用户名: 密码: 验证码:
海洋桡足类摄食生态及其对浮游植物的摄食压力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用肠道色素法,对我国近海(渤海、黄海、东海、莱州湾、潍河口)和南大洋(普里兹湾及邻近海域)浮游桡足类在自然海区的摄食状况及其对浮游植物及初级生产力的摄食压力进行了研究。主要内容包括:
    近海:桡足类肠道色素含量随个体的增大而增加,但是肠道排空率与个体大小没有相关性。桡足类通常存在着一定的昼夜摄食节律,摄食高峰出现在夜间,另外河口海区桡足类的摄食节律与潮汐有关。现场测得的桡足类摄食率结果表明,在莱州湾,夏季桡足类群体的日摄食量占初级生产力的20.81—98.35%,占浮游植物现存量的2.53—6.36%,潍河口,河口外浮游动物优势种群体的日摄食量占初级生产力的32.28%,占浮游植物现存量的14.12%,河口内对初级生产力的摄食压力 <3%,日摄食量小于浮游植物现存量的1%。整个渤海海区,桡足类摄食占浮游植物现存量分别为春季11.9%,秋季6.3%;对初级生产力的摄食压力春季53.3%,秋季超过100%。黄东海海区,对浮游植物现存量的摄食压力春季为11.2%,秋季为6.1%。另外中国近海小型桡足类(200-500(m)对整个桡足类群体摄食率的贡献超过50%。
    南大洋:南极夏季边缘浮冰区微型浮游动物是浮游植物的主要摄食者,纽鳃樽在形成一定的种群密度时也对浮游植物起到重要的控制作用,而桡足类对浮游植物生物量的变化影响相对较小。
Copepod feeding activities and their grazing impacts on the phytoplankton biomass and primary production were studies by the Gut fluorescence method in the coastal waters of China ( the Bohai Sea, Yellow Sea, East China Sea, Laizhou Bay and Weihe Estuary) and the Southern Ocean ( the Prydz Bay and its adjacent area). The results mainly include:
    Coastal Waters:
    The mean level of gut pigments increased with increasing size. But the gut evacuation rates did not vary with the experimental temperature and body size. Copepods usually performed feeding rhythms with maximum level at midnight and their feeding activities changed with the tide rhythms at the estuary area. In the Laizhou Bay, the daily grazing rate of the copepod population on phytoplankton was 20.81—98.35% of the primary production and 2.53—6.36% of the phytoplankton standing stock in summer. In the Weihe estuary, the daily grazing rate of the dominant species population on phytoplankton inside the river was less than 3% of the primary production and 1% of the phytoplankton standing stock. But outside the river, it showed a grazing impress on the phytoplankton community (32.28% of primary production and 14.12% of the stock). In the Bohai Sea, the grazing impact on phytoplankton by copepod was equivalent to 11.9% of the chlorophyll-a standing
    
    stock and 53.3% of the primary production during the spring cruise. And it was equivalent to 6.3%of the chlorophyll-a standing stock and >100% of the primary production during the autumn cruise. In the Yellow Sea and East China Sea, the grazing impact on phytoplankton by copepod was relatively lower, which equivalent to 11.2% of the chlorophyll-a standing stock during the spring cruise and 6.1% (range: 1.4-15.4%) during the autumn cruise.
    The consumption of phytoplankton was mainly caused by grazing of the small size group of copepods (200-500(m), which accounted for >50% of the copepod population consumption in the coastal waters of China.
    The Southern Ocean:
    At the marginal ice zone of Antarctica in summer, the microzooplankton was the dominated phytoplankton consumer. Salps also played an important role on control of phytoplankton where swarming occurs. The grazing of copepods had a relatively smaller effect on phytoplankton biomass development.
