用户名: 密码: 验证码:
肝脏炎症状态对肝癌术后转移复发的影响及其预测与干预
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝癌(主要为肝细胞癌,HCC,简称肝癌)在全球恶性肿瘤死因中居第3位,在我国更高居第2位。尽管肝癌临床和基础研究均取得了长足的进步,但其总预后并无显著改善。即使根治性切除5年复发转移率仍高达60-70%;局部治疗则更高。为此,转移复发已成为进一步提高疗效的瓶颈。
     传统的研究注重癌细胞自身,对宿主及局部微环境研究较少。近年发现宿主微环境对肿瘤演进起着重要作用。目前已认识到癌转移是肿瘤细胞和宿主微环境之间相互作用的过程,后者能影响肿瘤的生物学特性并促进或抑制肿瘤细胞在靶器官的定居。随着芯片技术等高通量研究方法的涌现,大量来源于微环境、参与肿瘤器官特异性转移的分子、基因表达谱及信号通路等被发现。宿主微环境中,复发转移靶器官的微环境是影响复发转移是否发生的决定性因素之一,癌细胞只有在适合的靶器官微环境中才能生长,形成了肿瘤转移复发的“器官特异性”,百年前Paget以“种子与土壤”理论对此做了精辟的总结。在宿主因素中,许多是与炎症/免疫相关的因素,靶器官的炎症/免疫反应对患者预后有重要影响,但有双向调节的特性。如能增强不利于肿瘤转移的靶器官炎症状态或削弱有利于转移形成的状态,当可降低转移的发生。但前提是需判断靶器官处于何种炎症/免疫状态,以及何种状态可促转移或抑转移,否则干预措施将是盲目的。
     有乙型或丙型肝炎病毒感染背景的肝癌,是研究炎症与癌症关系的重要对象。肝脏有独特的免疫系统并参与局部及整体水平炎症、免疫调节。肝内不仅定居着大量的淋巴细胞,还有许多炎症相关细胞,这其中肝星状细胞在肝脏炎症反应向纤维化和癌变转化的整个过程中都起着重要做用。肝内的炎症及炎症相关细胞在生理状态下通过与循环中的淋巴细胞的相互作用,使肝内的炎症/免疫反应处于动态平衡中。而在病毒感染等病理情况下,它们会引起肝脏炎症反应的慢性迁延以及由此产生的纤维化甚至癌变。我所前期研究发现肿瘤内的炎症/免疫反应状态能影响肝癌细胞侵袭转移潜能,从而影响预后。肝癌根治性切除后余肝是术后转移复发的主要靶器官,癌旁肝组织很好的代表了残余肝,为此癌旁肝炎症状态应具有预后价值。已有研究提示癌旁肝组织的免疫状态与肝癌门静脉播散相关。但目前尚无针对癌旁炎症免疫状态的系统研究,也没有简便可靠的判断指标,从而无法给予治疗以准确的监测与指导。
     综上所述,针对肝脏炎症的治疗,当有助抑制肿瘤复发转移。根据“种子与土壤”的观点,在针对肝脏炎症的同时,还应针对肿瘤细胞,才能发挥更大作用。干扰素-α(interferon-α,IFN-α)既有治疗乙型和丙型肝炎病毒的作用,减轻炎症反应;又有抑制肿瘤细胞增殖、侵袭转移的作用;并已被证实对肝癌术后患者有预防或延迟复发的作用。但干扰素治疗又有明显的不足:一方面患者常需大剂量使用,易引起明显的副作用,使患者的依从性降低;另一方面,IFN-α在诱导细胞凋亡的同时,也能促进细胞存活;对于肾癌、膀胱癌、非小细胞肺癌等恶性肿瘤等更存在针对IFN-α的耐药性,这种耐药性可能与其诱导环氧化酶2(COX-2)表达上调有关。通过联合使用中药姜黄素或COX-2抑制剂(如塞来考昔)等,能逆转IFN-α上调的COX-2表达,提高其疗效。IFN-α对肝癌也存在耐药性,仅对部分术后肝癌患者有效。因此有必要寻找减少干扰素用量,同时能提高其疗效的方法。COX-2抑制剂塞来考昔等虽可选用,但有心血管反应等副作用,因此其临床使用受到限制。中药制剂通常作用温和、副作用较小,其中氧化苦参碱(苦参素,oxymatrine)是临床常用的清热解毒药,已被用于抗乙肝的治疗,能抑制病毒复制,效果与IFN-α相似;又有调节免疫、抗肝纤维化等作用、抗肿瘤等作用。体外实验发现其能抑制肝痛细胞的增殖、促进凋亡。为此氧化苦参碱也具有调节炎症反应和抗肿瘤细胞的双重作用,故小剂量IFN-α联合氧化苦参碱可能有较好的临床效果。
     COX-2表达的上调可能是进一步提高干扰素对肝癌疗效的瓶颈,但尚无相关研究。研究提示,在慢性肝病患者中COX-2可调节炎症局部T淋巴细胞和巨噬细胞的浸润;促进慢性肝炎向肝纤维化/肝硬化的转变;COX-2更是慢性肝炎反应向肝癌转变的重要参与者和调控者,癌变过程中HBV基因组向宿主肝细胞内的整合需要COX-2的参与;选择性的抑制COX-2则能抑制肿瘤的进展并有一定的预防疗效。但COX-2对于肿瘤和炎症反应来说是一把双刃剑,既能促进肿瘤生长、加剧慢性炎症反应,又能抑制肿瘤生长,抑制慢性炎症反应。目前尚无癌内COX-2与肝癌预后的研究。所以必须首先明确COX-2与肝癌侵袭转移及预后的关系,才能以此为基础研究其在肝癌干扰素治疗中的作用。
     本文目的是:阐明肝脏炎症与肝癌转移的关系,探索小剂量IFN-α为基础的干预措施;明确COX-2与肝癌转移、预后以及小剂量IFN-α疗效的关系,以提高IFN-α疗效。关于判断肝脏炎症反应状态,本文从两方面入手:一是以临床易行的外周血中与肝脏炎症密切相关的γ-谷氨酰转肽酶(GGT)和谷氨酸氨基转移酶(ALT)为对象;二是以有助说明机理的癌旁肝组织中重要的炎症相关细胞为对象。方法上用组织微阵列免疫组化技术和荧光定量PCR技术,原位、在体探索活化肝星状细胞、肥大细胞、Foxp3+调节性T细胞和巨噬细胞等的分布、数目及相关基因表达与肿瘤转移的关系。关于干预,本文进行了以小剂量IFN-α为基础的干预研究。
     第一部分外周血γ-谷氨酰转肽酶、谷氨酸氨基转移酶与肝癌患者术后预后
     目的:寻找临床可用、简便易行的反映肝脏炎症和肝癌预后的预测指标。
     方法:随机选取了2002年1月—2006年12月,219例在复旦大学附属中山医院行根治性手术切除的肝细胞癌患者。除肝癌外,所有患者术前无其他影响GGT和ALT水平的疾病,肝功能Child-Pugh分级均为A级,均在术前两天采集外周静脉血检测肝功能。GGT或ALT分别分为高低两组(GGT的分界值为60IU/L,ALT的分界值为80IU/L),比较高低GGT或ALT组患者的术后生存时间(OS)和至复发时间(TTR)的差异。还计算了GGT与ALT的比值(GGT/ALT),并将其按最佳分界值(恰为其平均值)分为高低两组,同样比较了两组间OS和TTR的差异。
     结果:外周血GGT与ALT之间具有显著的线性正相关(r=0.411,P<0.001),但当将GGT和ALT都分为高低两组后,多数患者的GGT处于高水平(n=110)而ALT处于低水平(n=185)。GGT越高,患者肿瘤越大,BCLC分期越晚,越有可能发生血管侵犯。而ALT则与肿瘤临床病理特征无明显相关性。而GGT/ALT表现出与肿瘤病理特征更为紧密的联系,其高低与肿瘤大小、有无包膜、有无血管侵犯、BCLC分期都显著相关。生存分析发现,GGT仅与OS具有独立的相关性(P=0.002),ALT与TTR和OS都无相关性;而GGT/ALT与TTR和OS均独立负相关(P值分别为0.002和小于0.001)。重要的是GGT/ALT越高者越容易发生术后早期肝内复发(P<0.05)和复发相关死亡(P<0.01),而与术后晚期复发及非复发相关死亡的发生无明显相关性。将患者按术前血清甲胎蛋白(AFP)高低分为两组后,GGT/ALT在这两组病人中,仍具有一定的预后预测能力,通过受试者工作曲线(ROC)分析,发现GGT/ALT预测预后的能力高于AFP。
     结论:以外周血GGT和ALT联合分析(GGT/ALT)为指标判断肝脏炎症反应状态能较好地预测肝癌患者的术后预后。鉴于GGT和GGT/ALT与肿瘤临床病理特征紧密相关,GGT/ALT也与早期复发相关,为此这些指标不仅可反映肝脏炎症状态,也能反映患者肿瘤负荷(如大小,有无播散等)。提示肝脏炎症反应与HCC的复发转移相关,以GGT或GGT/ALT为指标,有助筛选术后复发高危患者并给予干预,有助监测治疗后肿瘤负荷和肝脏炎症的动态变化,并指导治疗的调整。
     第二部分癌周炎症(相关)细胞与肝癌患者术后预后
     目的:研究有助反映肝脏炎症和肝癌预后的癌旁肝组织中重要相关细胞,作为术后更确切的预测指标。
     方法:随机选取2002年2月—2005年11月,130例(队列A)和2002年1月—2006年12月,207例(队列B)两组在复旦大学附属中山医院行根治性手术切除的肝细胞癌患者。队列A:首先通过组织微阵列,利用免疫组化染色和细胞数目绝对定量,原位、在体地评价了癌旁微环境中αSMA+活化的肝星状细胞(aHSC)的数目、分布、功能状态与术后肿瘤复发转移及肿瘤侵袭能力指标之间的联系;然后利用荧光定量RT-PCR,检测这130例患者癌旁冰冻标本中主要由aHSC表达的功能基因包括粘蛋白-C(TNC)、骨连接素(SPARC)和纤维母细胞活化蛋白(FAP)的表达量,以及上述功能基因与肝癌患者术后预后的关系。队列B:利用组织芯片、免疫组织化学技术,绝对计数癌旁tryptase+肥大细胞(MC)的数目、分布、功能状态与术后肿瘤复发转移及肿瘤侵袭能力指标之间的联系。在队列A和队列B中,通过免疫组织化学和细胞绝对计数方法,研究了癌旁Foxp3+调节性T细胞(Treg)、CD68+巨噬细胞(MΦ)等炎症免疫相关细胞的数目、分布和功能状态与肝癌患者预后的关系,以及aHSC、MC与Treg、MΦ等在数量和功能上的关系。
     结果:(1)癌旁Treg和MΦ的数量与aHSC数量成正相关。(2)aHSC功能基因FAP、SPARC和TNC的表达水平之间存在显著的正相关,而且它们的表达水平都与aHSC数量正相关(r分别为0.903、0.634和0.887,P<0.001);与正常肝组织相比,癌旁肝组织的上述功能基因的表达量更高。(3)癌旁aHSC数量(r=0.176,P=0.04)与功能基因(FAP)(r=0.204,P=0.02)表达水平与外周血GGT/ALT水平正相关;癌旁aHSC数量、FAP和SPRAC的表达量都与外周血GGT含量正相关(r分别为0.222、0.287和0.174,P分别为0.011、0.001和0.047)。(4)癌旁aHSC在数量和功能基因的表达量上,都与肝癌恶性临床病理特征正相关。(5)癌旁aHSC的数量与功能基因的表达高低都与术后生存和复发相关,即数量高或功能基因表达高者术后生存时间短,更易复发;同样癌旁Treg和MΦ也是患者预后的独立预测指标。(6)癌旁aHSC的数量与功能基因表达量、Treg及MΦ数量联合后,具有更好的预测能力。(7)癌旁aHSC的数量与功能基因表达高者更易发生早期复发,而对晚期复发无显著影响。(8)癌旁MC与癌旁Treg在数量上存在显著的正相关性(r=0.353,P<0.001)。(9)MC数量与外周血GGT/ALT含量正相关(r=0.146,P=0.036)。(10)MC单独使用时,仅能独立地预测术后复发,而与总生存时间无关;在联合Treg分析后,其预后价值显著提高,癌旁MC和Treg同时高的患者预后显著差于MC和Treg都低者。而且MC数量的高低与早期复发相关,而与晚期复发无关。(11)MC的数量与肿瘤临床病理特征相关,MC越多,肿瘤越大,越有可能没有完整的包膜。
     结论:(1)肝癌癌旁微环境aHSC在细胞水平和基因水平均可作为患者术后复发转移和总生存时间的预测指标。癌旁aHSC能通过表达功能基因如FAP、SPARC等,加剧肝脏炎症反应,诱导Treg和MΦ在癌旁肝组织聚集,形成有利于播散肿瘤细胞定居的炎症免疫环境,增加播散肿瘤细胞侵袭转移活性,更易形成早期肝内复发。当aHSC的数量与其功能基因或其他炎症/免疫细胞联合后,具有更好的预测价值,提示活化的aHSC主要通过调节肝脏炎症/免疫反应来加速肝癌术后复发转移。以aHSC为靶点的抗炎/免疫调节治疗具有潜在预防复发转移、改善预后的价值。(2)癌旁MC也可通过调节炎症免疫反应,形成有利于肝癌复发转移的土壤,促进播散肿瘤细胞的侵袭转移。(3)癌旁aHSC在细胞数量和功能基因的表达水平上与外周血GGT和/或GGT/ALT水平成正相关;癌旁MC数量与外周血GGT/ALT水平正相关。提示以癌旁炎症相关细胞(活化的肝星状细胞、肥大细胞等)来判断肝癌患者的肝脏炎症反应,和以外周血肝酶(GGT和GGT/ALT)判断患者肝脏炎症状态,其预测结论一致,从而反证简便易行的GGT和GGT/ALT的预测价值。我们认为,通过两方面的综合分析更能客观地反映肝脏炎症反应的状态。
     第三部分环氧合酶-2与肝癌侵袭转移潜能和预后的关系
     目的:验证环氧合酶-2(cyclooxygenase-2,COX-2)与肝癌细胞侵袭转移潜能和肝癌预后的关系,为进一步研究小剂量IFN-α的疗效,及其疗效与COX-2的关系打下基础。
     方法:以不同侵袭转移潜能的七种肝癌细胞株和随机选取的根治性肝癌切除术后患者为研究对象(排除晚期、肝外复发转移),通过Western-blot和荧光定量PCR技术,分别测定肿瘤细胞和肿瘤组织内COX-2的表达,分析COX-2表达与肿瘤细胞侵袭转移潜能和肿瘤患者预后的关系。
     结果:(1)随着肿瘤细胞侵袭转移潜能的降低,其COX-2表达量同步减少。(2)肝癌组织COX-2 mRNA表达高低与主要临床病理特征无显著联系。(3)肿瘤内COX-2表达越高,患者复发和死亡的危险越高,P值分别为0.025和小于0.001,危险度分别为1.916(1.086-3.380)和3.522(1.985-6.248)。
     结论:COX-2高表达促进肝癌侵袭转移潜能,加速早期肝内复发,使预后恶化。如干扰素能抑制肝癌表达COX-2,则能抑制其侵袭转移,降低复发;反之,则增强肝癌侵袭转移,造成不良预后。
     第四部分小剂量干扰素单用或联合氧化苦参碱对MHCC97-H细胞侵袭转移潜能的影响及可能的机制
     目的:根据“种子与土壤”的观点,理想的干预应既可调节肝脏炎症又能抑制肿瘤。IFN-α虽被证实可预防术后复发转移并有抗炎免疫调节作用,但较大剂量使用其副作用明显。本研究拟通过体外试验,探索小剂量干扰素作为基础干预的可能性,以及提高其疗效的途径。
     方法:研究小剂量IFN-α对高转移潜能人肝癌细胞MHCC97-H的作用,并研究氧化苦参碱与之合用后是否有更强的抑瘤作用。根据文献,干扰素小剂量标准为1×10~3U/ml,我们研究该剂量干扰素对MHCC97-H细胞体外增殖、凋亡、侵袭转移能力的影响。同时,研究了小剂量干扰素与氧化苦参碱联合使用后对MHCC97-H的作用,以明确氧化苦参碱与干扰素之间是否具有协同的抗肿瘤作用及可能机制。
     结果:(1)小剂量干扰素体外对MHCC97-H细胞的增殖抑制能力不显著,且不随时间增加;不能显著的诱导MHCC97-H细胞凋亡,且不随时间延长而增加;不能明显抑制MHCC97-H细胞体外侵袭转移潜能。(2)氧化苦参碱对MHCC97-H细胞具有一定的增殖抑制能力,且随浓度增加而增加,其IC_(50)=44.5mg/ml,为了避免选择较高增殖抑制能力的氧化苦参碱浓度而掩盖了后面判断联合用药的效果,我们选择具有较小增殖抑制能力的氧化苦参碱浓度=10mg/ml作为进一步实验的浓度。(3)联合用药后,对MHCC97-H细胞的增殖抑制能力显著增强,且随作用时间延长而增加;并能显著地诱导MHCC97-H细胞凋亡,同样随时间延长而增强;亦能有效地降低MHCC97-H细胞的侵袭转移能力。(4)机制:小剂量干扰素具有上调肿瘤细胞COX-2表达的作用,而氧化苦参碱则能抑制COX-2表达,两者联合用药后,小剂量干扰素所上调的COX-2表达亦被有效抑制。
     结论:小剂量干扰素体外对MHCC97-H细胞没有明显抑制增殖、促进凋亡和降低侵袭力的作用,这与其上调COX-2表达有关;而合用氧化苦参碱后,其作用增强,且伴COX-2表达的显著下调。说明氧化苦参碱通过逆转由小剂量干扰素上调的COX-2表达而产生协同抗肿瘤作用。提示两者的联合可能降低干扰素的耐药性,减少干扰素使用剂量。
     第五部分体内小剂量干扰素单用或联合氧化苦参碱对肝脏炎症状态的影响及对原位MHCC97-H种植瘤的作用
     目的:通过高转移人肝癌裸鼠模型进一步在体内验证小剂量干扰素合用氧化苦参碱对肿瘤和肝脏炎症的作用。
     方法:采用高转移人肝癌细胞系MHCC97-H裸鼠原位移植模型。干扰素用量为1×10~6U/ml,0.1ml/d皮下注射;氧化苦参碱为60mg/kg·d,腹腔注射。裸鼠分4组:空白组(n=12)皮下及腹腔注射生理盐水62天;干扰素组(n=8)腹腔注射生理盐水,皮下干扰素,连续62天;氧化苦参碱组(n=8)皮下注射生理盐水,腹腔氧化苦参碱,连续62天;联合治疗组(n=6)皮下干扰素加腹腔氧化苦参碱62天。动物若在治疗期间死亡(对照组3只,干扰素组2只,氧化苦参碱组2只,联合治疗组无死亡)视为观察终点,用于比较生存期;动物存活至治疗结束者,处死前取外周血检验肝功能,处死后取组织标本行相应实验。另设同样四组,每组12只裸鼠,用于观察生存期,故最后观察生存期的各组裸鼠数量分别为:空白组15只,干扰素组14只,氧化苦参碱组14,联合治疗组12只,最长生存时间为97天。
     结果:(1)小剂量干扰素组裸鼠体重有下降趋势,但差别不显著;氧化苦参碱则有增加裸鼠体重的趋势;两者合用后,裸鼠体重明显增加。(2)就种植肿瘤的体积而言【与对照组比较(3.056±0.649cm~3)】,小剂量干扰素组肿瘤最大(6.410±1.854cm~3,P=0.055),而联合用药组肿瘤最小(0.382±0.269cm~3,P=0.007)。(3)与对照组相比,仅联合治疗组的肺转移率显著下降(P=0.011);但计算肺转移灶个数后,发现氧化苦参碱组(P=0.02)和联合治疗组(P=0.008)的肺转移个数均显著少于对照组,而小剂量干扰素组则显著增加(P=0.018)。(4)联合治疗组的生存时间显著长于其他各组,而小剂量干扰素组未能提高生存时间,氧化苦参碱组与小剂量干扰素组相比无显著差异。(5)小剂量干扰素作用后,外周血GGT和GGT/ALT均显著提高,而联合治疗组则显著降低。(6)各组外周血GGT及GGT/ALT均与其肿瘤大小正相关。(7)癌旁和癌内活化的HSC在小剂量干扰素组数量最多,联合治疗组数量最少。(8)癌内COX-2的表达在对照组和小剂量干扰素组较高,而在氧化苦参碱组和联合用药组则明显降低。
     结论:(1)小剂量干扰素不能抑制移植瘤生长,反增加肺转移灶数目,未能延长生存期。合用氧化苦参碱能显著抑制移植瘤的生长和肺转移,延长生存期。(2)可能的机制:A、抑制肝脏炎症反应,联合用药后外周血GGT、GGT/ALT显著降低,而小剂量干扰素则使之提高;且GGT、GGT/ALT在各组均与肿瘤大小正相关,说明GGT/ALT或GGT能反映体内肿瘤负荷。联合治疗组癌旁及癌内的aHSC数量减少,提示肝脏炎症反应程度降低。B、抑制肿瘤侵袭转移能力:联合用药后肺转移率和转移灶个数都显著降低。可能因氧化苦参碱能逆转小剂量干扰素诱导的肿瘤细胞COX-2表达,从而抑制肿瘤侵袭转移能力,降低肺转移率。而COX-2通路又是炎症反应中的重要通路之一,故两药联合在抑制肝脏炎症反应方面同样具有协同作用。为此,体内研究证明,联合用药通过苦参碱逆转由小剂量干扰素诱导的COX-2,从而更有效地抑制炎症反应并抑制肿瘤。
     结论
     1.肝脏炎症状态对于HCC患者具有重要的预后价值。通过研究外周血GGT和GGT/ALT,以及癌旁炎症相关细胞的数量和功能状态,均能反映肝脏的炎症反应状态,并预测患者的预后,两者结论一致。前者简便易行,还可连续监测治疗并指导其调整。后者有助说明机理,并为治疗提供潜在的靶点。
