genet. [J]. Hereditas Suppl.Vol. 307-319.
    103.Kosina R. Cereal Research Communications.1979,7:1,11-17
    104.Li W., Zhang D. F., Wei Y. M., Yan Z. H., Zheng Y.L.. Genetic diversity of Triticum turgidum L. based on microsatellite markers. [J]. Russian Journal of Genetics, 2006,42(3):397-402
    105.Li Y. C., Fahima T., Beiles A., Korol A. B., Nevo E. Microclimatic stress and adaptive DNA differentiation in wild emmer wheat, Triticum dicoccoides. [J]. Theor. Appl. Genet.,1999,98:873-883.
    106.Liu C. Y. & Shepherd K.W. Variation of B subunits of glutenin in durum, wild and less-widely cultivated tetraploid wheats. [J]. Plant Breeding,1996,115:172-178.
    107.Liu, Z.Q., S.D. Rao, Z.J. Pu, D.M. Yu, and W.Y. Yang. Genetic improvements of wheat varieties in Sichuan since 1950:Prospects of wheat genetics and breeding for the 21st century-Paper collection of international wheat genetics and breeding symposium. China Agricultural Scientech Press, Beijing, China,2001:491-495.
    108.L6ve A. Conspectus of the Triticeae. Feddes Repert1984.95 (7-8):425-521.
    109.LUOI H X. Report on the development of wheat germplasm with super large ear [C]//L I Z S, X N Z Y. Proceedings of the 8th International Wheat Genetics Symposium.[M]. Beijing, China, Agricultural Scientech Press 1993:1303-1306.
    110.Mantel N. Detection of disease clustering and a generalized regression approach. [J]. Cancer Research,1967,27:209-220
    111.Mac Key J. A plant breeder's perspective on taxonomy of cultivated plants. Biologisches Zentralblatt.1988.107:369-379
    112.Mackay, M.C. Strategic planning for effetive evoluation of plant germplasm.in J.P. Srivastava and A.B.Damania edt:Wheat Genetic Resources:Meeting Devices Needs. Chichester-New York-Brisbane-Toronto-Singapore, ICARDA.1990.
    113.McIntyre, C. L.1988. Variation at isozyme loci in Triticeae. [J]. Plant Syst. Evol. 160:123-142.
    114.McMurray C. T. Mechanisms of DNA expansion. [J]. Chromosoma,1995,104: 2-13.
    115.Merker A, Lantai K. Hybrids between wheats and perennial Leymus and Thinopyrum species. Hybrids between wheats and perennial Leymus and Thinopyrum species.Acta Agriculturae Scandinavica. Section B, [J]. Soil and Plant Science.1997,47:1, 48-51
    116.Miskelly D.M et al. Flour quality requirements for Chinese noodle manufacture. [J] J.of Cereal Sci.,1989,3:379.
    117.Monte, J. V., C. L. McIntyre, J P Gustafson 1993. Analysis of phylogenetic rdationships in Triticeae tribe using RFLPs, [J]. Theor. Appl. Genet.86:649-655.
    118.Morris R. and Sears E.R.1967. The cytogenetics of wheat and its relatives. In:Wheat and wheat improvement (Quisenberry, K.S. and Reitz, L.P. eds.). [J]. American Society of Agronomy, Madison WI.19-87.
    119.Moralejo M., Swanston J.S., Munoz P. et al. Use of new EST markers to elucidate the genetic differences in grain protein content between European and North American two-rowed malting barleys. [J]. Theor. Appl. Genet.,2004,110:116-125.
    120.Nei M., Analysis of gene diversity in subdivided population. Proc Natl Acad Sci 1973, 70(12):3321-3323.
    121.Nei M., Estimation of average heterozygosity and genetic distance from A small number of individuals. [J]. Genetics,1978,89:583-590.
    122.Nicot N., Chiquet V., Gandon B., et al. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). [J]. Theor. Appl. Genet.,2004, 109:800-805.
    123.Nsarellah N, Amri A et al. New durum wheat with Hessian fly resistance from Triticum araraticum and T. carthlicum in Morocco. [J]. Plant Breeding.2003,122:5, 435-437.
    124.Ohta T.Linkage disequilibrium with the island model. [J]. Genetics, (1982a), 101:139-155.
    125.Ohta T. Linkage disequilibrium due to random drift in finite subdivided populations. [J]. Proc Natl Acad Sci USA (1982b) 79:1940-1944.
    126.Ortiz-Monasterio, J.I., R.J. Pena, K.D. Sayre, and S. Rajaram. Cimmyt's genetic progress in wheat grain quality under four nitrogen rates. [J]. Crop Sci.,1997,37: 892-898.
    127.Pandey HN, Rao MV. Grain improvement in Triticum durum through interspecific hybridization. [J]. Indian Journal of Genetics and Plant Breeding.1987,47:2, 133-135.
    128.Payne P I, Nightigale M A, Krattiger A F, Holt L M. The relationship between HMW glutenin subunit composition and the bread-making quality of British gr own wheat varieties. [J]. Journal of Science of Food and Agriculture,1987,40 (1):51-65.