引文
白雪娥 庄志猛,1991,渤海浮游动物生物量及其主要种类数量变动的研究。海洋水产研究,12:71-92。
    陈钢, 李少菁, 黄加祺. 1997. 台湾海峡两种浮游桡足类──亚强真哲水蚤和中华哲水蚤的摄食研究. 中国海洋学文集, 7: 196(203
    费尊乐,毛兴华,朱明远等,1991,渤海生产力研究——叶绿素a、初级生产力与与渔业资源开发潜力。海洋水产研究,12:55-70
    李超伦,王荣,2000. 莱州湾夏季浮游桡足类的摄食研究. 海洋与湖沼,31(1):15—22
    刘文臣,王荣,吉鹏,1997,东海颗粒有机碳的研究。海洋与湖沼,28(1):39—43
    王荣 范春雷,1997,东海浮游桡足类的摄食活动及其对垂直碳通量的贡献。海洋与湖沼,28(6):579—587。
    王荣 孙松,1991,卤虫摄食的实验研究 I.对食物粒度的选择性、清滤率和摄食率。实验海洋生物学开放实验室学术年报(第1期)。青岛海洋大学出版社,88-97页
    张武昌. 1999. 微型浮游动物及其对浮游植物的摄食压力. 博士论文
    Alcaraz M, Saiz E, Fernandez JA, Trepat I, Figueiras F, Calbet A, Bautista B (1998) Antarctic zooplankton metabolism: carbon requirements and ammonium excretion of salps and crustacean zooplankton in the vicinity of the Bransfield Strait during January 1994. Journal of Marine System 17:347-359
    Ambler J W, 1985. Seasonal factors affecting egg production and viability of eggs of Acartia tonsa Dana from East Lagoon, Galveston, Texas. Estuar. Coast. Shelf Sci., 20: 743-760
    AmblerJ W, 1986. Effects of food quantity and quality on egg production of Acartia tonsa Dana from East Lagoon, Galveston, Texas. Estuar. Coast. Shelf Sci., 23: 183-196
    Andrews KJH (1966) The distribution and life-history of Calanoides acutus (Giesbrencht). Discovery Reports 34: 117-162
    Atkinson A, Shreeve RS (1995) Response of the copepod community to a spring bloom in the Bellingshausen Sea. Deep-Sea Research 42: 1291-1311
    Atkinson A, Ward P, Williams R, Poulet SA (1992) Diel vertical migration and feeding of copepods at an oceanic site near South Georgia. Marine Biology 113: 583-593
    Atkinson, A., 1996, Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate
    
    predation, food selectivity and impact on prey populations. Mar. Ecol. Prog. Ser., 130: 85—96.
    Bamstedt U, Gifford D J, Irigoien X, Atkinson A., Roman M, 2000. Feeding. In: Harris R. et al. ed. ICES Zooplankton Methodology Manual. London: Academic Press, 297—399
    Bamstedt U, Solberg P T, Nejstgaad J C, 1999 . Utilization of small-sized food algae by Calanus finmarchicus (Copepoda: Calanoida) and the significance if feeding history. Sarsia 84: 19-38
    Barquero S, Cabal J A, Anadon R, Fernandez E, Varela M, Bode A, 1998. Ingestion rates of phytoplankton by copepod size fractions on a bloom associated with an off-shelf front off NW Spain. J. Plank. Res. 20: 957—972
    Barthel K G, 1988. Feeding of three Calanus species on different phytoplankton assemblages in the Greenland Sea. Meeresforschung 32: 92-106
    Bathmann, U.V., Noji, T.T. and Bodungen, B.V. (1990) Copepod grazing potential in late winter in the Norwegian Sea - a factor in the control of spring phytoplankton growth? Mar. Ecol. Prog. Ser. 60: 225-233.
    Bautista B, Harris R P, 1992. Copepod gut contents, ingestion rates and grazing impact on phytoplankton in relation with the size structure of zooplankton and phytoplankton during a spring bloom. Mar. Ecol. Prog. Ser. 82: 41—50
    Becquevort S (1997) Nanoprotozooplankton in the Atlantic sector of the Southern Ocean during early spring: biomass and feeding activities. Deep-Sea Research II 44: 355-373
    Bellantoni D C, Peterson W T, 1987. Temporal variability in egg production rates of Acartia tonsa Dana in Long Island Sound. J Exp. Mar. Biol. Ecol., 107: 199-208
    Bollens S M, Stearns D E, 1992. Predation-induced change in the diel feeding cycle of a planktonic copepod. J. Exp. Mar. Biol. Ecol., 156: 179—186
    Burkill PH, Edwards ES Sleigh MA (1995) Microzooplankton and their role in controlling phytoplankton growth in the marginal ice zone of the Bellingshausen Sea. Deep-Sea Research II 42: 1277-1290
    Calbet A, Saiz E, Irigoien X, Alcaraz M, Trepat I, 1999. Food availability and diel feeding rhythms in the marine copepods Acartia grani and Centropages typicus. J. Plank. Res., 21: 1009—1015
    Carlotti F, Radach G, 1996. Seasonal dynamics of phytoplankton and Calanus finmarchicus in the
    
    North Sea as revealed by a coupled one-dimensional model. Limnol. Oceanogr. 41: 522-539
    Cary, S.C., Lovette, J.T., Perl, P.J., Huntley, M.E. and Vernet, M. (1992) A micro-encapsulation technique for introducing pure compounds in zooplankton diets. Limnol. Oceanogr. 37: 404-413.
