用户名: 密码: 验证码:
不同途径自体移植骨髓基质细胞治疗兔创伤性脑损伤
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创伤性脑损伤(Traumatic brain injury,TBI),是由外伤引起的脑组织损害。在交通事故伤等外伤所导致的死亡中,TBI的死亡率居于首位,严重威胁着人民的生命安全。同时,TBI的致残率也非常高,伤后多出现偏瘫失语等功能障碍,甚至持续性植物状态,给家庭和社会带来了沉重负担。因此,TBI的救治是人类社会面临的一项重要课题。
     但是,目前为止,传统的治疗方法对于TBI的救治效果还不很理想。近年来,随着组织工程和成体干细胞研究的不断进展,成体干细胞移植替代受损神经细胞或神经功能的治疗方法越来越受到研究人员的重视。
     骨髓基质细胞(Bone marrow stromal cells,BMSCs)是成体干细胞的一种,是骨髓中除造血干细胞外的未完全分化的原始细胞,能分化成多种类型的间充质干细胞,在合适的条件下,也能跨胚层向神经细胞分化。BMSCs移植在啮齿类动物TBI模型的治疗研究证明BMSCs能够促进脑损伤的恢复。同时,BMSCs获取方便,来源充足,可进行自体移植,避免了胚胎干细胞移植所带来的伦理争议和免疫排斥反应等问题。因此,BMSCs成为治疗TBI的最理想的种子细胞之一。
     目前,在成体干细胞移植治疗脑损伤的实验研究中,细胞移植的途径主要有以下几种:注射入脑实质内、注射入侧脑室内和静脉注射等,以及较少见的动脉注射,注射入腹腔内和注射入枕大池内等。经由这些途径的细胞移植,可能存在加重脑损伤、进入损伤部位的细胞数少,以及治疗效果欠佳等问题。因此,有必要寻找一条微创、进入损伤部位的细胞数多且治疗效果较理想的移植途径。
     近年来,在脊髓损伤(Spinal cord injury,SCI)的干细胞移植治疗研究中,有研究者发现经腰穿移植的干细胞能够到达颈髓的损伤部位,且有助于神经功能障碍的修复,同时少量的细胞可以进入脑组织内。这就提示了,在中枢神经系统损伤的情况下,腰穿移植的干细胞可以迁移到相对距离较远的中枢神经系统的其他部位,也很有可能迁移到TBI部位。那么,腰穿移植也就有可能是BMSCs移植治疗TBI的一个较理想的途径。
     本研究以BMSCs为移植细胞,在体外培养增殖,并以腺病毒转染绿色荧光蛋白(Adeno-virus transfected green fluorescent protein,Ad-GFP)标记,检测体外培养的BMSCs的生长特性,建立了重锤击落伤所导致的中度脑损伤兔TBI模型,并通过静脉注射和腰穿注射等途径进行BMSCs移植,在不同的时间点评估实验动物运动功能障碍的恢复情况,并于经心脏灌注固定后获取脑损伤处的病理组织,检测标记细胞,将不同途径移植治疗的效果进行比较。
     第一章、原子力显微镜在体外培养的兔骨髓基质细胞和免疫球蛋白胶体金结构观察中的应用研究
     目的:探索原子力显微镜(Atomic force microscope,AFM)在骨髓基质细胞(BMSCs)表面超微结构及生物大分子标记物检测中的作用,为BMSCs的鉴定和示踪提供更多依据,同时明确AFM在生命科学领域中的应用前景。方法:取兔股骨骨髓,密度梯度离心法获取BMSCs,以DMEM/F12培养基进行体外培养,对原代培养的BMSCs,分别在第1、7、14天以2.5%戊二醛固定15分钟,再用双蒸水清洗3次,在空气中自然晾干后,进行AFM接触模式扫描。用0.5mmol/L氯化钠溶液将免疫球蛋白胶体金(IgG-gold)原液(浓度1mg/ml)稀释至1μg/ml。再调pH值为7.0。吹打2次后,吸取10μL加到新鲜解离的云母片表面,空气中自然晾干,再用去离子水滴加表面清洗2遍,在空气中自然晾干后,室温下进行AFM接触模式扫描,以AFM自带的软件对扫描图像进行测算,并对所得到的数据进行分析校正。结果:BMSCs在不同的培养阶段都具备粘附特征,都具有相应的粘附结构,该结构位于细胞周缘,呈条纹状结构,相邻的该结构之间近乎平行,远端均插入到细胞外基质的深部。IgG-gold分子的构象为“椭圆球状”结构,其三维径线长度分别为22.0nm×9.0nm×5.7nm,分子表面积为2000±973nm~2,体积为8100±5717nm~3,表面粗糙度为1.089±0.109。结论:AFM扫描提示BMSCs的粘附特征具有相应的形态结构基础。IgG-gold分子具有均一稳定的特征性“椭圆球状”构象。AFM可以用于观察BMSCs表面的超微结构,及以纳米尺度来测定生物大分子的结构,在生命科学研究领域中有着很好的应用前景。
     第二章、绿色荧光蛋白、溴脱氧尿嘧啶和羧基荧光素二醋酸盐琥珀酰亚胺酯标记体外培养的兔骨髓基质细胞的实验研究
     目的:明确腺病毒转染绿色荧光蛋白(Ad-GFP)、溴脱氧尿嘧啶(5-bromodeoxyuridine,BrdU)和羧基荧光素二醋酸盐琥珀酰亚胺酯(5,6-carboxyfluorescein diacetate succinimidyl ester,CFSE)对体外培养的兔BMSCs标记的可行性,为自体移植后细胞示踪作准备。方法:通过培养HEK293细胞,经过多次传代和反复冻溶,体外扩增纯化Ad-GFP,分别以Ad-GFP、BrdU和CFSE标记体外培养的BMSCs。以免疫荧光法检测BrdU的标记率,以流式细胞仪检测Ad-GFP和CFSE的标记率。以CCK-8法检测标记后细胞的生长曲线,以流式细胞仪检测标记后的细胞周期和凋亡率。并制作重锤击落兔脑损伤模型,自体移植4周后,以4%多聚甲醛经兔心脏灌注,获取兔脑病理标本,以免疫荧光法或直接在荧光显微镜下观察脑损伤灶切片处的标记细胞。结果:BrdU的标记率为(73.3±3.6)%;GFP的标记率为(81.6±5.7)%;CFSE的标记率为(99.1±0.6)%。四组细胞均于第3d至第5d处于快速生长期,对各个时间点上的吸光度值进行t检验,提示差异无显著意义(P>0.05)。各种方法标记后的BMSCs和未标记的BMSCs相似,其绝大部分细胞(>85%)处于G0/G1期,而S期的细胞较少(<6%)。各组标记后细胞的凋亡率与未标记细胞的凋亡率相近,均较低(约3%),统计学上差异均无显著意义(P>0.05)。腰穿自体移植BMSCs 4w后,三种方法标记的细胞均可在脑损伤处发现。移植的细胞主要位于损伤灶的周缘,损伤中心很少见到细胞。对侧相应大脑皮层处未见标记的移植细胞。而在双侧侧脑室的脉络膜和室管膜处可见少量移植细胞。GFP标记的细胞位于损伤灶深缘,在荧光显微镜下,发出较强的绿色荧光。CFSE标记细胞移植的脑组织切片中,可发现临近移植细胞的脑组织也存在相对较弱的绿色荧光,这是由于CFSE渗漏所致,BrdU标记的细胞主要也位于脑损伤灶的周缘及半阴影区。结论:Ad-GFP、BrdU和CFSE均可用于标记BMSCs,对于体外培养的BMSCs的细胞周期、凋亡率和生长特性没有显著影响。CFSE标记法存在渗漏的问题,BrdU标记法的检测较繁琐,且存在假阳性的问题,而Ad-GFP标记的细胞易于检测示踪。
     第三章、不同途径自体移植骨髓基质细胞治疗兔创伤性脑损伤
     目的:建立一个比较稳定的兔TBI模型;明确不同途径BMSCs自体移植对于兔创伤性脑损伤的治疗效果,探索干细胞移植的微创方法,并明确是否存在最优化的移植途径。方法:实验动物随机分为5组,每组9只,以TBI后腰穿鞘内注射自体移植BMSCs组和耳缘静脉内注射自体移植BMSCs组为治疗组,以TBI后腰穿鞘内注射PBS组、正常兔腰穿鞘内注射自体移植BMSCs组和TBI后自然恢复组为对照组。BMSCs体外培养10天,并以Ad-GFP标记72h后,无菌条件下收集2×10~6个兔BMSCs,悬浮于60μl的无菌PBS溶液中。麻醉后,于兔右侧额顶部开颅,以重锤击落伤方法打击兔右侧大脑皮层运动区,打击力度为30×40g.cm,建立中度脑损伤的兔TBI模型。分别于损伤后24h,进行BMSCs自体移植,分别于移植后24h、1周、2周和4周进行兔运动功能障碍评估,并于移植后1周、2周和4周每组随机取2只兔,以4%多聚甲醛经心脏灌注固定后,取脑标本进行冰冻病理切片,并在荧光显微镜下进行细胞计数。结果:在治疗组中,运动功能障碍恢复都优于对照组,其中以腰穿移植组的运动功能障碍恢复更加明显;损伤部位细胞数由多到少依次为脑实质内移植组、腰穿移植组、对侧侧脑室内移植组和右侧耳缘静脉移植组。结论:建立了较稳定的中度脑损伤兔TBI模型。经上述途径进行的BMSCs移植均有助于TBI兔运动功能的恢复,其中腰穿移植组的效果最理想。发现了一种微创、高效移植BMSCs治疗TBI的较理想的途径。
Traumatic brain injury (TBI) is the brain tissue damage caused by trauma. Among the death caused by vehicle accidents, the mortality ratio of TBI is second to none. So that TBI is a vital threat to the human beings. At the same time, the mutilation ratio of TBI is also very high. After TBI, the neurological dysfunction like hemiplegia, even persistent vegetable state (PVS) is often encountered. Thus, heavy burden is put on the family and the society. Therefore, TBI treatment is a serious topic of our world.
     But up to now, the traditional measures have brought little light to treatment of TBI. In the recent years, the method is enheartening the researchers that the transplanted adult stem cells can serve to substitute the injured neural cells or the damaged neural functions.
     Bone marrow stromal cells (BMSCs), a member of the family of adult stem cells, are the incompletely differentiated primitive cells in the bone marrow other than haemopoietic stem cells (HSCs). They can differentiate into many kinds of mesenchymal stem cells. And under certain condition, they can transdifferentiate into neural cells. It has been demonstrated that BMSCSs transplantation can improve the rehabilitation from neurological dysfunction in TBI models in rodents. And moreover, BMSCs can be easily and sufficiently harvested. Furthermore, autologous transplantation can be accompanied when the choice of seed-cells is BMSCs. By the way, ethical debate and immunological rejection caused by embryonic stem cells (ESCs) transplantation can be avoided. Therefore, BMSCs have developed into the optimal seed-cells for cell based therapy of TBI.
     At present, the ways that cells are delivered in the treatment of experimental TBI by adult stem cells transplantation are as following: injected into parenchyma of the cerebrum, injected into the lateral ventricle, injected into the remote vein, and relatively minor used methods like injected into artery, injected into abdominal cavity and injected into cisterna magna. Cells transplantation by these ways might have some shortcomings, such as aggravating brain injury, sending fewer cells to the injured site, and providing unsatisfied therapeutics. Thus, it's essential for us to create a new way for cells delivery that has many advantages compared to the traditional methods, such as bringing minimal invasion, sending more cells to the injured sits, and providing satisfied therapeutics.
     In the recent years, some researchers have detected that stem cells implanted through lumbar puncture could migrate to the injured cervical cord, and even more a few implanted cells could be identified in the brain tissues. And the neurological function was improved after cells based therapy in these studies. Thus, the idea is illuminated that lumbar puncture delivery might be a relatively optimal pathway for TBI therapy with BMSCs transplantation.