     2.小剂量干扰素的抗瘤和抑制肝脏炎症的作用不明显。小剂量干扰素与氧化苦参碱合用则显著抑制肝癌的生长和侵袭转移,与氧化苦参碱能逆转由小剂量干扰素上调的COX-2表达有关。
     3.联合用药更能显著地降低外周血GGT,GGT/ATL水平和癌旁活化HSC数量,从而改善肝脏的炎症状态,形成不利肿瘤生长之环境,抑制转移复发形成。
     创新点
     1.首次发现和报道了肝癌患者外周血GGT/ALT与术后复发转移的密切关系,该比例可以作为连接肝脏炎症反应与肿瘤负荷的桥梁,作为筛选高危患者、及时进行术后干预的指标,也可作为术后炎症免疫调节治疗的监测指标。(Journal ofGastroenterology 2009)
     2.首次发现和报道了肝癌癌旁微环境中活化肝星状细胞(Am J Clin Pathol2009)和肥大细胞(Cancer Science 2009)与术后复发转移和生存时间的密切联系,同样有助于筛选高危复发患者,并提供了术后干预治疗的靶点。
     3.通过体内外实验,首次发现氧化苦参碱与小剂量干扰素合用,可抑制肝脏炎症反应并抑制肝癌的生长与侵袭转移,其协同作用与氧化苦参碱能逆转小剂量干扰素所诱导的COX-2表达有关。而小剂量干扰素既不能抑制肝癌生长、侵袭和转移,又不能调节肝脏炎症反应。
     潜在应用价值
     1.外周血GGT/ALT比例及癌旁以活化肝星状细胞和肥大细胞为代表的炎症(相关)细胞都能较好地反映肝癌患者肝脏炎症状态,并与术后复发转移和生存密切相关,可用于临床筛选高危复发患者、指导和监测术后治疗。
     2.不能有效的改善肝脏炎症状态是小剂量干扰素抗肿瘤、抑制复发转移疗效局限的重要原因之一。小剂量干扰素联合氧化苦参碱可作为肝癌术后又一辅助治疗的方案。
Primary liver cancer is one of the most common malignant tumors,and is currently the third and second leading cause of tumor-related death worldwide and in China,respectively.Hepatocellular carcinoma(HCC) undoubtedly contributes to the majority primary liver cancer cases.Despite tremendous achievements being carried out in HCC clinically and basically during past decades,the overall prognosis of HCC remains dismal with a 5-year survival at about 5%.Even after curative resections,the 5-year recurrence/metastasis rates remain as high as 60%-70%.Therefore,recurrence or metastasis has emerged as the main obstacle to get better curative effects.
     The vast majority of previous studies focused solely on malignant cells themselves,regarding tumors just as masses of autonomous cells and aiming at identifying the molecular and genetic changes associated with this malignant transformation.However,the potential of a tumour cell to metastasize depends on its interactions with the homeostatic factors that promote tumour cell growth,survival, angiogenesis,invasion and arrest in distant organs.Given the "site-specific metastases" characteristic of tumor metastases,Stephen Paget had developed the theory of "seed and soil" in 1898,and recently,with the advent of high throughput analyses like genomic,protemics and tissue microarray,numerous growth factors, chemokines,guidance molecules,signaling pathways and,more importantly,new genes in host microenvironment are discovered and provide a new identity for organ-specific metastasis.Inflammatory/immune related elements contribute a great deal to the establishment of host microenvironment and modulate the progression of cancers.For instance,chronic inflammation is capable of generating a potentially "vicious self-sustaining loop(s)" which are resulted in the pro-cancer microenvironment favorable for survival of tumor cells and their growth.Therefore. the inflammatory responses of the target organs may be also of great significance regarding to the prognosis of cancer patients.However,inflammation can either promote or inhibit cancer metastasis/ recurrence.If we can modulate this double-edged sword of inflamrnation rigorously in order to impress the favorablc host inflammatory microenvironment or irritate unfavorable one for tumor metastasis, tumor recurrence may be under control.To achieve this goal,it is indispensable for us to get a panorama about the status of host inflammatory response,and to understand the accurate relation between one certain inflammation status and tumor recurrence/metastasis;otherwise,any intervention targeted at inflammation response will be aimless.
     The liver has its own unique immune system,acting as a key immune regulator locally and systemically.In addition,considering the background of hepatitis B and/ or C virus infection,the involvement of inflammation in HCC is of great significance. Among the abundant resident lymphocytes and inflammatory-related cells,hepatic stellate cell(HSC) is significantly involved in the progression of chronic hepatitis to hepatic fibrosis or even liver carcinogenesis.All these inflammatory or inflammatory-related cells are critical for the maintenance of immune homeostasis via their interaction with the circulating lymphocytes.However,in the context of infections,these cells will protract the inflammation reaction and inevitably result in fibrosis or carcinogenesis.For instance,our previous study has proved that the intratumoral inflammation/ immune status could influence the invasion and metastastic capability of hepatoma cells and was related to the prognosis of HCC. More importantly,the recurrence/metastasis of HCC after curative resections mostly occur within the residual liver tissues;hence liver itself is the major target organ for HCC recurrence/metastasis.It is reasonable for us to suggest that the inflammation response in the peritumoral liver tissue is likewise indispensable for HCC recurrence/ metastasis.Unfortunately,no systemic evaluations of the peritumoral inflammation response and its relevance to HCC recurrence have been carried out yet.As a result. there is no available information for an accurate monitoring and guiding purpose for postoperative therapies.
     Hepatic inflammation-oriented interventions should be helpful in suppressing HCC recurrence/metastasis.According to the "seed and soil" theory,therapies should be targeted not only against the cancer cells themselves,but also against the homeostatic inflammatory factors,lnterferon-α(IFN-α) can both ease the inflammation responses of HCV and/or HBV infection,and inhibit the proliferation, invasion and metastasis of tumor cells in vitro.Clinically.IFN-αhas been proved to be able to postpone the recurrence of HCC after curative resection.Therefore,IFN-αfits well with above-mentioned criteria.However,these contributions are based upon the long-term application with a high-dose of IFN-αwhich is near the toxic dose and related to visible by-effects.Moreover,the resistances to IFN-αin renal cancer, gladder carcinoma and so on have been detected.Cycloxygenase-2(COX-2) has been proved to be the key in IFN-αresistance,and agents such as curcumine and celecoxib can suppress COX-2 expression and improve the effect of IFN-α.With respect to HCC,there was also resistance to IFN-α.So,it is urgently demanded to find a way to decrease the dose of IFN-αmeanwhile improve its effect.Although chemosynthesis agents such as celecoxib are available candidates,their clinical utility is restricted by their side effects including cardiovascular complaints.The traditional Chinese medicine,however,is another choice,for its gentle effects with little side effects. Oxymatrine is now widely employed in the treatment for HBV with an effect similar to that of IFN-α.Besides,oxymatrine can modulate immune activity,and inhibit hepatic fibrosis and tumor progression.In vitro,oxymatrine were able to inhibit proliferation and induce apoptosis of liver cancer cells.Hence,oxymatrine,similar to IFN-α,can both modulate hepatic inflammation and repress tumor cells.We suggest that IFN-αin combination with oxymatrine may display better anticancer effects.
     COX-2 is heavily involved in IFN-αresistance.However,its role in HCC IFN-αtreatment is still unknown.In chronic liver diseases,COX-2 is unregulated to induce local infiltration of T lymphocytes and macrophages.Additionally,COX-2 is actively involved in HCC initiation via facilitating the integrating of HBx gene into host hepatocytes.Using COX-2 inhibitors can usually block HCC progression and improve the prognosis.However,the roles of COX-2 in liver inflammation,fibrosis and carcinogenesis are paradoxical.Therefore,a better understand of the role of COX-2 in HCC IFN-αtreatments should been based upon a thorough understanding of the relationship between COX-2 and HCC invasion,metastasis and prognosis.
     The aim of this study is(a) illuminate the correlation between hepatic inflammation and HCC metastasis;(b) estimate the effect of low-dose IFN-αin HCC treatments;(c) explore the role of COX-2 in IFN-αtreatments based upon identification the involvement of COX-2 in HCC metastasis and prognosis.The hepatic inflammation status is evaluated both with periphery parameters includingγ-glutamyltransferase(GGT),alanine aminotransferase(ALT) and their ratio (GGT/ALT),and with peritumoral inflammation(related) cells including activated hepatic stellate cell(aHSC) and mast cell(MC) by tissue microarray(TMA) and quantitive RT-PCR methods.With respect to the interventions,low-dose IFN-αis used both in vitro and in vivo to determine its influence over HCC.In addition. oxymatrine is utilized in combination with low-dose IFN-αto exam whether this combination can improve IFN-αeffect or not,and to evaluate its effect over tumor cells and hepatic inflammation.