    Cervetto, G; Pagano, M; Gaudy, R., 1995. Feeding behaviour and migrations in a natural population of the copepod Acartia tonsa. Hydrobiologia, vol. 300-301 pp. 237-248
    Checkley D M, 1980. Food limitation of egg production by a marine planktonic copepod in the sea off Southern California. Limnol. Oceangr., 25: 991-998
    Conover R J, 1966. Assimilation of organic matter by zooplankton. Limnol. Oceanogr. 11: 337-345
    Conover R J, 1978. Transformation of organic matter. In Marine Biology, Vol IV, PP.221-499. O. Kinne (ed.), John Wiley, Chichester
    Conover R J, Durvasula R, Roy S, Wang R, 1986. Probableloss of chlorophll-derived pigments during passage through the gut of zooplankton, and some consequences. Limnol. Oceanogr. 31: 878-887
    Conover RJ, Huntley M (1991) Copepods in ice-covered seas ? Distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas. Journal of Marine Systems 2: 1-41Dam HJ, Peterson WT (1988) The effect of temperature on the gut clearance rate constant of planktonic copepods. Journal of Experimental and Marine Biology and Ecology 123: 1-14
    Dagg, M, 1981. The impact of zooplankton grazing on phytoplankton in continental shelf regions of the Northeast United States, and in the southeast Bering Sea. ICES COUNCIL MEETING 1981 (COLLECTED PAPERS)., ICES, COPENHAGEN (DENMARK) , 1981, pp 19
    Dagg M J, 1985. The effect of food limitation on diel migratory behavior in marine zooplankton. Arch. Hydrobiol. 21: 247—255
    Dagg, M.J. and Walser, W.E. (1987) Ingestion, gut passage, and egestion by the copepod Neocalanus plumchrus in the laboratory and in the subarctic Pacific Ocean. Limnol. Oceanogr. 32: 178-188.
    Dagg, M., 1993, Grazing by the copepod community does not control phytoplankton production in the subarctic Pacific Ocean. Prog. Oceanogr., 32: 163—168.
    
    
    Dagg, M.J.. 1995. Ingestion of phytoplankton by the micro- and mesozooplankton communities in a productive subtropical estuary. J. Plankton Res., 17: 845(857
    Dagg M J, Frost B W, Newdon J A, 1997. Vertical migration and feeding behavior of Calanus pacificus females during a phytoplankton bloom in Dabob Bay, US. Limnol. Oceanogr. 42: 974-980
    Dam H G, Peterson W T, 1988. The effect of temperature on the gut clearance rate constant of planktonic copepods. J. Exp. Mar. Biol. Ecol. 123: 1—14
    Dam H.G. and Peterson, W.T., 1991. In situ feeding behavior of the copepod temora longicornis; effects of seasonal changes in chlorophyll size fractions and female size. Mar. Ecol. Prog. Ser. 71; 113-123.
    Dam, H.G. and Peterson, W.T., 1993. Seasonal contrasts in the diel vertical distribution, feeding behavior, and grazing impact of the copepod Temora longicornis in Long Island Sound. J. Mar. Res. 51:561-594.