     In this study, BMSCs cultured in vitro, were the seed cells. And they were marked by the adeno-virus transfected green fluorescent protein (Ad-GFP). The characteristics of the cultured BMSCs were identified. Then TBI models of New Zealand rabbits were developed. The marked BMSCs were injected into the parenchyma of the cerebrum, the lateral ventricle, the vein and the subarachnoid cavity by lumbar puncture, respectively. The motor dysfunction was evaluated at several time points after cells transplantation. And the injured tissues were harvested for pathological examination. Finally, the results were compared within different groups.
     Part one: Investigation of BMSCs cultured in vitro and the configuration of goat anti-mouse IgG gold conjugate with atomic force microscopy
     Objective: To detect the adhesion device and its structure of bone marrow stromal cell, and to warrant the isolation and differentiation of the cell. To identify the configuration of goat anti-mouse IgG gold conjugate (IgG-gold).
     Methods: Bone marrows were harvested from the femurs of rabbits. And BMSCs were obtained with density gradient centrifugation. After cultured in primary for 1day, 7 days and 14 days, BMSCs were fixed with 2.5% glutaraldehyde for 5 minutes. Then the cells were cleansed thrice with double evaporated water. After the cells were open-air dried, they were scanned with atomic force microscope under contact mode respectively. The molecules of IgG-gold affiliated on the new cleaved mica were scanned with atomic force microscope (AFM) under the physiological environment. The data was analyzed with the statistic software in the AFM.
     Results: Adhesion was the characteristic of bone marrow stromal cells in the given stage of their lives. And correspondingly every cell had the adhesion device. The configuration of IgG-gold molecule is an "ellipsoidal sphere" sized as 22.0nm×9.0nm×5.7nm.
     Conclusions: Atomic force microscope had special predominance in observation of the ultrastructure of cell surface. Bone marrow stromal cells had adhesion device with corresponding structure. IgG-gold has a steady uniform characteristic conformation. AFM can play an important role in detecting biomacromolecules at a nanometer scale resolution.
     Part two: study on green fluorescent protein, 5-bromodeoxyuridine and 5,6-carboxyfluorescein diacetate succinimidyl ester marking BMSCs in rabbits
     Objective: To detect the applicability of BrdU, CFSE and GFP serving as labels of MSCs of rabbits.
     Methods: BMSCs of rabbits were labeled with BrdU, CFSE and GFP respectively. The efficiency of the three markers was quantified. Cell cycle and apoptosis ratio of labeled BMSCs were revealed, the growth curves were delineated, so as to identify whether the markers cast an influence on the cell growth characteristics in vitro. Furthermore, the traumatic brain injury model was introduced. And the labeled BMSCs were transplanted by means of lumbal puncture. 4 weeks later, the animals were sacrificed and the pathological sections underwent fluoroscopy.
     Results: The efficiency of BrdU labeling was 73.3%, that of GFP was 81.6%, and that of CFSE was 99.1%. The three markers had no effects on the growth characteristics of BMSCs of rabbits cultured in vitro. The transplanted labeled cells were detected at the site of the injured area. And CFSE leakage was encountered.
     Conclusions: BrdU, CFSE and GFP can serve as a label of BMSCs of rabbits. Each of BrdU and CFSE has its limitations.
     Part three: Autologous transplantation of bone marrow stromal cells for treatment of traumatic brain injury in rabbits
     Objective: To establish a stable TBI model in rabbits. To identify the therapeutics of treatment of TBI with autologous BMSCs transplantation through different pathways in rabbits. To explore a minimally invasive method for stem cell transplantation. And to clarify whether the optimizing pathway of stem cell transplantation does exist or not.
     Methods: 45 New Zealand rabbits were randomly divided into five groups equally. BMSCs were injected into right ear-edge vein, subarachnoid cavity through lumbar puncture in one of the two treatment groups after TBI respectively. PBS was injected into subarachnoid cavity through lumbar puncture in another group. And BMSCs were injected into subarachnoid cavity through lumbar puncture in the last group without TBI. The last two groups together with the group receiving no engraftment after TBI served as control group. 72h after marked with Ad-GFP, 2×106BMSCs cultured for 10d in vitro, were harvested and suspended in 60μl sterile PBS. Moderate TBI models of rabbits were established. The cells were autologously implanted 24h after TBI. The motor dysfunction was assessed at 24h, 1w, 2w and 4w after cells transplantation respectively. And 2 models in each group were sacrificed at 1w, 2w and 4w after cells transplantation through cardio-perfusion with 4% paraformaldehyde (PFA). Then the brain specimen underwent frozen section. And the labeled cells were counted under fluorescence microscope.
     Results: The recover of motor dysfunction in treated groups were better than that in the control groups. And the rehabilitation of motor function in the group of BMSCs transplantation by lumbar puncture was more outstanding. The transplanted cells found at the injured sites were not the same. And from many to few, they are by turns: the group of transplantation by mtraparenchymal injection, by lumbar puncture, by intraventricle injection, by intravenous injection.
     Conclusions: A stable moderate TBI model of rabbits was established. BMSCs transplantation through various pathways can improve the motor dysfunction rehabilitation after TBI in rabbits. Among the several commonly used methods, the therapeutics of BMSCs injection into subarachnoid cavity by lumbar puncture is optimized. An effective and minimally invasive pathway for BMSCs transplantation to treat TBI has been explored.
引文
[1]Magaviss,Leavitt BR,Macklis JD.Induction of neurogenesis in the neocortex of adult mice.Nature,2000,405:951-955.
    [2]Cao Q,Benton RL,Whittemore SR.Stem cell repair of central nervous system injury.J Neuroscience Res,2002,68(5):501-510.
    [3]Hallbergson AF,Carmen G,Peterson DA.Neurogenesis and brain injury:managing a renewable resource for repair.J Clinlnvest,2003,112(8):1128-1133.
    [4]Brazelton TR,Rossi FM,Keshet GI,et al.From marrow to brain:expression of neuronal phenotypes in adult mice.Science.2000; 290:1775-1779.
    