     PartⅠ.The relevance of peripheral GGT and ALT to HCC prognosis
     Purpose:To investigate the involvement of hepatic inflammation in HCC reucrrecne/metatstasis by evaluating peripheral GGT,ALT and GGT/ALT.
     Methods:In this study we enrolled one independent and random cohort of 219 HCC patients underwent curative resection in Zhongshan Hospital,Fudan University from Jan 2002 to Dec 2006.All the patients with other diseases which can influence the level of GGT and ALT were excluded.The live reserve functions of all patients are in Child-Pugh A stage.The serum samples were taken two days before operations and the normal rang of GGT and ALT were 11-50 IU/L and<75 IU/L,respectively. According to the documents,60 and 80 IU/L were used as the cutoff points for GGT and ALT,respectively.The overall survival(OS) and time to recurrence(TTR) were compared between high and low subgroups of GGT and ALT.Moreover,we calculated the ratio of GGT to ALT(GGT/ALT),and divided GGT/ALT into high and low subgroups by a optimal cutoff point which was created by X-tile software. The prognostic value of GGT/ALT was examined as well.
     Results:GGT and ALT were related to each other in a linear fashion(r=0.411,P<0.001).However.as dichotomized variables,GGT and ALT were distributed unequally(P<0.001).Most patients had high levels of GGT(n=110) while low levels of ALT(n=185).ALT displayed no relation to recurrence or survival,while GGT was independently associated with survival(P=0.002).The GGT/ALT ratio could predict survival precisely either in a continuous or dichotomized fashion(P<0.001 and=0.001.respectively),and also related to recurrence when dichotomized(P =0.002).Additionally,high GGT/ALT ratio was associated with high early-recurrence rates,more recurrence-related death and various aggressive tumor characteristics such as lager tumor size,vascular invasion,poor encapsulation and advanced BCLC stage.In further stratified analyses,this ratio could discriminate the outcomes of patients with high- or low-α-fetoprotein level.
     Conclusion:The hepatic inflammation status which was evaluated by GGT/ALT, could predicate HCC prognosis perfectly.Additionally,GGT/ALT was also related to the tumor burden although it was an inflammatory indicator.Therefore,we suggested that the hepatic inflammatory status was correlated with HCC recurrence/metastasis, and GGT/ALT was a good parameter for us to select patients with high recurrence risks.Moreover,since GGT/ALT was conveniently available even for out-patients,it should be possible for us to judge the fluctuation of tumor burden and hepatic inflammation status,and further to modify the strategy of certain therapies.
     PartⅡ.The relevance of peritumoral inflammatory(related) cells to HCC prognosis
     Purpose:To invest the involvement of peritumoral inflammatory(related) cells in HCC recurrence/metastasis,and their relation to hepatic inflammation status.
     Methods & Results:Two independent and random cohorts of HCC patients underwent curative resection in Zhongshan Hospital,Fudan University,were enrolled as study populations:cohort A,from Fed 2002 to Nov 2005,n=130;cohort B,from Jan 2002 to Dec 2006,n=207.The messenger RNA(mRNA) levels of the functional genes in aHSC(ie,FAP,SPARC,and TNC),quantitated by real-time quantitative polymerase chain reaction,and the density of peritumoral Foxp3+T-regulatory cells (Tregs) and CD68+ macrophages(Mφ),assessed immunohistochemically in tissue microarray sections,were positively correlated with the density of peritumoral aHSC. The density(P=0.007 for recurrence-free survival[RFS]and P=0.021 for overall survival[OS]) and functional genes(FAP,P=0.001 for RFS;SPARC,P=0.007 for RFS and P=0.021 for OS) of peritumoral aHSC independently contributed to high recurrence or death rates,as did peritumoral Tregs or Mφ.In addition,both density and FAP expression of aHSC were positively related to peripheral GGT/ALT level(r =0.176 and 0.204,respectively;P=0.04 and 0.02,respectively).Moreover. peritumoral aHSC were related to more early recurrences.It is important to note that the density of peritumoral aHSC,in combination with FAP and SPACR mRNA or density of Tregs and Mφ,might predict prognoses more effectively.In the context of cohort B,we found density of MC was positively associated with that of peritumoral Treg(r=0.353,P<0.001) and peripheral GGT/ATL(r=0.146,P=0.036).MC can only predicate recurrence independently;however,when combined with Treg,MC was independently associated with both OS and recurrence.Similar to aHSC.high MC related to more early intrahepatic recurrence rather than later ones.Elevated peritumoral MC density was also related to larger tumor size and poor encapsulations.
     Conlusion:(a) Peritumoral aHSC was associated with HCC prognosis both in cellular and in gene level,aHSC can aggravate hepatic inflammation via its functional genes including FAP and SPARC,and through its role accumulating Treg and Mφ. Therefore,aHSC should be a promising therapeutic target to modulate hepatic inflammation response and prevent recurrence/metastasis.(b) Peritumoral MC can facilitate HCC recurrence/metastasis on a similar fashion to aHSC.(c) The positive relationships between GGT/ALT and aHSC and MC suggested that both peritumoral pathological parameters and peripheral biochemistry parameters can reflect the hepatic inflammation properly.These two methods were related to each other.
     PartⅢ.The relevance of cyclooxygenase-2 to the invasion and metastasis of hepatoma cells and HCC prognosis
     Purpose:To estimate the involvement of COX-2 in HCC IFN-αtreatment,this study is carried out to evaluate the relationships between COX-2 and the invasion and prognosis of HCC.
     Method:Seven hepatoma cell lines with changed metastatic potency were used, in addition to 80 randomly selected HCC patients without later or extrahepatic metastasis.COX-2 expressions were assessed in cell lines with Western-blot,and in tumor samples with quantitive RT-PCR.
     Results:(a) Cellular COX-2 expressions were simultaneously decreased with the decrease in matastastic power;(b) The intratumoral COX-2 expression was independent of any clinicopathologic parameters;(c) The higher COX-2 expression was.the poorer prognosis would be.The hazard ratios were 1.916 for recurrence and 3.522 for death,respectively(P=0.025 and<0.001,respectively).
     Conclusion:High COX-2 expression may promote the metastasis of hepatoma cells and facilitate early intrahepatic recurrence.If intervention can inhibit COX-2 expression,its therapeutic effect should be improved.
     PartⅣ.The influence over the metastatic power of MHCC97-H from low-dose IFN-αalone and in combination with oxymatrine in vitro
     Purpose:To evaluate the therapeutic role of low-dose IFN-αalone and in combination with oxymatrine,and the involvement of COX-2 in IFN-αeffect.
     Methods:According to documents.1×10~3IU/ml was defined as low-dose IFN-α, and MHCC97-H cell line was selected for in vitro study.There were four interventions:control group with no intervention,low-dose IFN-αonly group, oxymatrine only group and low-dose IFN-α+oxymatrine group.We compared the proliferation,apoptosis and metastasis power of MHCC97-H cells under different intervention.In addition,COX-2 expression was evaluated in each group.
     Results:(a) Low-dose 1FN-αcould not inhibit the proliferation and metastasis of MHCC97-H,even the intervention was prolonged.Also,it was invalid in inducing cell apoptosis.(b) Oxymatrine could inhibit cell proliferation to some extent,with an IC_(50)=44.5mg/ml,and 10mg/ml was chosen for further intervention in order to not mask the effect of combination.(c) In a time-dependent fashion,the combination could inhibit cell proliferation and metastasis power significantly,and also increase cell apoptosis significantly.(d) Low-dose IFN-αcould increase the COX-2 expression in a time-dependent fashion.However,when oxymatrine was added,the COX-2 expression shrunk significantly.