    129.Peng JH, Lapitan NLV. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. [J]. Funct. Inter. Genomics,2005,5: 80-96.
    13O.Perry D. J. Identification of Canadian durum wheat varieties using a single PCR. [J]. Theor. Appl. Genet.,2004,109:55-61.
    131.Pienaar R de V, Sears ER (ED.) Methods to improve the gene flow from rye and wheat to triticale. Proceedings of the fourth international wheat genetics sumposium. [J]. Triticale.1973,253-258
    132.Plucknett, D. L., N.J.H. Smith, J.T. Willians, N.M. Anishetty.[M]. Gene Banks and The World's Food.1987.
    133.Powell W., Machray G C. Provan J. Polymorphism revealed by simple sequence repeats. [J]. Trends in Plant Science,1996,1:215-222.
    134.Prasad MVR Use of induced mutants for grain characters in durum wheat breeding. [J]. Current Science.1972,41:15,570-571.
    135.Rajib Bandopadhyay, Shailendra Sharma, Sachin Rustgi, Ravinder Singh, et al. DNA polymorphism among 18 species of Triticum-Aegilops complex using wheat EST-SSRs. [J]. Plant Science,2004,166:349-356.
    136.Raut V.M., Patil V.P., Deodikar G.B..1984. Genetic studies in tetraploid wheats. VII. Inheritance of seedling resistance against stem rust races. [J]. Biovigyanam,10:2, 101-106.
    137.R6der M. S., Korzun V. Wendehake K, Plashke J, Tixier M H, Leroy P. Ganal M W. A microsatellite map of wheat Genetics. [J].1998.149:2007-2023.
    138.Rohlf FJ. NTSYS-pc Numerical Taxonomy and Multivariate Analysis System. Version 2.1. Exeter Publications, New York. USA.2000,189
    139.Rohlf F.J. NTSYS-pc version 1.80. Distribution by Exeter Software, Setauket, New York,1993.
    140.Schiemann E. Weizen, Roggen und Gerste:Systematik, Geschichte und Verwendung. G. Fischer Verlag, Jena.1948.102 pp (In German)
    141.Slageren M.W. van.1994. Wild wheats:a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agriculture University Papers 1994(7):513
    142.Srivatave, J.P. and A.B. Damania.Wheat Gnetic Resources: Meeting Diverse Needs, Chichester-New York-Brisbane-Toronto-Singapore, ICARDA.1990.
    143.Tallbert, L. E., G.M. Magyar, M Lavin, T.K. Blake and S. L. Moylan.Molecular evidence for the origin of the S-devived genomes of polyploid Triticum species, [J]. Amer. J. Bot.1991:78:340-349.
    144.Tan K.14. Triticum L. In:The Flora of Turkey and the East Aegean Islands, vol.9 (Davis, P.H. ed.). Edinburgh at the University Press, Scotland.1985. pp.245-255.
    145.Tautz D, Renz M. Simple sequence repeats are ubiquitous repetitive components of eukaryotic genomes. [J]. Nucleic Acids Research,1984,12:4127-4138.
    146.Thiel T, Michaelek W, Varshney RK, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). [J]. Theor. Appl. Genet.,2003,106:411-412.
    147.Wang Han-Yan, Yu-Ming Wei, Ze-Hong Yan, You-Liang Zheng. EST-SSR DNA polymorphism in durum wheat (Triticum durum L.) collections [J] J Appl Genet 48(1), 2007, pp.35-42.
    148.Wang, R.R.-C.1992.Genome relationships in the perennial triticeae based on diploid hybrids and beyond, [J]. Hereditas.116:133-136.
    149.Walsh J.Genetic herability down on the farm. [J]. Science,1981,214:161-164.
    150.Wei Y. M., Zheng Y. L., Yan Z. H., Wu W. Zhang ZH. Q., Lan X. J., Genetic diversity in Chinese endemic wheats based on STS and SSR markers, Wheat Info. Ser., 2003,97:9-15
    151.Wei Y. M., Zheng Y. L., Liu D. C., Zhou Y. H., Lan X. J. Gliadin and HMW-glutenin variations in Triticum turgidum L. ssp. turgidum and T.aestivum L. landraces native to Sichuan, China. Wheat Infor. Ser.,2000,90:13-20.
    152.Wright S. Evolution in Mendelian population. [J]. Genetics,1931,16:91-159.
    153.Wright S. Evolution and the genetics of populations. Vol.4. Variability within and among natural populations. [M]. Chicago:University of Chicago Press,1978.
    154. YEN C, ZHANG Y L, YANG J L. An ideotype for high yield breeding in theory and practice [C]//LI Z S, X I N Z Y. Proceedings of the 8th International Wheat Genetics Symposium. [M]. Beijing:China Agricultural Scientech Press,1993:1113-1117.
    155.Zhuang Pingping, Wang Jirui, Wei Yuming, Zheng Youliang. Endosperm storage protein composition and the Agronomic Traits in Triticum carthlicum. [J]. International Journal of Agricultural Research.2007,2(6):528-536
    156.http://icgr.caas.net.cn/kp/%E6%B3%A2%E6%96%AF%E5%B0%8F%E9%BA%A6.h tm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700