    [5] Woodbury D, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neuroscience Research,2000,61:364-370.
    
    [6] Grant S, Madhu V, Tracy KM. Combined fetal neural transplantation and nerve growth factor infusion: effects on neurological outcome following fluid-percussion brain injury in the rat. J Neurosurg,1995,84:655-662.
    
    [7] Tate MC, Shear DA, Hoffman SW, et al. Fibronectin promotes survival and migration of primary neural stem cells transplanted into the traumatically injured mouse brain. Cell transplant, 2002,11(3):283-295.
    
    [8] Lu DY, Li Y, Mahmood A, et al. Neural and marrow-derived stromal cell sphere transplantation in a rat model of traumatic brain injury.J Neurosurg, 2002,97:935-940.
    
    [9] Hagan M, Wennersten A, Mei Jerx, Holmin S, Wahlberg L, Mathiesen T. Neuroprotein by human neural progenitor cells after experimental contusion in rats. Neurosci Lett, 2003, 351(3):149-152.
    
    [10] Fukunnaga A, Kawase T, Uchida K. Functional recovery after simultaneous transplantation with neuro-epithelial stem cells and adjacent mesenchymal tissues into infarct rat brain. Acta Neurochir,2003,145:473-481.
    
    [11] Chen J, Li Y, Wang L, et al. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci, 2001,189(1):49-57.
    
    [12] Mahmood A, Lu D, Yi L, et al. Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. J Neurosurg, 2001, 94(4):589-595.
    [13] Mahmood A, Lu D, Wang L, et al. Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury.J Neurotrauma, 2002,19(12):1609-1617.
    
    [14] Lacza Z, Horvath E, Busi ja DW. Neural stem cell transplantation in cold lesion: a novel approach for the investigation of brain trauma and repair. Brain Res Brain Res Protoc, 2003,11(3):145-154.
    
    [15] Peter R, Chen Z, Kathryn ES, et al. Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery, 2002,51:1043-1054.
    
    [16] Eriksson C, Bjorklund A, Wictorin K. Neuronal differentiation following transplantation of expanded mouse neurosphere cultures derived from different embryonic forebrain regions. ExpNeurol. 2003,184(2):615-635.
    
    [17] Harvey RL, Chopp M. The therapeutic effects of cellular therapy for functional recovery after brain injury. Phys Med Rehabil Clin N Am,2003, 14(1 Suppl):S143-151.
    
    [18] Arun PA, Berislav VZ, Michael LJ. Endovascular restorative neurosurgery:a novel concept for molecular and cellular therapy of the nervous system. Neurosurgery, 2003, 52:402-413.
    
    [19] Chen JL, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 2001, 32:1005-1011.
    
    [20] Lu D, Mahmood A, Wang L, et al. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport, 2001, 12(3): 559-563.
    
    [21] Mahmood A, Lu D, Wang L, et al. Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery, 2001, 49(5): 1196-1204.
    
    [22] Lu D, Sanberg PR, Mahmood A, et al. Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant, 2002, 11(3):275-281.
    
    [23] Chopp M, Li Y. Treatment of neural injury with marrow stromal cells.Lancet Neurol, 2002, 1(2):92-100.
    
    [24] Mahmood A, Lu D, Lu M, et al. Treatment of traumatic brain i njury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery, 2003, 53(3):697-702.
    
    [25] Chen J, Li Y, Katakowski M, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res, 2003, 73(6):778-786.
    
    [26] Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res, 2003, 92: 692-699.
    
    [27] Li Y, Chen J, Chen XG, et al. Human marrow stromal cell therapy for stroke in rat nerotrophins and functional recovery. Neurology, 2002,59:514-523.
    