     Conclusion:The in vitro anti-tumor capability of low-dose IFN-αis demolished for a COX-2 inducing ability.Oxymatrine can retrieve and improve the anti-tumor power of low-dose IFN-αvia its role in reversing COX-2 expression.We proposed that low-dose IFN-αin combination with oxymatrine could result in synergetic anti-tumor effects.
     PartⅤ.In vivo impact of low-dose IFN-αalone and in combination with oxymatrine on the hepatic inflammation status and the growth and progression of orthotopic implantated MHCC97-H tumors
     Purpose:To validate the anti-tumor effect and inflammation modulation power of low-dose lFN-αin combination with oxymatrine in vivo.
     Methods:IFN-αwas used at 1×10~6IU/ml,0.1ml/d(s.c.) and oxymatrine at 60mg/kg·d(i.p.).Male BALB/c nu/nu mice(20g) were divided into four subgroups: control group(Ⅰ,n=12),low-dose IFN-αgroup(Ⅱ,n=8),oxymatrine group(Ⅲ,n= 8) and combination group(Ⅳ,n=6).All interventions were given for 62 days unless the mice were dead before being sacrificed.There were 3,2 and 2 mice dead before day 62 in control,low-dose IFN-αand oxymatrine group,respectively.Another four subgroups(n=12 in each subgroup) were simultaneously established to compare the life span.So.there were respectively 15,14,14 and 12 mice in control,low-dose IFN-α,oxymatrine and the combination group for life span comparison.
     Results:(a) In groupⅡ.the mice weights were lowest and the tumor volumes were largest;while the thorough opposite occurred in groupⅣ.(b) Among four groups,the lung metastasis incidence of groupⅣwas the lowest(P=0.011). Low-dose IFN-αcan increase the number of lung metastasis significantly(P=0.018). (c) Compared to groupⅠ,the life span of groupⅣwas significantly improved;the life span of groupsⅡandⅢwere similar to each other.(d) The GGT or GGT/ALT,which was positively related to the volume of tumors in each group,was significantly elevated in groupⅡ,while suppressed in groupⅣ.(e) Intratumoral and peritumoral aHSC density was increased in groupⅡ,and decreased in groupⅣ.(f) Intratumoral COX-2 expressions in groupsⅠandⅡwere much higher than those in groupⅢandⅣ.
     Conclusion:Low-dose IFN-αcould not inhibit the orthotopic growth, progression and lung metastasis of implanted tumors in vivo.In addition,the life span of this group was not prolonged significantly.Contrarily,groupⅣdisplayed profound orthotopic tumor inhibition,lung metastasis depression and life span expansion effects.
     We suggested the combination could modulate the hepatic inflammation and directly inhibit tumor cells effectively.The former was displayed by a marked decrease in aHSC density and GGT/ALT level which was positively associated with tumor volumes.The latter was displayed by a profound decrease in lung metastasis incidence and numbers.Importantly,we proposed that the suppression of COX-2 was the key for oxymatrine to incorporate with low-dose IFN-α.
     Conclusions
     1.The hepatic inflammation status is of prognostic significance for HCC.
     Evaluations of either peripheral GGT/ALT or peritumoral inflammatory(related) cells can reflect the hepatic inflammation status and predicate prognosis perfectly. The former is convenient to practice and can be used in therapeutic effect monitoring.The latter provides us with mechanical explanations and promising therapeutic targets.
     2.Low-dose IFN-αis insufficient in inhibiting tumor cells and modulating hepatitis.
     When combined with oxymatrine,the invasion and metastatsis of tumor cells can be well handled.COX-2 decrease is the key for the cooperation of low-dose IFN-αand oxymatrine.
     3.This combination can inhibit orthotopic implanted tumors progression via modulating the hepatic inflammation status.
     The novelty of this study
     1.For the first time,we demonstrated and reported that peripheral GGT/ALT was tightly associated with HCC prognosis.This ratio was a linkage between hepatic inflammation and tumor burden.More importantly,it was applicable in screening patients with high recurrence risks and monitoring the therapeutic effect.
     2.For the first time,we demonstrated and reported that peritumoral aHSC and MC were related to the HCC prognosis.These parameters provided us with promising therapeutic targets and were also helpful in screening patients with high recurrence risks.
     3.We found that low-dose lFN-αwas insufficient in inhibiting the invasion and metastasis of tumor cells,and in modulating hepatic inflammation.On the contrary,the combination of low-dose IFN-αand oxymatrine were effective in tumor cell inhibition and hepatic inflammation modulation.COX-2 decrease was the key for the synergetic effect of this combination.
     The potential application of this project
     1.Both peripheral GGT/ALT level and peritumoral aHSC or MC can well reflect the hepatic inflammation status.These parameters with prognostic power are of clinical utility in screening high recurrence risk patients and monitoring therapies.
     2.The combination of low-dose IFN-αand oxymatrine is a novel adjuvant therapy for HCC patients after resection.
引文
1 Parkin DM,Bray F,Ferlay J,Pisani P.Global cancer statistics,2002.CA Cancer J Clin 2005;55:74-108.
    2 Stravitz RT,Heuman DM,Chand N,Sterling RK,Shiffman ML,Luketic VA,et al.Surveillance for hepatocellular carcinoma in patients with cirrhosis improves outcome.Am J Med 2008;121:119-126.
    3 Forner A,Vilana R,Ayuso C,Bianchi L,Sole M,Ayuso JR,et al.Diagnosis of hepatic nodules 20mm or smaller in cirrhosis:Prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma.Hepatology 2008;47:97-104.
    4 Itamoto T,Nakahara H,Amano H,Kohashi T,Ohdan H,Tashiro H,et al.Repeat hepatectomy for recurrent hepatocellular carcinoma.Surgery 2007;141:589-597.
    5 Llovet JM.Clinical and molecular classification of hepatocellular carcinoma.Liver Transpl 2007;13:S13-16.
    6 Llovet JM,Burroughs A,Bruix J.Hepatocellular carcinoma.Lancet 2003;362:1907-1917.
    7 Tang ZY,Ye SL,Liu YK,Qin LX,Sun HC,Ye QH,et al.A decade's studies on metastasis of hepatocellular carcinoma.J Cancer Res Clin Oncol 2004;130:187-196.
    8 Epstein RJ,Leung TW.Reversing hepatocellular carcinoma progression by using networked biological therapies.Clin Cancer Res 2007;13:11-17.
    9 樊嘉,邱双健.肿瘤微环境的研究动态与展望.中华医学杂志 2008;88:505-507.
    10 邱双健,,叶胜龙,,汤钊猷.肝脏免疫与肝痛转移复发.见:汤钊猷主编.肝癌转移复发的基础与临床.第1版.上海:上海科技教育出版社.2003:191-204.
    11 Gupta GP,Massague J.Cancer metastasis:building a framework.Cell 2006;127:679-695.
    12 Albini A,Mirisola V,Pfeffer U.Metastasis signatures:genes regulating tumor-microenvironment interactions predict metastatic behavior.Cancer Metastasis Rev 2008;27:75-83.
    13 Mueller MM,Fusenig NE.Friends or foes-bipolar effects of the tumour stroma in cancer.Nat Rev Cancer 2004;4:839-849.
    14 Prendergast GC,Jaffee EM.Cancer immunologists and cancer biologists:why we didn't talk then but need to now.Cancer Res 2007;67:3500-3504.
    15 Bussard KM,Gay CV,Mastro AM.The bone microenvironment in metastasis;what is special about bone? Cancer Metastasis Rev 2008;27:41-55.
    16 Fokas E,Engenhart-Cabillic R,Daniilidis K,Rose F,An HX.Metastasis:the seed and soil theory gains identity.Cancer Metastasis Rev 2007;26:705-715.
    17 Nguyen DX,Bos PD,Massague J.Metastasis:from dissemination to organ-specific colonization.Nat Rev Cancer 2009;9:274-284.
    18 Psaila B,Lyden D.The metastatic niche:adapting the foreign soil.Nat Rev Cancer 2009:9:285-293.
    19 Joyce JA,Pollard JW.Microenvironmental regulation of metastasis.Nat Rev Cancer 2009:9:239-252.
    20 Paget S.The distribution of secondary growths in cancer of the breast.Lancet 1889:1:571-573.
    21 Fidler IJ.Poste G.The "seed and soil" hypothesis revisited.Lancet Oncol 2008;9:808.
    22 Ben-Baruch A.Host microenvironment in breast cancer development:inflammatory cells,cytokines and chemokines in breast cancer progression:reciprocal tumor-microenvironment interactions.Breast Cancer Res 2003;5:31-36.
    23 Bunt SK,Yang L,Sinha P,Clements VK,Leips J,Ostrand-Rosenberg S.Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 2007; 67: 10019-10026.
    