    Dam H G, Miller C A, Jonasdottir S H,1993. The tropic role of mesozooplankton at 47N, 20W during the North Atlantic Bloom Experiment. Deep-Sea Res., 40: 197—212
    Dam H G, Peterson W T, Bellantoni D C, 1994. Seasonal feeding and fecundity of the calanoid copepod Acartia tonsa in Long Island: is onmivory important to egg production? Hydrobiologia, 292/293: 191-199
    Dickie L M, 1972. Food chains and fish production. ICNAF Spec. Publ. 8: 201-221
    Drits AV, Pasternak AF, 1993. Feeding of mass species of the Antarctic zooplankton in summer. In: Voronina NM (eds) Pelagic ecosystems of the Southern Ocean. Nauka, Hayka, pp 250-259
    Drits, AV; Arashkevich, EG; Semenova, TN, 1993. Role of Pyrosoma atlanticum, salps and copepods in the utilization and flux of organic matter off West Africa. RUSS. J. AQUAT. ECOL., vol. 2, no. 1, pp. 1-12
    Dubischar CD, Bathmann UV (1997) Grazing impact of copepods and salps on phytoplankton in Atlantic sector of the Southern Ocean. Deep-Sea Research II 44: 415-433
    Durbin A G, Durbin E G, Smayda T J, Verity P G, 1983. Food limitation of production by adult Acartia tonsa in Narraganse Bay, Rhode Island. Limnol. Oceangr., 28: 1199-1213
    Durbin A G, Durbin E G, Wlodarczyk E, 1990. Diel feeding behavior in the marine copepod Acartia tonsa in relation to food availability. Mar. Ecol. Prog. Ser. 68: 23—45
    
    
    Durbin EG, Campbell RG, Gilman SL, Durbin AG (1995) Diel feeding behavior and ingestion rate in the copepods Calanus finmarchicus in the southern Gulf of Maine during late spring. Continental shelf Research 15: 539-570
    Froneman PW, Perissinotto R, McQuaid CD (1996) Dynamic of microzooplankton communities at the ice-edge zone of the Lazarev Sea during a summer drogue study. Journal of Plankton Research 18: 155-1470
    Froneman, PW; Pakhomov, EA; Perissinotto, R; Laubscher, RK; McQuaid, CD, 1997. Dynamics of the plankton communities of the Lazarev Sea (Southern Ocean) during seasonal ice melt. Marine Ecology Progress Series, vol. 149, no. 1-3, pp. 201-214
    Froneman , PW; Pakhomov, EA; Perissinotto, R; McQuaid, CD, 2000. Zooplankton structure and grazing in the Atlantic sector of the Southern Ocean in late austral summer 1993. Deep-Sea Research I, vol. 47, no. 9, pp. 1687-1702
    Froneman, PW, 2000. Feeding Studies on Selected Zooplankton in a Temperate Estuary, South Africa. Estuarine, Coastal and Shelf Science, vol. 51, no. 5, pp. 543-552
    Frost B.W., 1972. Effects of the size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanus pacificus. - Limnol. Oceanogr. 17: 805-815.
    Garrison DL (1991) An overview of the abundance and role of protozooplankton in Antarctic waters. Journal of Marine Systems 2: 317-331
    Garrison DL, Buck KR, Gowing MM (1993) Winter plankton assemblages in the ice edge zone of the Weddell and Scotia Seas: composition, biomass and spatial distributions. Deep-Sea Research II 40: 311-338
    Gieskes W W C, Engelkes M M, Kraay G W, 1991. Degradation of diatom chlorophyll to colourless non-fluorescing compounds during copepod grazing. Hydrobiol. Bull., 25: 65-72
    GLOBEC Implementation Plan (1999) IGBP Report No. 47/ GLOBEC Report 13. pp. 52.
    Gonzalez, HE; Sobarzo, M; Figueroa, D; Noethig, E-M, 2000. Composition, biomass and potential grazing impact of the crustacean and pelagic tunicates in the northern Humboldt Current area off Chile: Differences between El Nino and non-El Nino years. Marine Ecology Progress Series, vol. 195, pp. 201-220
    Guisande, C. & R. P. Harris, 1995. Effect of total organic content of the egg on hatching success and naupliar survival in the copepod Calanus helgolandicus. - Limnol. Oceanogr. 40:
    
    476-482.
    Haney J F, 1988. Diel patterns of zooplankton behavior. Bull. Mar. Sci., 43: 583—603
    Hansen, B., U. C. Bergreen, K. S. Tande and H. C. Eilertsen, 1990, Mar. Biol., 104: 5-14.
    Harris R P, 1982. Comparison of the feeding behavior of Calanus and Pseudocalanus in two experimentally manipulated enclosed systems. J. Mar. Biol. Ass. U. K., 62: 71—91
    Harris R. P., 1994. Zooplankton grazing on the coccolithophorid Emiliania huxleyi and its role in inorganic carbon flux. Mar. Biol. 119: 431-439.
    Harris, R. P.,1996. Feeding Ecology of Calanus, Ophella, 44: 85-109.
    Harris R P, Boyd P, Harbour D S, Head R N, Pingree R D, Pomroy A J, 1998. Physical, chemical and biological features of a cyclonic eddy in the region of 60(10'N, 1950'W in the North East Atlantic. Deep-Sea Res., 44: 1815—1839
    Head, E. H., R. Wang and R. J. Conover, 1984. Comparison of diurnal feeding rhythms in Temora longicornis and Centropages hamatus with digestive enzyme activity. - J. Plankton Res. 6(4): 543-551.