    [28] Lu D, Li Y, Wang L, et al. Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma, 2001,18(8):813-9.
    
    [29] Li Y, Chen J, Wang L, et al. Treatment of stroke in rat with intracarotic administration of marrow stromal cells. Neurology, 2001,56:1666-1672.
    
    [30] Gene CK, Darwin J P, and Donald GP. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. PNAS, 1999, 96(19): 10711-10716.
    
    [31] Michael M, Stroemer RP, Tang E, et al. Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage.Stroke, 2002, 33:2270-2278.
    
    [32] Kim DE, Schellingerhout D, Ishii K, et al. Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke, 2004,35(4):952-957.
    
    [33] Bai H, Suzuki Y, Noda T, et al. Dissemination and proliferation of neural stem cells on the spinal cord by injection into the fourth ventricle of the rat: a method for cell transplantation. J Neurosci Methods, 2003, 124(2):181-187.
    
    [34] Douglas AK, Jeronia L, Michael JS, et al. Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. The Journal of Neuroscience, 2003, 23(12):5131-5140.
    
    [35] Messina DJ, Alder L, Tresco PA. Comparison of pure and mixed populations of human fetal-derived neural progenitors transplanted into intact adult rat brain. Exp Neurol. 2003, 184(2):816-829.
    
    [36] Willing AE, Lixian J, Milliken M, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res, 2003, 73(3):296-307.
    
    [37] Heng BC, McNiece I, Haider HK, et al. Possible advantages of stem cell transfusion into the peripheral circulation, as opposed to localized transplantation in situ. Stem Cells Dev, 2005, 14(4):351-353.
    
    [38] Lepore AC, Bakshi A, Swanger SA, et al. Neural precursor cells can be delivered into the injured cervical spinal cord by intrathecal injection at the lumbar cord. Brain Res. 2005, 1045(1):206-216.
    
    [39] Bakshi A, Hunter C, Swanger S, et al. Minimally invasive delivery of stem cells for spinal cord injury: advantages of the lumbar puncture technique. J Neurosurg Spine, 2004,1(3):330-337.
    [1]Pittenger MF,Mackay AM,Beck SC,et al.Multilineage potential of adult human stromal cells.Science,1999,284:143-147。
    [2]Sanchez RJ,Song S,Cardozo PF,et al.Adult bone marrow stromal cells differentiate into neural cells in vitro. Expermental Neurology, 2000, 164:247-256。
    
    [3]Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997,276(5309):71-74.
    
    [4]Romberger DJ. Fibronectin. Int J Biochem Cell Biol, 1997, 29(7):939-943.
    
    [5]Rief M, Gautel M, Schemmel A, Gaub HE. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein measured by atomic force microscopy. Biophys J, 1998, 75(6): 3008-3014.
    
    [6]Paci E, Karplus M. Forced unfolding of fibronectin type 3 modules:an analysis by biased molecular dynamics simulations. J Mol Biol, 1999,288(3): 441-459.
    
    [7]Lin H, Lai R, Clegg DO. Imaging and mapping heparin-binding sites on single fibronectin molecules with atomic force microscopy. Biochemistry,2000, 39(12): 3192-3196.
    
    [8]Craig D, Krammer A, Schulten K, et al. Comparison of the early stages of forced unfolding for fibronectin type III modules. Proc Natl Acad Sci USA, 2001, 98(10):5590-5595.
    
    [9]Gerd K, Claudia AM, Emmanuelle T, et al. Collagen type VI in the human bone marrow microenvironment: a strong cytoadhesive component. Blood,1995, 86: 1740-1748.
    
    [10]Conget PA, Mingguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, 1999,181(1):67-73.
    
    [11]UlrichS, Martina S, Sabine P, et al. Characterization and functional analysis of laminin isoforms in human bone marrow. Blood , 2000, 96: 4194-4203.
    [12]Dexter TM,Spooncer E,Simmons P,et al.Long-term marrow culture:an overview of techniques and experience.Kroc found ser,1984,18:57-96.
    [13]齐淑玲,杨崇礼,胡文伟,等。骨髓形态学的电镜观察。中国医学科学院学报,1985,7:298-300。
    [14]顾小锋,凌诒萍,吴玥,等。体外培养人骨髓基质细胞的超微结构。上海医科大学学报,1996,23(3):227-229。
    [15]王东勇,张松乐。免疫胶体金技术在快速诊断中的应用。中国卫生检验杂志,2003;13(3):391-392。
    [16]李晓华。胶体金标记技术及应用。生物学通报,2004;39(12):54-55。
    [17]侯瑜,闫小君,郭晏海,等。胶体金免疫层析试验快速检测HBsAg。第四军医大学学报,2000;21(2):195。
    [18]严华,申厚凤。胶体金免疫层析技术的应用与展望。微生物学免疫学进展,2005:33(3):86-89。
    [19]王清,王锡波,徐龙强,等。重组PP150抗原用于胶体金免疫斑点技术检测抗HCMV-IgM。第四军医大学学报,2005;26(19):1764-1767。
    [20]Bendayan I.A review of the potential and versatility of the colloidal gold cytochemical labelingfor molecular morphology.Biotech Histochem,2000:75(5):203-242.
    [21]Sagvolden G,Giaever I,Pettersen EO,et al.Cell adhesion force microscopy.Proc Natl Acad Sci U S A.1999,96(2):471-476.
    [22]陈勇,蔡继业。AFM对人乳腺癌细胞外纤维连接蛋白原纤维的形态学观察。生物化学与生物物理学报,2003,35(8):752-755。
    [23]Lushnikov AY,Potaman VN,Oussatcheva EA,et al.DNA strand arrangement within the SfiI-DNA complex:atomic force microscopy analysis.Biochemistry,2006;45(1):152-158.
    [24]Li G,Xi N,Wang DH.Probing membrane proteins using atomic force microscopy.J Cell Biochem,2006;97(6):1191-1197.
    [25]Shaw JE,Alattia JR,Verity JE,et al.Mechanisms of antimicrobial peptide action:Studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.J Struct Biol,2006;154(1):42-58.
    [26]Herbig ME,Assi F,Textor M,et al.The cell penetrating peptides pVEC and W2-pVEC induce transformation of Gel phase domains in phospholipids bilayers without affecting their integrity.Biochemistry,2006;45(11):3598-3609.
    [27]刘文鹏,徐如祥,蔡颖谦。神经干细胞来源的前瞻性研究:应用原子力显微镜观察骨髓基质细胞不同培养阶段的黏附结构特征。中国临床康复,2004;8(34):7674-7675。
    [28]Bustamante C,Vesenka J,Tang CL,et al.Circular DNA molecules imaged in air by scanning force microscopy.Biochemistry,1992;31:22-26.
    [29]Kuznetsov YG,Malkin AJ,Lucas RW,et al.Imaging of viruses by atomic force microscopy.Journal of General Virology,2001;82:2025-2034.
    [30]Kuznetsov YG,Datta S,Kothari NH,et al.Atomic force microscopy investigation of fibroblasts infected with wild-type and mutant murine leukemia virus(MuLV).Biophys J,2002;83(6):3665-3674.
    [31]Xu S,Arnsdorf MF.Calibration of the scanning(atomic) force microscope with gold particles.J Microsc,1994;173(3):199-210.
    [32]Ouerghi O,Touhami A,Othmane A,et al.Investigating specific antigen/antibody binding with the atomic force microscope.Biomol Eng, 2002; 19: 183-188.
    