    24 Schwartsburd PM. Chronic inflammation as inductor of pro-cancer microenvironment: pathogenesis of dysregulated feedback control. Cancer Metastasis Rev 2003; 22: 95-102.
    
    25 Stearman RS, Dwyer-Nield L, Grady MC, Malkinson AM, Geraci MW. A macrophage gene expression signature defines a field effect in the lung tumor microenvironment. Cancer Res 2008; 68: 34-43.
    
    26 Sharma R, Zucknick M, London R, Kacevska M, Liddle C, Clarke SJ. Systemic inflammatory response predicts prognosis in patients with advanced-stage colorectal cancer. Clin Colorectal Cancer 2008; 7: 331-337.
    
    27 Baniyash M. Chronic inflammation, immunosuppression and cancer: new insights and outlook. Semin Cancer Biol 2006; 16: 80-88.
    
    28 Bieche I, Lerebours F, Tozlu S, Espie M, Marty M, Lidereau R. Molecular profiling of inflammatory breast cancer: identification of a poor-prognosis gene expression signature. Clin Cancer Res 2004; 10:6789-6795.
    
    29 Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420: 860-867.
    
    30 Hagemann T, Balkwill F, Lawrence T. Inflammation and cancer: a double-edged sword. Cancer Cell 2007; 12:300-301.
    
    31 Talmadge JE, Donkor M, Scholar E. Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 2007; 26: 373-400.
    
    32 Yuki K, Hirohashi S, Sakamoto M, Kanai T, Shimosato Y. Growth and spread of hepatocellular carcinoma. A review of 240 consecutive autopsy cases. Cancer 1990; 66: 2174-2179.
    
    33 Iizuka N, Oka M, Yamada-Okabe H, Nishida M, Maeda Y, Mori N, et al. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet 2003; 361: 923-929.
    
    34 Tung-Ping Poon R, Fan ST, Ng IO, Lo CM, Liu CL, Wong J. Different risk factors and prognosis for early and late intrahepatic recurrence after resection of hepatocellular carcinoma. Cancer 2000; 89: 500-507.
    
    35 Zhu XD, Zhang JB, Zhuang PY, Zhu HG Zhang W, Xiong YQ, et al. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol 2008: 26: 2707-2716.
    
    36 Budhu A, Forgues M, Ye QH, Jia HL, He P. Zanetti KA. el al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 2006: 10: 99-111.
    
    37 Giannini EG, Testa R, Savarino V. Liver enzyme alteration: a guide for clinicians. CMAJ 2005: 172:367-379.
    
    38 Myers RP, Tainturier MH, Ratziu V, Piton A. Thibault V. Imbert-Bismut F. et al. Prediction of liver histological lesions with biochemical markers in patients with chronic hepatitis B. J Hepatol 2003: 39: 222-230.
    
    39 Fidler IJ. The organ microenvironment and cancer metastasis. Differentiation 2002; 70: 498-505.
    
    40 Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 2003: 3: 453-458.
    
    41 Nishiguchi S, Tamori A. Kubo S. Effect of long-term postoperative interferon therapy on intrahepatic recurrence and survival rate after resection of hepatitis C virus-related hepatocellular carcinoma.Intervirology 2005;48:71-75.
    42 Lo CM,Liu CL,Chan SC,Lam CM,Poon RT,Ng IO,et al.A randomized,controlled trial of postoperative adjuvant interferon therapy after resection of hepatocellular carcinoma.Ann Surg 2007;245:831-842.
    43 Uenishi T,Nishiguchi S,Tanaka S,Yamamoto T,Takemura S,Kubo S.Response to interferon therapy affects risk factors for postoperative recurrence of hepatitis C virus-related hepatocellular carcinoma.J Surg Oncol 2008;98:358-362.
    44 Wang L,Tang ZY,Qin LX,Wu XF,Sun HC,Xue Q,et al.High-dose and long-term therapy with interferon-alfa inhibits tumor growth and recurrence in nude mice bearing human hepatocellular carcinoma xenografts with high metastatic potential.Hepatology 2000;32:43-48.
    45 Yang CH,Murti A,Pfeffer SR,Basu L,Kim JG,Pfeffer LM.IFNalpha/beta promotes cell survival by activating NF-kappa B.Proc Natl Acad Sci U S A 2000;97:13631-13636.
    46 Kamat AM,Sethi G,Aggarwal BB.Curcumin potentiates the apoptotic effects of chemotherapeutic agents and cytokines through down-regulation of nuclear factor-kappaB and nuclear factor-kappaB-regulated gene products in IFN-alpha-sensitive and IFN-alpha-resistant human bladder cancer cells.Mol Cancer Ther 2007;6:1022-1030.
    47 Lee J,Jung HH,Im YH,Kim JH,Park JO,Kim K,et al.Interferon-alpha resistance can be reversed by inhibition of IFN-alpha-induced COX-2 expression potentially via STAT1 activation in A549 cells.Oncol Rep 2006;15:1541-1549.
    48 Shang D,Liu Y,Ito N,Kamoto T,Ogawa O.Defective Jak-Stat activation in renal cell carcinoma is associated with interferon-alpha resistance.Cancer Sci 2007;98:1259-1264.
    49 Lee J,Im YH,Jung HH,Kim JH,Park JO,Kim K,et al.Curcumin inhibits interferon-alpha induced NF-kappaB and COX-2 in human A549 non-small cell lung cancer cells.Biochem Biophys Res Commun 2005;334:313-318.
    50 Rini BI,Weinberg V,Dunlap S,Elchinoff A,Yu N,Bok R,et al.Maximal COX-2immunostaining and clinical response to celecoxib and interferon alpha therapy in metastatic renal cell carcinoma.Cancer 2006;106:566-575.
    51 张巨波,孙慧川,庄鹏远,吴伟忠,王鲁,薛琼,潘奇,张伟,刘银坤,汤钊猷.α-干扰素治疗肝癌耐药性机制的研究.中华实验外科杂志 2006;23:1305-1307.
    52 Lu LG.Zeng MD,Mao YM,Li JQ,Wan MB,Li CZ,et al.Oxymatrine therapy for chronic hepatitis B:a randomized double-blind and placebo-controlled multi-center trial.World J Gastroenterol 2003;9:2480-2483.
    53 Song G,Luo Q,Qin J,Wang L,Shi Y,Sun C.Effects of oxymatrine on proliferation and apoptosis in human hepatoma cells.Colloids Surf B Biointerfaces 2006;48:1-5.
    54 Kuo TH,Kubota T.Watanabe M,Furukawa T,Teramoto T,lshibiki K,et al.Liver colonization competence governs colon cancer metastasis.Proc Natl Acad Sci U S A 1995;92:12085-12089.
    55 Schottenfeld D.Beebe-Dimmer J.Chronic inflammation:a common and important factor in the pathogenesis of neoplasia.CA Cancer J Clin 2006;56:69-83.
    56 Lok AS.Chronic hepatitis B.N Engl J Med 2002;346:1682-1683.
    57 Hanazaki K.Matsushita A,Nakagawa K,Misawa R,Amano J.Risk factors of long-term survival and recurrence after curative resection of hepatocellular carcinoma.Hepatogastroenterology 2005;52:552-557.
    58 Sun HC.Zhang W.Qin LX,Zhang BH,Ye QH,Wang L.et al.Positive serum hepatitis B e antigen is associated with higher risk of early recurrence and poorer survival in patients after curative resection of hepatitis B-related hepatocellular carcinoma. J Hepatol 2007; 47: 684-690.
    
    59 Wakai T, Shirai Y, Yokoyama N, Nagakura S, Hatakeyama K. Hepatitis viral status affects the pattern of intrahepatic recurrence after resection for hepatocellular carcinoma. Eur J Surg Oncol 2003; 29:266-271.
    
    60 Sasaki Y, Yamada T, Tanaka H, Ohigashi H, Eguchi H, Yano M, et al. Risk of recurrence in a long-term follow-up after surgery in 417 patients with hepatitis B- or hepatitis C-related hepatocellular carcinoma. Ann Surg 2006; 244: 771-780.
    
    61 Tarao K, Takemiya S, Tamai S, Sugimasa Y, Ohkawa S, Akaike M, et al. Relationship between the recurrence of hepatocellular carcinoma (HCC) and serum alanine aminotransferase levels in hepatectomized patients with hepatitis C virus-associated cirrhosis and HCC. Cancer 1997; 79:688-694.
    
    62 Tarao K, Rino Y, Takemiya S, Ohkawa S, Sugimasa Y, Miyakawa K, et al. Serum alanine aminotransferase levels and survival after hepatectomy in patients with hepatocellular carcinoma and hepatitis C virus-associated liver cirrhosis. Cancer Sci 2003; 94: 1083-1090.
    
    63 Cheung YS, Chan HL, Wong J, Lee KF, Poon TC, Wong N, el al. Elevated perioperative transaminase level predicts intrahepatic recurrence in hepatitis B-related hepatocellular carcinoma after curative hepatectomy. Asian J Surg 2008; 31: 41-49.
    
    64 Ebeling F, Lappalainen M, Vuoristo M, Nuutinen H, Leino R, Karvonen AL, et al. Factors predicting interferon treatment response in patients with chronic hepatitis c: late viral clearance does not preclude a sustained response. Am J Gastroenterol 2001; 96: 1237-1242.
    
    65 Mihm S, Monazahian M, Grethe S, Fechner C, Ramadori G, Thomssen R. Ratio of serum gamma-GT/ALT rather than ISDR variability is predictive for initial virological response to IFN-alpha in chronic HCV infection. J Med Virol 1999; 58: 227-234.
    
    66 Tarantino G, Sorrentino P, Conca P, Perrella A, Ragucci P, Perrella O. Low daily dosage of interferon for 1 year after HCV-related end-therapy response. A randomized-controlled study. Liver Int 2003; 23:413-419.
    
    67 Ju MJ, Qiu SJ, Fan J, Zhou J, Gao Q, Cai MY, et al. Preoperative serum gamma-glutamyl transferase to alanine aminotransferase ratio is a convenient prognostic marker for Child-Pugh A hepatocellular carcinoma after operation. J Gastroenterol 2009; Epub ahead of print.
    
    68 Nagasue N, Kohno H, Chang YC, Taniura H, Yamanoi A, Uchida M, et al. Liver resection for hepatocellular carcinoma. Results of 229 consecutive patients during 11 years. Ann Surg 1993; 217: 375-384.
    