    Head, E.J.H. (1988) Copepod feeding behavior and the measurement of grazing rates in vivo and in-vitro. Hydrobiologia 167/168: 31-41.
    Head E.J.H. and Harris, L.R. (1992) Chlorophyll and carotenoid transformation and destruction by Calanus spp. Grazing on diatoms. Mar. Ecol. Prog. Ser. 186: 229-238
    Head, E.J.H. and Harris, L.R. (1996) Chlorophyll destruction by Calanus spp. Grazing on phytoplankton: Kinetics, effects of ingestion rate and feeding history, and a mechanistic interpretation. Mar. Ecol. Prog. Ser. 135: 223-235.
    Head R N, Harris RP, Bonnet D, Irigoien X, 1999. A comparative study of size fractionated mesozooplankton biomass and grazing in the North East Atlantic. J. Plank. Res. 21: 2285—2308
    Hewes CD, Holm-Hansen O, Sakshaug E (1985) Alternate carbon pathways at lower trophic levels in the Antarctic food web. In: Siegfried W et al. (eds) Antarctic nutrient cycles and food webs. Springer, Berlin Heidelberg New York pp 277-283
    Hewes CD, Sakshaug E, Reid FM, Holm-Hansen O (1990) Microbial autotrophic and heterotrophic eucaryotes in Antarctic waters: Relationships between biomass and chlorophyll, adenosine triphosphate and particulate organic carbon. Marine Ecology Progress Series 63:
    
    27-35
    Hirche, H-J; Baumann, MEM; Kattner, G; Gradinger, R, 1991. Plankton distribution and the impact of copepod grazing on primary production in Fram Strait, Greenland Sea. Journal of Marine Systems, vol. 2, no. 3-4, pp. 477-494
    Hiromi, J., 1996. Potential impact of grazing by Oithona davisae (Copepoda:Cyclopoida) in Tokyo Bay, summer 1989. BULL. COLL. AGRIC. VET. MED. NIHON UNIV. no. 53, pp. 47-55
    Hopkins T L, 1985. Food web of an Antarctic midwater ecosystem. Marine Biology 89: 197-212
    Hopkins TL (1987) Midwater food web in McMurdo Sound, Ross Sea, Antarctica. Marine Biology 96:93-106
    Hopkins TL, Torres JJ (1989) Midwater food web in the vicinity of a marginal ice zone in the western Weddell Sea. Deep-Sea Research 36: 543-560
    Hopkins TL, Ainley DG, Torres JJ, Langraft TM (1993) Trophic structure in the open waters of the marginal ice zone in the Scotia-Weddell confluence region during spring (1983). Polar Biology 13: 389-397
    Hosie GW, Cochran TG, Pauly T, Beaumont KL, Wright SW, Kitchener JA (1997) Zooplankton community structure of Prydz Bay, Antarctica, January-February 1993. Proc. NIPR Symp. Polar Biol 10: 90-133
    Huntley, M., 1981. Nonselective, nonsaturated feeding by three calanid copepod species in the Labrador Sea. - Limnol. Oceanogr. 26: 831-842.
    Huntley, M., 1988, Feeding biology of Calanus: a new perspective. - Hydrobiologia 167/168: 83-99.
    Huntley ME, Sykes PF, Marin V (1989) Biometry and trophodynamics of Salpa thompsoni Foxton (tunicate; Thaliacea) near the Antarctic Peninsula in austral summer, 1983-1984. Polar Biology 10: 59-70
    Huntley, M. E.& M. G. D. Lopez, 1992.temperature dependent production of marine copepods: a global synthesis. - Amer. Nat. 140: 202-242.
    Kiorboe T, Mohlenberger F, Hamburger, 1985. Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production and composition of specific dynamic action. Mar. ecol. Prog. Ser. 26: 85-97
    Kiorboe T, 1989. Phytoplankton growth rate and nitrogen content implications for feeding and
    
    fecundity in a herbivorous copepod. Mar. ecol. Prog. Ser., 55: 229-234
    Kleppel, D. S., Pieper, R. E. and Trager, G., 1988, Natural diets of zooplankton of southern California. Mar. Biol., 97: 185—190.
    Kleppel, G.S., Frazel, D., Pieper, R.E. and Holliday, D.V. (1988) Natural diets of zooplankton of southern California. Mar. Ecol. Prog. Ser. 49: 231-241.