    [33]Bergkvist M, Carlsson J, KarlssonT, et al. TM-AFM threshold analysis of macromolecular orientation: a study of the orientation of IgG and IgE on mica surfaces. J Colloid Interface Sci, 1998; 206(2):475-481.
    
    [34]Davies J, Roberts CJ, Dawkes AC, et al. Use of scanning probe microscopy and surface plasmon resonance as analytical tools in the study of antibody-coated microtiter wells. Langmuir, 1994; 10(8):2654-2661.
    
    [35]Silverton EW, Navia MA, Davies DR. Three dimensional structure of an intact human immunoglobulin. Proc Natl Sci USA, 1977; 74(11):5140-5144.
    
    [36]Binning G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett,1986, 56(9):930-933.
    
    [37] De Grooth BG, Putman CA. High-resolution imaging of chromosome-related structures by atomic force microscopy. J Microsc,1992, 168(3): 239-247.
    
    [38] Hansma PK. Tapping mode atomic force microscope in liquids. Applide physics letters, 1994, 64: 1738.
    
    [39] Lehenkari PP, Charras GT, Nykanen A, et al. Adapting atomic force microscopy for cell biology. Ultramicroscopy, 2000, 82(1):289-295.
    
    [40] Hansma HG, Sinsheimer RL, Groppe J, et al. Recent advances in atomic force microscopy of DNA. Scanning, 1993, 15(5):296-299.
    
    [41] Hoyt PR, Doktycz MJ, Warmack RJ, et al. Spin-column isolation of DNA-protein interactions from complex mixtures for AFM imaging.Ultramicroscopy, 2001, 86(1): 139-143.
    
    [42]Krautbauer R, Pope LH, Schrader TE, et al. Discriminating small molecule DNA binding modes by single molecule force spectroscopy. FEBS Lett,2002,510(3):154-158.
    [43]Henn A,Medalia O,Shi SP,et al.Visualization of unwinding activity of duplex RNA by DbpA,a DEAD box helicase,at single-molecule resolution by atomic force microscopy.Proc Natl Acad Sci USA,2001,98(9):5007-5012.
    [44]Hafner JH,Cheung CL,Woolley AT,et al.Structural and functional imaging with carbon nanotube AFM probes.Prog Biophys Mol Biol,2001,77(1):73-110.
    [45]Mathur AB,Collinsworth AM,Reichert WM,et al.Endothelial cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy.J Biomech,2001,34(12):1545-1553.
    [46]Braet F,Vermijlen D,Bossuyt D,et al.Early detection of cytotoxic events between hepatic natural killer cells and colon carcinoma cells as probed with the AFM.Ultramicroscopy,2001,89(40):265-273.
    [47]Girasole M,Cricenti A,Generosi R,et al.Artificially induced unusual shape of erythrocytes:an atomic force microscopy study.J Microsc,2001,204(1):46-52.
    [48]徐如祥,郁毅刚。纳米技术与神经外科单分子手术。中华神经医学杂志,2005:4(7):649-652。
    [1]Gratzner HG.Monoclonal antibody to 5-bromo-and 5-iododeoxyuridine:a new reagent for detection of DNA replication.Science,1982,218(4571):474-475.
    [2]Jin K,Minami M,Lan JQ,et al.Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat.PNAS,2001,98(8):4710-4715.
    [3]Morshead CM,Kooy D.Postmitotic death is the fate of constitutively proliferating cells in the subependymal layer of the adult mouse brain.J Neurosci, 1992, 12: 249-256.
    
    [4] Akli S, Caillaud C, Vigne E, et al, Transfer of a foreign gene in the brain using adenoviral vectors. Nat Genet, 1993, 3: 224-228.
    
    [5] Feeney DM, Boyeson MG, Linn RT, et al. Responses to cortical injury:I. Methodology and local effects of contusions in the rat. Brain Research,1981, 211(1):67-77.
    
    [6]Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal,and the osteogenic potential of purified human mesenchymal stem cells during extensive subculativation and following cryopreservation. J Cell Biochem, 1997, 64(2):278-294.
    
    [7]Brazalton TR, Rossi FM, Keshet GL, et al. From marrow to brain: expression of neuronal phenotypes in adult mice. Science, 2000,290(5497):1775-1779.
    
    [8]Broome CS, Whetton AD, Miyan JA, et al. Neuropeptide control of bone marrow neutrophil production is mediatal by both direct and indirect effect on CFU-GM. Br J Haematol, 2000, 108(1):140-150.
    
    [9] Magaki T, Kurisu K, Okazaki T. Generation of bone marrow-derived neural cells in serum-free monolayer culture. Neurosci Lett, 2005,384(3):282-287.
    
    [10]Mezey E, Chandross KJ, Harta G, et al. Turing blood into brain cells bearing neuronal antigens generated in vivo from bone marrow. Science,2000, 290(5497):1779-1782.
    
    [11]Sanchez RJ, Song S, Cardozo PF, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol, 2000, 61(8):364-370.
    [12]Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA, 1999, 96(19): 10711-10716.
    
    [13]Munoz EG, Woodbury D, Black IB. Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells,2003, 21(4):437-448.
    
    [14]Haruo S, Jun U, Rika M, et al, Gi2 Signaling Enhances Proliferation of Neural Progenitor Cells in the Developing Brain. J Biol Chem, 2004,279(39):41141-41148.
    
    [15]Alexander YM, Tara AB, Robert JP, et al, Neural Stem Cell Detection,Characterization, and Age-Related Changes in the Subventricular Zone of Mice. The Journal of Neuroscience, 2004, 24(7):1726-1733.
    
    [16]Chu K, Kim M, Chae SH, et al. Distribution and in situ proliferation patterns of intravenously injected immortalized human neural stem-like cells in rats with focal cerebral ischemia. Neurosci Res, 2004;50(4):459-465.
    
    [17]Helen P. Stem-cell tagging shows flaws. Nature, 2006, 439(7076):519.
    
    [18]Pasko R. Adult Neurogenesis in Mammals: An Identity Crisis. The Journal of Neuroscience, 2002, 22(3):614-618.
    
    [19]Burns TC, Ortiz-Gonzalez XR, Gutierrez-Perez M, et al. Thymidine analogs are transferred from prelabeled donor to host cells in the central nervous system after transplantation: a word of caution. Stem cells, 2006,24(4): 1121-1127.
    