    69 Lorenzo CS, Limm WM, Lurie F, Wong LL. Factors affecting outcome in liver resection. HPB (Oxford) 2005; 7: 226-230.
    
    70 Shah SA, Cleary SP, Wei AC, Yang I, Taylor BR, Hemming AW. et al. Recurrence after liver resection for hepatocellular carcinoma: risk factors, treatment, and outcomes. Surgery 2007; 141:330-339.
    
    71 Hirohashi S, Ishak K, Kojiro M, et al. Hepatocellular carcinoma. In: Hamilton SR, Aaltonen LA, editors. Pathology and genetics of tumors of the digestive system. Lyon: 1ARC Press 2000: 159-172.
    
    72 Xu X, Ke QH, Shao ZX, Wu J, Chen J, Zhou L. et al. The value of serum alpha-fetoprotein in predicting tumor recurrence after liver transplantation for hepatocellular carcinoma. Dig Dis Sci 2009;54:385-388.
    
    73 Edmondson HA, Steiner PE. Primary carcinoma of the liver: a study of 100 cases among 48,900 necropsies. Cancer 1954: 7: 462-503.
    74 Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, et al. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 2007; 13:902-911.
    
    75 Llovet JM, Bru C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis 1999; 19: 329-338.
    
    76 Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 2007; 25: 2586-2593.
    
    77 Zhou XD, Tang ZY, Yang BH, Lin ZY, Ma ZC, Ye SL, et al. Experience of 1000 patients who underwent hepatectomy for small hepatocellular carcinoma. Cancer 2001; 91: 1479-1486.
    
    78 Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, et al. Gene Expression in Fixed Tissues and Outcome in Hepatocellular Carcinoma. N Engl J Med 2008; 359: 1995-2004.
    
    79 Fuke H, Sugimoto K, Shiraki K, Tanaka J, Beppu T, Yoneda K, et al. Predictive factors for distant recurrence of HCV-related hepatocellular carcinoma after radiofrequency ablation combined with chemoembolization. Aliment Pharmacol Ther 2008; 27: 1253-1260.
    
    80 Tung-Ping Poon R, Fan ST, Wong J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg 2000; 232: 10-24.
    
    81 Chen CH, Huang GT, Yang PM, Chen PJ, Lai MY, Chen DS, et al. Hepatitis B- and C-related hepatocellular carcinomas yield different clinical features and prognosis. Eur J Cancer 2006; 42:2524-2529.
    
    82 Sato A, Kato Y, Nakata K, Nakao K, Daikoku M, Ishii N, et al. Relationship between sustained elevation of serum alanine aminotransferase and progression from cirrhosis to hepatocellular carcinoma:comparison in patients with hepatitis B virus- and hepatitis C virus-associated cirrhosis. J Gastroenterol Hepatol 1996; 11:944-948.
    
    83 Yao DF, Dong ZZ, Yao M. Specific molecular markers in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2007; 6: 241-247.
    
    84 Peng SY, Chen WJ, Lai PL, Jeng YM, Sheu JC, Hsu HC. High alpha-fetoprotein level correlates with high stage, early recurrence and poor prognosis of hepatocellular carcinoma: significance of hepatitis virus infection, age, p53 and beta-catenin mutations. Int J Cancer 2004; 112: 44-50.
    
    85 Bilimoria MM, Lauwers GY, Doherty DA, Nagorney DM, Belghiti J, Do KA, et al. Underlying liver disease, not tumor factors, predicts long-term survival after resection of hepatocellular carcinoma. Arch Surg 2001: 136:528-535.
    
    86 Ramadori G, Saile B. Inflammation, damage repair, immune cells, and liver fibrosis: specific or nonspecific. this is the question. Gastroenterology 2004; 127: 997-1000.
    
    87 Bertolino P, Klimpel G, Lemon SM. Hepatic inflammation and immunity: a summary of a conference on the function of the immune system within the liver. Hepatology 2000; 31: 1374-1378.
    
    88 Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008: 88: 125-172.
    
    89 Hautekeete ML. Geerts A. The hepatic stellate (Ito) cell: its role in human liver disease. Virchows Arch 1997:430: 195-207.
    
    90 Ozaki S. Sato Y. Yasoshima M, Harada K. Nakanuma Y. Diffuse expression of heparan sulfate proteoglycan and connective tissue growth factor in fibrous septa with many mast cells relate to unresolving hepatic fibrosis of congenital hepatic fibrosis. Liver Int 2005; 25: 817-828.
    
    91 Reeves HL. Friedman SL. Activation of hepatic stellate cells—a key issue in liver fibrosis. Front Biosci 2002; 7: d808-826.
    
    92 Schulze-Krebs A, Preimel D, Popov Y, Bartenschlager R, Lohmann V, Pinzani M, et al. Hepatitis C virus-replicating hepatocytes induce fibrogenic activation of hepatic stellate cells. Gastroenterology 2005; 129:246-258.
    
    93 Kisseleva T, Brenner DA. Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J Gastroenterol Hepatol 2007; 22 Suppl 1: S73-78.
    
    94 Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci 2002; 7: d793-807.
    
    95 Carpino G, Morini S, Ginanni Corradini S, Franchitto A, Merli M, Siciliano M, et al. Alpha-SMA expression in hepatic stellate cells and quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent chronic hepatitis after liver transplantation. Dig Liver Dis 2005; 37: 349-356.
    
    96 Marra F. Hepatic stellate cells and the regulation of liver inflammation. J Hepatol 1999; 31:1120-1130.
    
    97 Paik YH, Lee KS, Lee HJ, Yang KM, Lee SJ, Lee DK, et al. Hepatic stellate cells primed with cytokines upregulate inflammation in response to peptidoglycan or lipoteichoic acid. Lab Invest 2006;86: 676-686.
    
    98 Levy MT, McCaughan GW, Marinos G, Gorrell MD. Intrahepatic expression of the hepatic stellate cell marker fibroblast activation protein correlates with the degree of fibrosis in hepatitis C virus infection. Liver 2002; 22: 93-101.
    
    99 Nakatani K, Seki S, Kawada N, Kitada T, Yamada T, Sakaguchi H, et al. Expression of SPARC by activated hepatic stellate cells and its correlation with the stages of fibrogenesis in human chronic hepatitis. Virchows Arch 2002; 441: 466-474.
    
    100 El-Karef A, Kaito M, Tanaka H, Ikeda K, Nishioka T, Fujita N, el al. Expression of large tenascin-C splice variants by hepatic stellate cells/myofibroblasts in chronic hepatitis C. J Hepatol 2007;46: 664-673.
    
    101 Winau F, Hegasy G, Weiskirchen R, Weber S, Cassan C, Sieling PA, et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 2007; 26: 117-129.
    
    102 Vinas O, Bataller R, Sancho-Bru P, Gines P, Berenguer C, Enrich C, et al. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 2003; 38: 919-929.
    
    103 Yu MC, Chen CH, Liang X, Wang L, Gandhi CR, Fung JJ, et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 2004; 40: 1312-1321.
    
    104 Chen CH, Kuo LM, Chang Y, Wu W, Goldbach C, Ross MA, el al. In vivo immune modulatory activity of hepatic stellate cells in mice. Hepatology 2006; 44: 1171-1181.
    
    105 dMikula M, Proell V, Fischer AN, Mikulits W. Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-beta dependent fashion. J Cell Physiol 2006; 209:560-567.
    
    106 Neaud V. Faouzi S, Guirouilh J, Le Bail B, Balabaud C, Bioulac-Sage P. el al. Human hepatic myofibroblasts increase invasiveness of hepatocellular carcinoma cells: evidence for a role of hepatocyte growth factor. Hepatology 1997; 26: 1458-1466.
    
    107 Enzan H. Himeno H. Iwamura S. Onishi S, Saibara T, Yamamoto Y. et al. Alpha-smooth muscle actin-positive perisinusoidal stromal cells in human hepatocellular carcinoma. Hepatology 1994; 19:895-903.
    
    108 Gulubova MV. Collagen type IV, laminin, alpha-smooth muscle actin (alphaSMA). alphal and alpha6 integrins expression in the liver with metastases from malignant gastrointestinal tumours. Clin Exp Metastasis 2004; 21: 485-494.
    
    109 Olaso E, Santisteban A, Bidaurrazaga J, Gressner AM, Rosenbaum J, Vidal-Vanaclocha F. Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology 1997; 26: 634-642.
    
    110 Olaso E, Salado C, Egilegor E, Gutierrez V, Santisteban A, Sancho-Bru P, et al. Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 2003; 37: 674-685.
    
    111 Stoyanova, II. Relevance of mast cells and hepatic lobule innervation to liver injury. Rom J Gastroenterol 2004; 13: 203-209.
    
    112 Galli SJ, Tsai M. Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. J Dermatol Sci 2008; 49: 7-19.
    
    113 Metz M, Grimbaldeston MA, Nakae S, Piliponsky AM, Tsai M, Galli SJ. Mast cells in the promotion and limitation of chronic inflammation. Immunol Rev 2007; 217: 304-328.
    
    114 Franceschini B, Russo C, Dioguardi N, Grizzi F. Increased liver mast cell recruitment in patients with chronic C virus-related hepatitis and histologically documented steatosis. J Viral Hepat 2007; 14:549-555.
    
    115 Gaca MD, Zhou X, Benyon RC. Regulation of hepatic stellate cell proliferation and collagen synthesis by proteinase-activated receptors. J Hepatol 2002; 36: 362-369.
    
    116 Gaca MD, Pickering JA, Arthur MJ, Benyon RC. Human and rat hepatic stellate cells produce stem cell factor: a possible mechanism for mast cell recruitment in liver fibrosis. J Hepatol 1999; 30:850-858.
    
    117 Tsuneyama K, Kouda W, Nakanuma Y. Portal and parenchymal alterations of the liver in idiopathic portal hypertension: a histological and immunochemical study. Pathol Res Pract 2002; 198: 597-603.
    
    118 Atamas SP. White B. Cytokine regulation of pulmonary fibrosis in scleroderma. Cytokine Growth Factor Rev 2003; 14:537-550.
    
    119 Frank BT, Rossall JC, Caughey GH, Fang KC. Mast cell tissue inhibitor of metalloproteinase-1 is cleaved and inactivated extracellularly by alpha-chymase. J Immunol 2001; 166: 2783-2792.
    
    120 Metz M, Maurer M. Mast cells-key effector cells in immune responses. Trends Immunol 2007; 28:234-241.
    
    121 Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M. Mast cells as "tunable" effector and immunoregulatory cells: recent advances. Annu Rev Immunol 2005; 23:749-786.
    
    122 Lu LF, Lind EF. Gondek DC, Bennett KA, Gleeson MW. Pino-Lagos K, et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 2006; 442: 997-1002.
    
    123 Ribatti D. Crivellato E. Roccaro AM, Ria R. Vacca A. Mast cell contribution to angiogenesis related to tumour progression. Clin Exp Allergy 2004; 34: 1660-1664.
    
    124 Takanami I. Takeuchi K. Naruke M. Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer 2000: 88: 2686-2692.
    
    125 Yano H. Kinuta M. Tateishi H. Nakano Y. Matsui S. Monden T. et al. Mast cell infiltration around gastric cancer cells correlates with tumor angiogenesis and metastasis. Gastric Cancer 1999: 2: 26-32.
    
    126 Violin D. Edstrom A. Glimelius I. Glimelius B. Nilsson G. Sundstrom C, et al. Mast cell infiltration correlates with poor prognosis in Hodgkin's lymphoma. Br J Haematol 2002; 119: 122-124.
    127 Ch'ng S, Wallis RA, Yuan L, Davis PF, Tan ST. Mast cells and cutaneous malignancies. Mod Pathol2006; 19: 149-159.
    