    Kleppel G S, Holliday D V, Pieper R E, 1991. Trophic interactions between copepods and microplankton: a question about the role of diatoms. Limnol Oceangr., 36: 172-178
    Kleppel G S, 1992. Environmental regulation of feeding and egg reproduction by Acartia tonsa off Southern California. Mari. Biol., 112: 57-65
    Kleppel G S, 1993. On the diet of calanoid copepods. Mar. Ecol. Prog. Ser. 99: 183—195
    Landry MR, Hassett RP (1982) Estimating the grazing impact of marine microzooplankton. Marine Biology 67: 283-288
    Landry, M.R., Peterson, W.K. and Fagerness, V.L. (1994) Mesozooplankton grazing in the Sorthern California Bight. I. Population abundances and gut pigment contents. Mar. Ecol. Prog. Ser. 115: 55-71.
    Landry, M. R., W. K. Peterson & C. J. Lorenzen, 1995. Zooplankton grazing, phytoplankton growth and export flux: inferences from chlorophyll tracer methods. - ICES J. Mar. Sci. 52: 337-345.
    Lonsdale, DJ; Cosper, EM; Doall, M, 1996. Effects of zooplankton grazing on phytoplankton size-structure and biomass in the lower Hudson River estuary. Estuaries, vol. 19, no. 4, pp. 874-889
    Lopez, M.M.E., Huntley, M.E. and Sykes, P.F. (1988) Pigment destruction by Calanus pacificus: Impact on the estimation of water column fluxes. J. Plank. Res. 10: 715-734.
    Mackas D, R Bohrer, 1976. Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. Journal of Experimental Marine Biology and Ecology, 25, 77—85
    Mathot S, Dandois J -M, Lancelot C (1992) Gross and net primary production in the Scotia-Weddell Sea sector of the Southern Ocean during spring 1988. Polar Biology 12: 321-332
    Mayzaud P, Razoul S, 1992. Degradation of gut pigment during feeding by a subantarctic copepod:
    
    Importance of feeding history and digestive acclimation. Limnology and Oceanography, 37: 303—404
    Mcleroy-Etheridge S L, McManus G B, 1999. Food type and concentration affect chlorophyll and carotenoid destruction during copepod feeding. Limnology and Oceanography, 44: 2005—2011
    Morale, C.E., Bautista, B. and Harris, R.P. (1990) Estimates of ingestion in copepod assemblages: gut fluorescence in relation to body size. In M. Barnes and R.N. Gibson (eds.): Proceeding of the 24th European Marine Biology Symposium, pp 565-577. Aberdeen University Press.
    Morales, C.E., Bedo, A., Harris, R.P. and Tranter, P.R.G. (1991) Grazing of copepod assemblages in the north-east Atlantic: the importance of the small size fraction. J. Plank. Res. 13: 455-472.
    Morales, C. E., R. P. Harris., R. N. Head & P. R.G. Tranter,1993. Copepod grazing in the oceanic north-east Atlantic during a six week drifting station: the contribytion of size calsses and vertical migrants. - J. Plankton Res.15: 185-211.
    Mullin, M. M. & E. R. Brooks,1976. Some consequences of distributional heterogeneity of phytoplankton and zooplankton. - Limnol. Oceanogr. 21: 784-796.
    Ohman M D, Runge J A, 1994. Sustained fecundity when phytoplankton resources are in short supply: omnivory by Calanus finmarchicus in the Gulf of St. Lawrence. Limnol. Oceanogr. 39: 21-36
    Olivieri, ET; Hutchings, L, 1983 Zooplankton grazing in the Southern Benguela. Reports from the 5th national oceanographic symposium, p. 145, S. AFR. J. SCI./S.-AFR. TYDSKR. WET., vol. 79, no. 4
    Paffenhofer, G.-A., 1991. Some characteristics of abundant subtropical copepods in estuarine, Shelf and ocean waters. - Proceedings of the Fourth International conference on Copepoda: Bull. Plankton Soc. Jap. Spec. Vol. (1991) p.201-216.
    Pakhomov, EA; Perissinotto, R, 1997. Mesozooplankton community structure and grazing impact in the region of the Subtropical Convergence south of Africa. Journal of Plankton Research vol. 19, no. 6, pp. 675-691
    Pakhomov, EA; Verheye, HM; Atkinson, A; Laubscher, RK; Taunton-Clark, J, 1997. Structure and grazing impact of the mesozooplankton community during late summer 1994 near South
    
    Georgia, Antarctica. Polar Biology, vol. 18, no. 3, pp. 180-192
    Pasternak A F, 1994. Gut fluorescence in herbivorous copepods: an attempt to justify the method. Hydrobiologia, 292/293: 241-248
    Penry, D.L. and Frost, B.W. (1990) Re-evaluation of the gut-fullness (gut fluorescence) method for inferring ingestion rates of suspension-feeding copepods. Limnol. Oceanogr. 35: 1207-1214.