    [20]Hoefel D, Grooby WL, Monis PT, et al. A comparative study of carboxyfluorescein diacetate and carboxyfluorescein diacetate succinimidyl ester as indicators of bacterial activity.J Microbiol Methods,2003,52(3):379-388.
    [21]Dumitriu IE,Mohr W,Kolowos W,et al.5,6-Carboxyfluorescein diacetate succnimidyl ester- labeled apoptotic and necrotic as well as detergent-treated cells can be traced in composite cell samples.Anal Biochem,2001,299(2):247-252.
    [22]Oostendorp RA,Audet J,Eaves CJ.High-resolution tracking of cell division suggests similar cell cycle kinetics of hematopoietic stem cells stimulated in vitro and in vivo.Blood,2000,95(3):855-862.
    [23]Chalfie M,Tu Y,Euskirchen G,et al.Green fluorescent protein as a marker for gene expression.Science,1994,263(5148):802-805.
    [24]谭新杰,胡长林,蔡文琴。绿色荧光蛋白作为神经干细胞示踪标记的实验研究。第三军医大学学报,2006,28(7):691-693。
    [25]Shayakhmetov DM,Carlson CA,Stecher H,et al.A high-capacity,capsid-modified hybrid adenovirus/ adeno-associated virus vector for stable transduction of human hematopoietic cells.J Virol,2002,76(3):1135-1143.
    [26]李志勇,刘磊,田卫东,等。绿色荧光蛋白基因转染大鼠骨髓间充质干细胞的实验研究。中华口腔医学杂志,2005,40(2):150-152。
    [27]Mothe AJ,Kulhatski I,Van Bendegem RL,et al.Analysis Of green fluorescent Protein expression in transgenic rats for tracking transplanted neural stem/progenitor cells.J Histochem Cytochem,2005,53(10):1215-1216.
    [28]Preston SL,Alison MR,Forbes SJ,et al.The new stem cell biology:something for everyone.Mol Pathol,2003,56(2):86-96.
    [29]Mahmood A,Lu D,Chopp M.Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain.Neurosurgery, 2004, 55(5):1185-1193.
    
    [30]Zsombor L, Eszter H, David WB. Neural stem cell transplantation in cold lesion: a novel approach for the investigation of brain trauma and repair. Brain Research Protocols, 2003, 11(3):145-154.
    
    [31] Seledtsov VI, Rabinovich SS, Parlyuk OV, et al. Cell transplantation therapy in reanimating severely head-injured patients. Biomedecine & Pharmacotherapy , 2005, 59(7):415-420.
    [1]Consensus conference,Rehabilitation of persons with traumatic brain injury.NIH Consensus Development Panel on Rehabilitation of Persons With Traumatic Brain Injury. JAMA, 1999,282: 974-983.
    