    128 Amini RM, Aaltonen K, Nevanlinna H, Carvalho R, Salonen L, Heikkila P, et al. Mast cells and eosinophils in invasive breast carcinoma. BMC Cancer 2007; 7: 165.
    
    129 Beer TW, Ng LB, Murray K. Mast cells have prognostic value in Merkel cell carcinoma. Am J Dermatopathol 2008; 30:27-30.
    
    130 Lampiasi N, Azzolina A, Montalto G, Cervello M. Histamine and spontaneously released mast cell granules affect the cell growth of human hepatocellular carcinoma cells. Exp Mol Med 2007; 39: 284-294.
    
    131 Terada T, Matsunaga Y. Increased mast cells in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Hepatol 2000; 33: 961-966.
    
    132 Ju MJ, Qiu SJ, Fan J, Xiao YS, Gao Q, Zhou J, et al. Peritumoral activated hepatic stellate cells predict poor clinical outcome in hepatocellular carcinoma after curative resection. Am J Clin Pathol 2009; 131:498-510.
    
    133 Ju MJ, Qiu SJ, Gao Q, Fan J, Cai MY, Li YW, et al. Combination of peritumoral mast cells and T-regulatory cells predicts prognosis of hepatocellular carcinoma. Cancer Sci 2009; 100: in press.
    
    134 Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, et al Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005; 353: 2654-2666.
    
    135 Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. J Hepatol 2002; 36: 200-209.
    
    136 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402-408.
    
    137 Gao Q, Wang XY, Fan J, Qiu SJ, Zhou J, Shi YH, et al. Selection of reference genes for real-time PCR in human hepatocellular carcinoma tissues. J Cancer Res Clin Oncol 2008; 134: 979-986.
    
    138 Rajput AB, Turbin DA, Cheang MC, Voduc DK, Leung S, Gelmon KA, et al. Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: a study of 4,444 cases. Breast Cancer Res Treat 2008; 107:249-257.
    
    139 Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 2004; 10: 7252-7259.
    
    140 Beil WJ, Pammer J. In situ detection of the mast cell proteases chymase and tryptase in human lung tissue using light and electron microscopy. Histochem Cell Biol 2001; 116: 483-493.
    
    141 Nagasue N, Uchida M, Makino Y, Takemoto Y, Yamanoi A, Hayashi T, et al. Incidence and factors associated with intrahepatic recurrence following resection of hepatocellular carcinoma.Gastroenterology 1993; 105:488-494.
    
    142 Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002; 23: 549-555.
    
    143 Yin Z. Jiang G, Fung JJ, Lu L, Qian S. 1CAM-1 expressed on hepatic stellate cells plays an important role in immune regulation. Microsurgery 2007; 27: 328-332.
    
    144 Marra F. Valente AJ, Pinzani M. Abboud HE. Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines. J Clin Invest 1993: 92:1674-1680.
    
    145 Acikalin MF. Oner U, Topcu 1, Yasar B, Kiper H, Colak E. Tumour angiogenesis and mast cell density in the prognostic assessment of colorectal carcinomas. Dig Liver Dis 2005; 37: 162-169.
    146 Elpek GO, Gelen T, Aksoy NH, Erdogan A, Dertsiz L, Demircan A, et al. The prognostic relevance of angiogenesis and mast cells in squamous cell carcinoma of the oesophagus. J Clin Pathol 2001; 54: 940-944.
    
    147 Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol 2005; 6: 135-142.
    
    148 Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ. Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 2007; 8: 1095-1104.
    
    149 Fosslien E. Biochemistry of cyclooxygenase (COX)-2 inhibitors and molecular pathology of COX-2 in neoplasia. Crit Rev Clin Lab Sci 2000; 37: 431-502.
    
    150 Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G Inflammation and cancer: how hot is the link? Biochem Pharmacol 2006; 72: 1605-1621.
    
    151 Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 2009; 30: 377-386.
    
    152 Wang W, Bergh A, Damber JE. Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer. Clin Cancer Res 2005; 11: 3250-3256.
    
    153 McGinty A, Chang YW, Sorokin A, Bokemeyer D, Dunn MJ. Cyclooxygenase-2 expression inhibits trophic withdrawal apoptosis in nerve growth factor-differentiated PC12 cells. J Biol Chem 2000; 275: 12095-12101.
    
    154 Murata H, Kawano S, Tsuji S, Tsuji M, Sawaoka H, Kimura Y, et al. Cyclooxygenase-2 overexpression enhances lymphatic invasion and metastasis in human gastric carcinoma. Am J Gastroenterol 1999; 94: 451-455.
    
    155 Tsujii M, Kawano S. DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci U S A 1997; 94: 3336-3340.
    
    156 Khunamornpong S. Settakorn J, Sukpan K, Srisomboon J, Ruangvejvorachai P, Thorner PS. el al. Cyclooxygenase-2 expression in squamous cell carcinoma of the uterine cervix is associated with lymph node metastasis. Gynecol Oncol 2009; 112: 241-247.
    
    157 Liu J, Yu HG. Yu JP. Wang XL. Zhou XD, Luo HS. Overexpression of cyclooxygenase-2 in gastric cancer correlates with the high abundance of vascular endothelial growth factor-C and lymphatic metastasis. Med Oncol 2005: 22: 389-397.
    
    158 Kakiuchi Y, Tsuji S. Tsujii M. Murata H, Kawai N, Yasumaru M, et al. Cyclooxygenase-2 activity altered the cell-surface carbohydrate antigens on colon cancer cells and enhanced liver metastasis.Cancer Res 2002; 62: 1567-1572.
    
    159 Tomozawa S, Tsuno NH. Sunami E. Hatano K, Kitayama J, Osada T, et al. Cyclooxygenase-2 overexpression correlates with tumour recurrence, especially haematogenous metastasis, of colorectal cancer. Br J Cancer 2000: 83: 324-328.
    
    160 Huh J, Liepins A. Zielonka J. Andrekopoulos C, kalyanaraman B, Sorokin A. Cyclooxygenase 2 rescues LNCaP prostate cancer cells from sanguinarine-induced apoptosis by a mechanism involving inhibition of nitric oxide synthase activity. Cancer Res 2006; 66: 3726-3736.
    
    161 Lee KS. Lee HJ. Ahn KS. Kim SH. Nam D. Kim DK, el al. Cyclooxygenase-2/prostaglandin E(2) pathway mediates icariside II induced apoptosis in human PC-3 prostate cancer cells. Cancer Lett 2009.
    162 Liu JF, Zhu GJ, Jamieson GG, Wu TC, Zhu TN, Shan BE, et al. NS-398 induces apoptosis in human esophageal cancer cells through inhibition of NF-kappaB downstream regulation of cyclooxygenase-2. Cancer Invest 2009; 27: 17-23.
    
    163 Kojima M, Morisaki T, Uchiyama A, Doi F, Mibu R, Katano M, et al. Association of enhanced cyclooxygenase-2 expression with possible local immunosuppression in human colorectal carcinomas. Ann Surg Oncol 2001; 8: 458-465.
    
    164 Pruthi RS, Derksen E, Gaston K. Cyclooxygenase-2 as a potential target in the prevention and treatment of genitourinary tumors: a review. J Urol 2003; 169: 2352-2359.
    
    165 Xi H, Baldus SE, Warnecke-Eberz U, Brabender J, Neiss S, Metzger R et al. High cyclooxygenase-2 expression following neoadjuvant radiochemotherapy is associated with minor histopathologic response and poor prognosis in esophageal cancer. Clin Cancer Res 2005; 11:8341-8347.
    
    166 Raspollini MR, Amunni G, Villanucci A, Boddi V, Taddei GL. Increased cyclooxygenase-2 (COX-2) and P-glycoprotein-170 (MDR1) expression is associated with chemotherapy resistance and poor prognosis. Analysis in ovarian carcinoma patients with low and high survival. Int J Gynecol Cancer 2005; 15:255-260.
    
    167 Yuan A, Yu CJ, Shun CT, Luh KT, Kuo SH, Lee YC, et al. Total cyclooxygenase-2 mRNA levels correlate with vascular endothelial growth factor mRNA levels, tumor angiogenesis and prognosis in non-small cell lung cancer patients. Int J Cancer 2005; 115: 545-555.
    
    168 Konno H, Baba M, Shoji T, Ohta M, Suzuki S, Nakamura S. Cyclooxygenase-2 expression correlates with uPAR levels and is responsible for poor prognosis of colorectal cancer. Clin Exp Metastasis 2002; 19:527-534.
    
    169 Khuri FR, Wu H, Lee JJ, Kemp BL, Lotan R, Lippman SM, et al. Cyclooxygenase-2 overexpression is a marker of poor prognosis in stage I non-small cell lung cancer. Clin Cancer Res 2001; 7: 861-867.
    
    170 Masunaga R, Kohno H, Dhar DK, Ohno S, Shibakita M, Kinugasa S, et al. Cyclooxygenase-2 expression correlates with tumor neovascularization and prognosis in human colorectal carcinoma patients. Clin Cancer Res 2000; 6: 4064-4068.
    
    171 Stasinopoulos I. O'Brien DR. Wildes F, Glunde K, Bhujwalla ZM. Silencing of cyclooxygenase-2 inhibits metastasis and delays tumor onset of poorly differentiated metastatic breast cancer cells. Mol Cancer Res 2007; 5: 435-442.
    
    172 Tachimori A, Yamada N. Amano R, Ohira M, Hirakawa K. Combination therapy of S-l with selective cyclooxygenase-2 inhibitor for liver metastasis of colorectal carcinoma. Anticancer Res 2008;28: 629-638.
    
    173 Tendo M, Yashiro M. Nakazawa K, Yamada N, Sawada T, Ohira M, et al. A synergic inhibitory-effect of combination with selective cyclooxygenase-2 inhibitor and S-1 on the peritoneal metastasis for scirrhous gastric cancer cells. Cancer Lett 2006; 244: 247-251.
    
    174 Sun WH, Zhu F, Chen GS. Su H, Luo C, Zhao QS, et al. Blockade of cholecystokinin-2 receptor and cyclooxygenase-2 synergistically induces cell apoptosis. and inhibits the proliferation of human gastric cancer cells in vitro. Cancer Lett 2008; 263: 302-311.
    
    175 Yu J. Hui AY. Chu ES. Cheng AS. Go MY. Chan HL. el al. Expression of a cyclo-oxygenase-2 transgene in murine liver causes hepatitis. Gut 2007: 56: 991-999.
    
    176 Pazirandeh S. Khettry U. Gordon FD. Resnick RH. Murray JE, Sheth SG. Cyclooxygenase-2 expression in hepatocellular carcinoma, cirrhosis and chronic hepatitis in the United States. Dig Dis Sci 2007; 52: 220-227.
    
    177 Cheng AS, Yu J, Lai PB, Chan HL, Sung JJ. COX-2 mediates hepatitis B virus X protein abrogation of p53-induced apoptosis. Biochem Biophys Res Commun 2008; 374: 175-180.
    
    178 Koga H, Sakisaka S, Ohishi M, Kawaguchi T, Taniguchi E, Sasatomi K, et al. Expression of cyclooxygenase-2 in human hepatocellular carcinoma: relevance to tumor dedifferentiation. Hepatology 1999; 29: 688-696.
    
    179 Foster J, Black J, LeVea C, Khoury T, Kuvshinoff B, Javle M, et al. COX-2 expression in hepatocellular carcinoma is an initiation event; while EGF receptor expression with downstream pathway activation is a prognostic predictor of survival. Ann Surg Oncol 2007; 14: 752-758.
    