    Perissinotto R, Pakhomov E A, 1996. Gut evacuation rates and pigment destruction in the Antarctic krill Euphausia superba. Marine Biology 125: 47—54
    Perissinotto R, Pakhomov EA (1997) Feeding association of the copepod Rhincalanus gigas with the tunicate Salpa thompsoni in the Southern Ocean. Marine Biology 127: 469-483
    Perissinotto R, Pakhomov EA (1998) The trophic role of the tunicate Salpa thompsoni in the Antarctic marine ecosystem. Journal of Marine Systems 17: 347-359
    Perissinotto R, Pakhomov EA, McQuaid CD, Froneman PW (1997) In situ grazing rates and daily ration of Antarctic krill Euphausia superba feeding on phytoplankton at the Antarctic Polar Front and the Marginal Ice Zone. Marine Ecology Progress Series 160: 77-91
    Perissinotto, R, 1992. Mesozooplankton size-selectivity and grazing impact on the phytoplankton community of the Prince Archipelago (Southern Ocean). Marine ecology progress series. vol. 79, no. 3, pp. 243-258
    Peterson W T, 1988. Rates of egg production by the copepod Calanus marshallae in the laboratory and in the sea off Oregen, USA. Mar. Ecol. Prog. Ser., 47: 229-237
    Peterson W T, Painting S, Barlow R, 1990. Feeding rates of Calanoiddea carinatus: a comparison of five methods including evaluation of the gut fluorescence method. Mar. Ecol. Prog. Ser., 63: 85-92
    Peterson W T, Dam H G, 1996. Pigment ingestion and egg production rates of the calanoid copepod Temora longicornis: implications for gut pigment loss and omnivorous feeding. J. Plankton Res., 18: 855-861
    Reinke M (1987) On the feeding and locomotory physiology of Salpa thompsoni and Salpa fusiformis. Ber. Polarforsch 36: 1-89
    Roman M R, Dam H G, Gauzens A L, Napp J M, 1993. Zooplankton biomass and grazing at the JGOFS Sargasso Sea time series station. Deep-Sea Res. 40: 883—901
    
    
    Roman, MR; Gauzens, AL, 1997. Copepod grazing in the Equatorial Pacific. Limnology and Oceanography vol. 42, no. 4, pp. 623-634
    Roman, M; Smith, S; Wishner, K; Zhang, X; Gowing, M, 2000. Mesozooplankton production and grazing in the Arabian Sea. Deep-Sea Research II, vol. 47, no. 7-8, pp. 1423-1450
    Roy S, Harris R P, Poulet S A, 1989. Inefficient feeding by Calanus helgolandicus and Temora Longicornis on Coscinodiscus wailesii: quantitative estimation using chlorophyll-type pigments and effects on dissolved free amino acids. Mar. Ecol. Prog. Ser., 52: 145-153
    Runge, J.A. (1980) Effects of hunger and season on the feeding behaviour of Calanus pacificus. Limnol. Oceanogr. 25: 134-145.
    Runge J A, 1985. Relationship of egg production of Calanus pacificus to seasonal changes in phytoplankton availability in Puget Sound, Washington. Limnol. Oceangr., 30: 382-396
    Runge, J.A. (1985) Egg production of Calanus finmarchicus in the sea off Nova Scotia. Arch. HygroBiol. Beih. Ergebn. Limnol. 21: 33-44.
    Runge, J.A. (1988) Should we expect a relationship between primary production and fisheries? The role of copepod dynamics as a filter of trophic variability. Hydrobiologia 167/168: 61-71.
    Sautour, B; Artigas, F; Herbland, A; Laborde, P, 1996. Zooplankton grazing impact in the plume of dilution of the Gironde Estuary (France) prior to the spring bloom. Journal of Plankton Research, vol. 18, no. 5, pp. 835-853
    Sautour B, Artigas L F, Delmas D, Herbland A, Laborde P, 2000. Grazing impact of micro- and mesozooplankton during a spring situation in coastal waters off the Gironde estuary. J Plankt. Res., 22: 531—552
    Schnack SB (1985) Feeding by Euphausia superba and copepod species in response to varying concentrations of phytoplankton. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Heidelberg, pp 311-323.