    [2] Kruger GM. Brain repair by endogenous progenitors. Cell, 2002,110: 399-402.
    [3] Rao MS, Mayer PM. Precursor cells for transplantation. Prog. Brain Res 2000,128: 273-292.
    [4] Longhi L, Zanier ER, Royo N, et al. Stem cell transplantation as a therapeutic strategy for traumatic brain injury. Transplant Immunol, 2005,15: 143-148.
    [5] Lu J, Moochhala S, Moore XL, et al. Adult bone marrow cells differentiate into neural phenotypes and improve functional recovery in rats following traumatic brain injury. Neurosci Lett, 2006, 398: 12-17.
    [6] Jiang Y, Jahagidar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002,418: 41-49.
    [7] Alexanian AR. Neural stem cells induce bone-marrow-derived mesenchymal stem cells to generate neural stem-like cells via juxtacrine and paracrine interactions.Exp. Cell Res, 2005, 310: 383-391.
    [8] Mezey E, Chandross KJ, Harta G, et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science, 2000, 290:1779-1782.
    [9] Bakshi A, Barshinger AL, Swanger SA, et al. Lumbar puncture delivery of bone marrow stromal cells in spinal cord contusion: a novel method for minimally invasive cell transplantation. J. Neurotrauma, 2006,23: 55-65.
    [10] Lepore AC, Bakshi A, Swanger SA, et al. Neural precursor cells can be delivered into the injured cervical spinal cord by intrathecal injection at the lumbar cord.Brain Res, 2005,1045: 206-216.
    [11] Seledtsov VI, Rabinovich SS, Parlyuk OV, et al. Cell transplantation therapy in reanimating severely head-injured patients. Biomed Pharmacother, 2005, 59:415-420.
    [12] Swanger SA, Neuhuber B, Himes BT, et al. Analysis of allogeneic and syngeneic bone marrow stromal cell graft survival in the spinal cord. Cell Transplant, 2005,14: 775-786.
    [13] Feeney DM, Boyeson MG, Linn RT, et al. Responses to cortical injury: I.Methodology and local effects of contusions in the rat. Brain Res, 1981, 211:67-77.
    [14] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20: 84-91.
    [15]Clark RS, Schiding JK, Kaczorowski SL, et al. Neutrophil accumulation after traumatic brain injury in rats: comparison of weight drop and controlled cortical impact models. J Neurotrauma, 1994, 11:499-506.
    [16]Rall JM, Matzilevich DA, Dash PK. Comparative analysis of mRNA levels in the frontal cortex and the hippocampus in the basal state and in response to experimental brain injury. Neuropathol Appl Neurobiol, 2003,29: 118-131.
    [17]Cenci MA, Whishaw IQ, Schallert T. Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci, 2002, 3: 574-579.
    [18]Hartl R, Medary M, Ruge M, et al. Blood-brain barrier breakdown occurs early after traumatic brain injury and is not related to white blood cell adherence. Acta Neurochir Suppl (Wien), 1997, 70: 240-242.
    [19]Povlishock JT, Hayes RL, Michel ME, et al. Workshop on animal models of traumatic brain injury. J Neurotrauma, 1994,11: 723-732.
    [20]Gennarelli TA. Animate models of human head injury. J Neurotrauma, 1994, 11:357-368.
    [21]Marmarou A, Foda MA, Brink W, et al. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg ,1994, 80: 291-300.
    [22]Foda MA, Marmarou A. A new model of diffuse brain injury in rats. Part II: Morphological characterization.J Neurosurg,1994,80:301-313.
    [23]潘松青,胡振序,徐家萱,等。卒中与神经疾病,2002,9(4):229-330。
    [24]杨波,张正勇,陈喜中,等。脑外伤后局部应用地塞米松对家兔脑病理改变的影响。河南医科大学学报,1999,34(3):2-5。
    [25]Sun YL,Rajwa B,Robinson JP.Adaptive image processing technique and effective visualization of confocal microscopy images.Microscopy Research and Technique,2004,64(2):156-163.
    [26]朱珊珊,黄志江.激光扫描共聚焦显微镜在生命科学研究中的应用.《国外医学》麻醉学与复苏分册,2005:26(2):118-119
    [27]Bakshi A,Barshinger AL,Swanger SA,et al.Lumbar puncture delivery of bone marrow stromal cells in spinal cord contusion:a novel method for minimally invasive cell transplantation.J.Neurotrauma,2006,23:55-65.
    [28]Jin KL,Sun YJ,Xie L,et al.Comparison of ischemia-directed migration of neural precursor cells after intrastriatal,intraventricular,or intravenous transplantation in the rat.Neurobiol.Dis.2005,18:366-374.
    [29]Li Y,Chen J,Chen XG,et al.Human marrow stromal cell therapy for stroke in rat.Neurology,2002,59:514-523.
    [30]Mahmood A,Lu DY,Lu M,et al.Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells.Neurosurgery,2003,53:697-703.
    [31]Lacza Z,Horváth E,Busija DW.Neural stem cell transplantation in cold lesion:a novel approach for the investigation of brain trauma and repair.Brain Res Protocols,2003,11:145-154.
    [32]Aarum J,Sandberg K,Haeberlein SL,et al.Migration and differentiation of neural precursor calls can be directed by microglia.Proc.Natl.Acad.Sci,2003,100:15983-15988.
    [33] Ji JF, He BP, Dheen ST, et al. Expression of chemokine receptors CXCR4,CCR2, CCR5 and CX3CR1 in neural progenitor cells isolated from the subventricular zone of the adult rat brain. Neurosci. Lett, 2004, 355: 236-240.
    [34] Tran PB, Ren D, Veldhouse TJ, et al. Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J. Neurosci. Res, 2004, 76:20-34.
    [35] Hur TB, Menachem OB, Furer V, et al. Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol. Cell.Neurosci, 2003,24: 623-631.
    [36] Nilsson KF, Behar TN, Afrakhte M, et al. Platelet-derived growth factor induces chemotaxis of neuroepithelial stem cells. J. Neurosci. Res, 1998, 53: 521-530.
    [37] Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma, 2004, 21: 33-39.
    [38] Lindvall O, Kokaia Z, Martinez SA. Stem cell therapy for human neurodegenerative disorders — how to make it work. Nat Med, 2004, 10 Suppl:S42-50.
    [39] Svendsen CN, Langston JW. Stem cells for Parkinson disease and ALS:replacement or protection? Nat Med, 2004, 10:224-225.
    [40] Zhang J, Li Y, Chen J, et al. Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res,2004,1030:19-27.
    [41] Nakao Y, Otani H, Yamamura T, et al. Insulin-like growth factor 1 prevents neuronal cell death and paraplegia in the rabbit model of spinal cord ischemia. J Thorac Cardiovasc Surg, 2001,122:136-143.
    [42] Gao Q, Y Li, Chopp M. Bone marrow stromal cells increase astrocyte survival via upregulation of phosphoinositide 3-kinase/threonine protein kinase and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways and stimulate astrocyte trophic factor gene expression after anaerobic insult. Neuroscience, 2005,136: 123-134
    [43] Muramatsu D, Sato Y, HishiyamaS, et al. Transplantation of GABAergic neurons into adult mouse neocortex. Exp Neurol, 2005, 194:1-11.
    [44] Sanchez-Ramos JR. Neural cells derived from adult bone marrow and umbilical cord blood. J Neurosci Res, 2002,69: 880-893.
    [45] Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res, 2003, 92: 692-699.
    [46] Shi E, Kazui T, Jiang XJ, et al. Therapeutic Benefit of Intrathecal Injection of Marrow Stromal Cells on Ischemia-Injured Spinal Cord. The Annals of Thoracic Surgery, 2007, 83: 1484-1490.
    [47] Mahmood A, Lu D, Chopp M. Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain.Neurosurgery, 2004, 55: 1185-1193.
    [48] Lu P, Jones LL, Tuszynski MH. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol, 2005,191(2):344-360.
    [49] Tabar V, Panagiotakos G, Greenberg ED, et al. Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol. 2005,23(5):601-606.
    [50] Benninger F, Beck H, Wernig M, et al. Functional Integration of Embryonic Stem Cell-Derived Neurons in Hippocampal Slice Cultures. The Journal of Neuroscience, 2003,23(18):7075-7083.
    [51]Chiba S,Ikeda R,Kurokawa MS,et al.Anatomical and functional recovery by embryonic stem cell-derived neural tissue of a mouse model of brain damage.J Neurol Sci.2004,219(2):107-117.
    [52]Bakshi A,Hunter C,Swanger S,et al.Minimally invasive delivery of stem cells for spinal cord injury advantages of the lumbar puncture technique.J Neurosurg Spine,2004,1:330-337.
    [53]Ohta M,Suzuki Y,Noda T,et al.,Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation.Exp Neurol,2004,187:266-278.
    [54]Zhang SC.Embryonic stem cells for neural replacement therapy:prospects and challenges.J Hematother Stem Cell Res,2003,12(6):625-634.
    [55]Cogle CR,Yachnis AT,Laywell ED,et al.Bone marrow transdifferentiation in brain after transplantation:a retrospective study.Lancet,2004,363:1432-1437.
    [56]Shear DA,Tate MC,Archer DR,et al.Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury.Brain Res,2004,1026:11-22.
    [1]Grant S,Madhu V,Tracy K.M.Combined fetal neural transplantation and nerve growth factor infusion:effects on neurological outcome following fluid-percussion brain injury in the rat.J Neurosurg,1995,84:655-662.
    [2]Tate MC,Shear DA,Hoffman SW,et al.Fibronectin promotes survival and migration of primary neural stem cells transplanted into the traumatically injured mouse brain.Cell transplant,2002,11(3):283-295.
    [3]Lu DY,Li Y,Asim M,et al.Neural and marrow-derived stromal cell sphere transplantation in a rat model of traumatic brain injury.J Neurosurg,2002,97:935-940.
    [4]Hagan M,Wennersten A,Mei Jerx,et al.Neuroprotein by human neural progenitor cells after experimental contusion in rats.Neurosci Lett,2003,351(3):149-152.
    [5]Fukunnaga A,Kawase T,Uchida K.Functional recovery after simultaneous transplantation with neuro-epithelial stem cells and adjacent mesenchymal tissues into infarct rat brain.Acta Neurochir,2003,145:473-481.
    [6]Chen J, Li Y, Wang L, et al. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci, 2001, 189(1):49-57.
    
    [7]Mahmood A, Lu D, Yi L, et al. Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats.J Neurosurg, 2001, 94(4):589-595.
    
    [8]Mahmood A, Lu D, Wang L, et al. Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury.J Neurotrauma, 2002,19(12):1609-1617.
    
    [9]Lacza Z, Horvath E, Busija DW. Neural stem cell transplantation in cold lesion: a novel approach for the investigation of brain trauma and repair. Brain Res Brain Res Protoc, 2003,11(3):145-154.
    
    [10]Peter R, Chen Z, Kathryn ES, et al. Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery, 2002, 51:1043-1054.
    
    [11] Eriksson C, Bjorklund A, Wictorin K. Neuronal differentiation following transplantation of expanded mouse neurosphere cultures derived from different embryonic forebrain regions. Exp Neurol. 2003,184(2):615-635.
    
    [12]Messina DJ, Alder L, Tresco PA. Comparison of pure and mixed populations of human fetal-derived neural progenitors transplanted into intact adult rat brain. Exp Neurol. 2003, 184(2):816-829.
    
    [13]Wennersten A, Meier X, Holmin S, et al. Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J Neurosurg. 2004, 100(1):88-96.
    
    [14] Modo M, Mellodew K, Cash D, et al. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage. 2004, 21(1):311-317.
    
    [15]Harvey RL, Chopp M. The therapeutic effects of cellular therapy for functional recovery after brain injury. Phys Med Rehabil Clin N Am, 2003,14(1 Suppl): S143-151.
    
    [16]Arun PA, Berislav VZ, Michael LJ. Endovascular restorative neurosurgery: a novel concept for molecular and cellular therapy of the nervous system. Neurosurgery, 2003, 52:402-413.
    
    [17]Chen JL, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 2001, 32:1005-1011.
    
    [18]Lu D, Mahmood A, Wang L, et al. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport, 2001, 12(3):559-563.
    
    [19] Mahmood A, Lu D, Wang L, et al. Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery, 2001, 49(5): 1196-1204.
    
    [20]Lu D, Sanberg PR, Mahmood A, et al. Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant, 2002, 11(3):275-281.
    
    [21]Chopp M, Li Y. Treatment of neural injury with marrow stromal cells.Lancet Neurol, 2002, 1(2):92-100.
    
    [22] Mahmood A, Lu D, Lu M, et al. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery, 2003, 53(3): 697-702.
    [23] Chen J, Li Y, Katakowski M, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res, 2003, 73(6):778-786.
    
    [24] Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res, 2003, 92: 692-699.
    [25]Li Y, Chen J, Chen XG, et al. Human marrow stromal cell therapy for stroke in rat nerotrophins and functional recovery. Neurology, 2002,59:514-523.
    
    [26]Lu D, Li Y, Wang L, et al. Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma, 2001,18(8):813-819.
    
    [27]Li Y, Chen J, Wang L, et al. Treatment of stroke in rat with intracarotic administration of marrow stromal cells. Neurology, 2001,56:1666-1672.
    
    [28]Gene C K, Darwin J P, Donald GP. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. PNAS, 1999, 96(19): 10711-10716.
    
    [29]Michael M, Stroemer RP, Tang E, et al. Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage. Stroke,2002, 33:2270-2278.
    [30]Kim DE, Schellingerhout D, Ishii K, et al. Imaging of stem cell recruitment to ischemic infarcts in a murine model.Stroke,2004,35(4):952-957.
    [31]Bai H,Suzuki Y,Noda T,et al.Dissemination and proliferation of neural stem cells on the spinal cord by injection into the fourth ventricle of the rat:a method for cell transplantation.J Neurosci Methods,2003,124(2):181-187.
    [32]Douglas AK,Jeronia L,Michael JS,et al.Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury.The Journal of Neuroscience,2003,23(12):5131-5140.
    [33]Willing AE,Lixian J,Milliken M,et al.Intravenous versus intrastriatal cord blood administration in a rodent model of stroke.J Neurosci Res,2003,73(3):296-307.
    [34]戴宜武,徐如祥,赵春平,等。骨髓基质细胞源神经干细胞自体移植治疗脑干损伤初步观察。中华神经医学杂志,2003,2(1):57-60。
    [35]Pasko R.Discriminating migrations.Nature,1999,400:315-316.
    [36]Fred HG.Mammalian neural stem cells.Science,2000,287:1433-1438.
    [37]Timothy RB,Fabio M V,Gilmor IK,et al.From marrow to brain:expression of neuronal phenotypes in adult mice.Science,2000,290:1775-1779.
    [1]Harvey RL,Chopp M.The therapeutic effects of cellular therapy for functional recovery after brain injury.Phys Med Rehabil Clin N Am,2003,14(1 suppl):s143-151.
    [2]Colter DC,Class R,DiGirolamo CM,et al.Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow.Proc Natl Acad Sci USA,2000,97(7):3213-3218.
    [3]Woodbury D,Schwarz EJ,Prockop DJ,et al.Adult rat and human bone marrow stromal cells differentiate into neurons.J Neurosci Res,2000,61:364-370.
    [4]Chopp M,Li Y.Treatment of neural injury with marrow stromal cells.Lancet Neurol,2002,1(2):92-100.
    [5]Chen X,Katakowski M,Li Y,et al.Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts:growth factor production.J Neurosci Res,2002,69(5):687-691.
    [6]Chen J,Zhang ZG,Li Y,et al.Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats,2003,92(6):692-699.
    [7]Arun PA,Berislav VZ,Michael LJ.Endovascular restorative neurosurgery:a novel concept for molecular and cellular therapy of the nervous system.Neurosurgery, 2003,52:402-413.
    
    [8] Chen JL, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 2001,32:1005-1011.
    
    [9] Mahmood A, Lu D, Wang L, et al. Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J Neurotrauma, 2002, 19(12):1609-1617.
    
    [10] Ramos JS, Song S, Pelaez FC, et al. Bone marrow stem cells may provide source of nerve cells for brain repair. Exp Neurol, 2000,164(2):247-256.
    
    [11] Mahmood A, Lu D, Li Y, et al. Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. J Neurosurg, 2001, 94(4):589-595.
    
    [12] Lu D, Mahmood A, Wang L, et al. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport, 2001, 12(3):559-563.
    
    [13] Mahmood A, Lu D, Wang L, et al. Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery, 2001, 49: 1196-1204.
    
    [14] Vallieres L, Sawchenko PE. Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity. J Neurosci,2003, 23(12):5197-5207.
    
    [15] Felix B, Heinz B, Marius W, et al. Functional integration of embryonic stem cell-derived neurons in hippocampal slice cultures. The Journal of Neuroscience, 2003, 23(18):7075-7083.
    
    [16] Wang L, Li Y, Chen J, et al. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology, 2002, 7(2):113-117.
    
    [17] Lu D, Li Y, Mahmood A, et al. Neural and marrow-derived stromal cell sphere transplantation in a rat model of traumatic brain injury. J Neurosurg, 2002, 97(4):935-940.
    
    [18] Iver AL, Marcus O, Ulf W, et al. A new tool in restorative neurosurgery: creating niches for neuronal stem cells. Neurosurgery,2003, 52: 1150-1153.
    
    [19] Eva M, Karen J C, Gyongyi H, et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science,2000, 290(5497):1779-1782.
    
    [20] Gregory AH, Tord DA, Jason PS, et al. Bone morphogenetic proteins and bone morphogenetic protein gene therapy in neurological surgery: a review. Neurosurgery, 2000, 46: 1213-1222.
    
    [21] Edward FC, Ronald JW, Hendrik JV, et al. Heme oxygenase-2 protects against lipid peroxidation-mediated cell loss and impaired motor recovery after traumatic brain injury. The Journal of Neuroscience, 2003,23(9):3689-3696.
    
    [22] Gustav M, Mehrdad S, Gunilla G, et al. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nature Medicine, 2003,9:1062-1068.
    
    [23] Anna FH, Carmen G, Daniel AP. Neurogenesis and brain injury: managing a renewable resource for repair. J Clin Invest,2003,112(8): 1128-1133.
    
    [24] Tetsuro S, Sorokan ST, Takuya S, et al. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. The Journal of Neuroscience, 2001,21(24): 9733-9743.
    
    [25] O' Connor CA, Cernak I, Vink R. Interaction between anesthesia,gender, and functional outcome task following diffuse traumatic brain injury in rats. J Neurotrauma, 2003, 20(6):533-541.
    
    [26] Cao Q, Benton RL, Whittemore SR. Stem cell repair of central nervous system injury. J Neuroscience Res, 2002, 68(5):501-510.
    
    [27] Chen XH, Iwata A, Nonaka M, et al. Neurogenesis and glial proliferation persist for at least one year in the subventricular zone following brain trauma in rats. J Neurotrauma, 2002, 20(7):623-631.
    
    [28] Kruger GM. Brain repair by endogenous progenitors. Cell, 2002,110(4):399-402.
    
    [29] Gotz M. Glial cells generate neurons-master control within CNS regions: developmental perspectives on neuronal stem cells.Neuroscientist, 2003, 9(5):379-397.
    
    [30] Irving LW. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science, 2000, 287(5457):1442-1446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700