    Shuman F R, Lorenzen C J, 1975. Quantitative degradation of chlorophyll by a marine herbivore. Limnol. Oceanogr., 20: 580-586
    Small, L.F. and Ellis, S.G. (1992) Fecal carbon production by zooplankton in Santa Monica Basin: the effects of body size and carnivorous feeding. Prog. in Ocearngr. 30: 197-222.
    Smith WO, Nelson DM (1985) Phytoplankton bloom produced by a receding ice edge in the Ross Sea: Spatial coherence with the density field. Science 227: 163-166
    
    
    Smith WO, Nelson DM (1986) Importance of ice edge phytoplankton blooms in the Southern Ocean. BioScience 36: 251-257
    Smith WO, Nelson DM (1990) Phytoplankton growth and new production in the Weddell Sea marginal ice zone in the austral spring and autumn. Limnology and Oceanography 35: 809-821
    Smith WO, Sakshaug E (1990) Polar phytoplankton. In: W.O. Smith (ed.) Polar Oceanography. Academic Press, San Diego, CA.
    Stuart V, Pillar S C, 1990. Diel grazing patterns of all ontogenetic stages of Euphausia lucens and in situ predation rates on copepods in the southern Benguela upwelling region. Mar. Ecol. Prog. Ser. 64: 227—241
    Sutton, T; Hopkins, T; Remsen, A; Burghart, S, 2001. Multisensor sampling of pelagic ecosystem variables in a coastal environment to estimate zooplankton grazing impact. Continental Shelf Research vol. 21, no. 1, pp. 69-87
    Swadling KM, Gibson JAE, Ritz DA, Nichols PD, Hughes DE (1997) Grazing of phytoplankton by copepods in eastern Antarctic coastal waters. Marine Biology 128: 39-48
    Sykes, P. F. & M. E. Huntley,1987. Acute physiological reactions of Calanus Pacificus to selected dinoflagellates: Direct observations. -Mar. Biol. 94: 19-24.
    Tiselius, P. 1988. Effects of diurnal feeding rhythms, species composition and vertical migration on the grazing impact of calanoid copepods in the Skagerrak and Kattegat. Ophella, 28: 215(230
    Tirelli V, Mayzand P (1999) Gut evacuation rates of Antarctic copepods during austral spring. Polar Biology 21: 197-200
    Uye S, 1981. Fecundity studies of the neritc calanoid copepods Acartia clausii Giesbrechi and A. steueri Smirnov: a simple empirical model of daily egg production. J Exp. Mar. Biol. Ecol., 50: 255-271
    Uye S, Yamamoto F, 1995. In situ feeding of the planktonic copepod Calanus sinicus in the Inland Sea of Japan, examined by the gut fluorescence method. Bulletin of Plankton Society of Japan, 42: 123—139
    Uye, Shin-ichi; Nagano, Naoki; Shimazu, Tetsuya, 2000. Abundance, biomass, production and trophic roles of micro- and net-zooplankton in Ise Bay, central Japan. Journal of
    
    Oceanography,vol. 56, no. 4, pp. 389-398
    Wang, R. and Conover, R. J., 1986, Dynamics of gut pigment in the copepod Temora longicornis and the determination of in situ grazing rates. Limnol. Oceanogr., 31: 867—877.
    White , J. R. and Roman, M. R.. 1992. Seasonal study of grazing by metazoan zooplankton in the mesohaline Chesapeake Bay. Mar. Ecol. Prog. Ser., 86: 251(261
    White J R, Roman M R, 1992. Egg production by the calanoid copepod Acartia tonsa in the mesohaline Chesapeake Bay: the importance of food resources and temperature. 86: 239-249
    Willason SW, Cox JL (1987) Diel feeding, laminarinase activity and phytoplankton consumption by Euphausiids. Biol. Ocearnogr. 4: 1-24Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Research 10: 221-231
    Williams, R. and Conway, D.V.P. (1988) Vertical distribution and seasonal numerical abundance of the Calanidae in oceanic waters to the south-west of the British Isles. Hydrobiologia 167/168: 259-266.
    Zhang, X., Dam, H.G., White, J.R. and Roman, M.R. (1995) Latitudinal variations in mesozooplankton grazing and metabolism in the central tropical Pacific during the U.S. JGOFS EqPac study. Deep-Sea Res. II 42: 695-714.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700