    180 Rahman MA, Dhar DK, Yamaguchi E, Maruyama S, Sato T, Hayashi H, et al. Coexpression of inducible nitric oxide synthase and COX-2 in hepatocellular carcinoma and surrounding liver: possible involvement of COX-2 in the angiogenesis of hepatitis C virus-positive cases. Clin Cancer Res 2001; 7:1325-1332.
    
    181 Lara-Pezzi E, Gomez-Gaviro MV, Galvez BG, Mira E, Iniguez MA, Fresno M, et al. The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression. J Clin Invest 2002; 110: 1831-1838.
    
    182 Morinaga S, Tarao K, Yamamoto Y, Nakamura Y, Rino Y, Miyakawa K, et al. Overexpressed cyclo-oxygenase-2 in the background liver is associated with the clinical course of hepatitis C virus-related cirrhosis patients after curative surgery for hepatocellular carcinoma. J Gastroenterol Hepatol 2007; 22: 1249-1255.
    
    183 Kondo M, Yamamoto H, Nagano H, Okami J, Ito Y, Shimizu J, et al. Increased expression of COX-2 in nontumor liver tissue is associated with shorter disease-free survival in patients with hepatocellular carcinoma. Clin Cancer Res 1999; 5: 4005-4012.
    
    184 Cheng J, Imanishi H, Liu W, Iwasaki A, Ueki N, Nakamura H, et al. Inhibition of the expression of alpha-smooth muscle actin in human hepatic stellate cell line, LI90, by a selective cyclooxygenase 2 inhibitor, NS-398. Biochem Biophys Res Commun 2002: 297: 1128-1134.
    
    185 Bae SH, Jung ES, Park YM. Kim BS. Kim BK, Kim DG, et al. Expression of cyclooxygenase-2 (COX-2) in hepatocellular carcinoma and growth inhibition of hepatoma cell lines by a COX-2 inhibitor, NS-398. Clin Cancer Res 2001; 7: 1410-1418.
    
    186 Hu KQ. Rationale and feasibility of chemoprovention of hepatocellular carcinoma by cyclooxygenase-2 inhibitors. J Lab Clin Med 2002; 139: 234-243.
    
    187 Cheng AS. Chan HL, Leung WK, Wong N, Johnson PJ, Sung JJ. Specific COX-2 inhibitor, NS-398, suppresses cellular proliferation and induces apoptosis in human hepatocellular carcinoma cells, Int J Oncol 2003; 23: 113-119.
    
    188 Rahman MA, Kohno H. Nagasue N. COX-2 - a target for preventing hepatic carcinoma? Expert Opin Ther Targets 2002; 6: 483-490.
    
    189 Osawa Y, Nagaki M. Cyclooxygenase-2: its paradoxical roles in liver inflammation and fibrosis. Hepatol Res 2008; 38: 772-774.
    
    190 Li Y. Tian B, Yang J. Zhao L. Wu X. Ye SL. el al. Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics. J Cancer Res Clin Oncol 2004; 130: 460-468.
    
    191 Li Y. Tang Y. Ye L. Liu B. Liu K. Chen J. el al. Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarrav. J Cancer Res Clin Oncol 2003; 129: 43-51.
    192 Psaty BM,Potter JD.Risks and benefits of celecoxib to prevent recurrent adenomas.N Engl J Med 2006;355:950-952.
    193 Rawson NS,Nourjah P,Grosser SC,Graham DJ.Factors associated with celecoxib and rofecoxib utilization.Ann Pharmacother 2005;39:597-602.
    194 Wang BE.Treatment of chronic liver diseases with traditional Chinese medicine.J Gastroenterol Hepatol 2000;15 Suppl:E67-70.
    195 陈燕熙,茅佰元,江建华,施建华,李继强.氧化苦参碱治疗慢性乙型病毒性肝炎疗效及其与HBV负荷的关系探讨 中国中西医结合杂志 2002:22:335-336.
    196 Yu XH,Zhu JS,Yu HF,Zhu L.Immunomodulatory effect of oxymatrine on induced CCl4-hepatic fibrosis in rats.Chin Med J(Engl) 2004;117:1856-1858.
    197 Shi GF,Li Q.Effects of oxymatrine on experimental hepatic fibrosis and its mechanism in vivo.World J Gastroenterol 2005;11:268-271.
    198 Wu XL,Zeng WZ,Jiang MD,Qin JP,Xu H.Effect of Oxymatrine on the TGFbeta-Smad signaling pathway in rats with CCl4-induced hepatic fibrosis.World J Gastroenterol 2008;14:2100-2105.
    199 Song MQ,Zhu JS,Chen JL,Wang L,Da W,Zhu L,et al.Synergistic effect of oxymatrine and angiogenesis inhibitor NM-3 on modulating apoptosis in human gastric cancer cells.World J Gastroenterol 2007;13:1788-1793.
    200 von Marschall Z,Scholz A,Cramer T,Schafer G,Schirner M,Oberg K,et al.Effects of interferon alpha on vascular endothelial growth factor gene transcription and tumor angiogenesis.J Natl Cancer Inst 2003:95:437-448.
    201 Dinney CP,Bielenberg DR,Perrotte P,Reich R,Eve BY,Bucana CD,et al.Inhibition of basic fibroblast growth factor expression,angiogenesis,and growth of human bladder carcinoma in mice by systemic interferon-alpha administration.Cancer Res 1998;58:808-814.
    202 Wang L,Wu WZ,Sun HC,Wu XF,Qin LX,Liu YK,et al.Mechanism of interferon alpha on inhibition of metastasis and angiogenesis of hepatocellular carcinoma after curative resection in nude mice.J Gastrointest Surg 2003;7:587-594.
    203 Niederau C,Heintges T,Lange S,Goldmann G,Niederau CM,Mohr L,et al.Long-term follow-up of HBeAg-positive patients treated with interferon alfa for chronic hepatitis B.N Engl J Med 1996;334:1422-1427.
    204 Ikeda K,Saitoh S,Suzuki Y,Kobayashi M,Tsubota A,Fukuda M,et al.Interferon decreases hepatocellular carcinogenesis in patients with cirrhosis caused by the hepatitis B virus:a pilot study.Cancer 1998;82:827-835.
    205 Lin SM,Sheen IS,Chien RN,Chu CM,Liaw YF.Long-term beneficial effect of interferon therapy in patients with chronic hepatitis B virus infection.Hepatology 1999;29:971-975.
    206 Lai CL,Wu PC.Lok AS.Lin HJ,Ngan H,Lau JY,et al.Recombinant alpha 2 interferon is superior to doxorubicin for inoperable hepatocellular carcinoma:a prospective randomised trial.Br J Cancer 1989:60:928-933.
    207 Lai CL.Lau JY.Wu PC,Ngan H,Chung HT,Mitchell SJ.et al.Recombinant interferon-alpha in inoperable hepatocellular carcinoma:a randomized controlled trial.Hepatology 1993;17:389-394.
    208 Kartal ED,Alpat SN.Ozgunes I.Usluer G.Adverse effects of high-dose interferon-alpha-2a treatment for chronic hepatitis B.Adv Ther 2007:24:963-971.
    209 Sun HC,Tang ZY.Wang L.Qin LX.Ma ZC.Ye QH.et al.Postoperative interferon alpha treatment postponed recurrence and improved overall survival in patients after curative resection of HBV-related hepatocellular carcinoma: a randomized clinical trial. J Cancer Res Clin Oncol 2006; 132:458-465.
    
    210 Fitzpatrick FA, Soberman R. Regulated formation of eicosanoids. J Clin Invest 2001; 107: 1347-1351.
    
    211 Gupta RA, Dubois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 2001; 1: 11-21.
    
    212 Smith WL, Langenbach R. Why there are two cyclooxygenase isozymes. J Clin Invest 2001; 107:1491-1495.
    
    213 Lin MT, Lee RC, Yang PC, Ho FM, Kuo ML. Cyclooxygenase-2 inducing Mcl-1-dependent survival mechanism in human lung adenocarcinoma CL1.0 cells. Involvement of phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 2001; 276: 48997-49002.
    
    214 Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem 2001; 276:18563-18569.
    
    215 Muller-Decker K, Neufang G, Berger I, Neumann M, Marks F, Furstenberger G. Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. Proc Natl Acad Sci U S A 2002; 99: 12483-12488.
    
    216 Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, et al. Suppression of intestinal polyposis in Ape delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 1996; 87: 803-809.
    
    217 Park JW, Park JE, Lee JA, Lee CW, Kim CM. Cyclooxygenase-2 (COX-2) is directly involved but not decisive in proliferation of human hepatocellular carcinoma cells. J Cancer Res Clin Oncol 2006; 132: 184-192.
    
    218 Fodera D, D'Alessandro N, Cusimano A, Poma P, Notarbartolo M, Lampiasi N, et al. Induction of apoptosis and inhibition of cell growth in human hepatocellular carcinoma cells by COX-2 inhibitors. Ann N Y Acad Sci 2004; 1028: 440-449.
    
    219 Endoh T, Tang Q, Denda A, Noguchi O, Kobayashi E, Tamura K. et al. Inhibition by acetylsalicylic acid, a cyclo-oxygenase inhibitor, and p-bromophenacylbromide, a phospholipase A2 inhibitor, of both cirrhosis and enzyme-altered nodules caused by a choline-deficient, L-amino acid-defined diet in rats. Carcinogenesis 1996: 17: 467-475.
    
    220 Ramakrishnan G, Elinos-Baez CM, Jagan S. Augustine TA, Kamaraj S. Anandakumar P. et al. Silymarin downregulates COX-2 expression and attenuates hyperlipidemia during NDEA-induced rat hepatocellular carcinoma. Mol Cell Biochem 2008:313: 53-61.
    
    221 Baek JY, Hur W. Wang JS, Bae SH. Yoon SK. Selective COX-2 inhibitor, NS-398. suppresses cellular proliferation in human hepatocellular carcinoma cell lines via cell cycle arrest. World J Gastroenterol 2007: 13: 1175-1181.
    
    222 Dong Y, Xi H, Yu Y. Wang Q, Jiang K. Li L. Effects of oxymatrine on the serum levels of T helper cell 1 and 2 cytokines and the expression of the S gene in hepatitis B virus S gene transgenic mice: a study on the anti-hepatitis B virus mechanism of oxymatrine. J Gastroenterol Hepatol 2002: 17:1299-1306.
    
    223 Mariani F. Sena P. Marzona L. Riccio M. Fano R. Manni P. el al. Cyclooxygenase-2 and Hypoxia-Inducible Factor-1 alpha protein expression is related to inflammation, and up-regulated since the early steps of colorectal carcinogenesis. Cancer Lett 2009.
    
    224 Oba M. Mivva K. Fujimura T. Harada S. Sasaki S. Oyama K. et al. A selective cyclooxygenase-2 inhibitor prevents inflammation-related squamous cell carcinogenesis of the forestomach via duodenogastric reflux in rats. Cancer 2009; 115: 454-464.
    
    225 Ristimaki A. Cyclooxygenase 2: from inflammation to carcinogenesis. Novartis Found Symp 2004; 256: 215-221; discussion 221-216, 259-269.
    
    226 Cheng AS, Chan HL, Leung WK, To KF, Go MY, Chan JY, et al. Expression of HBx and COX-2 in chronic hepatitis B, cirrhosis and hepatocellular carcinoma: implication of HBx in upregulation of COX-2. Mod Pathol 2004; 17: 1169-1179.
    
    227 Kaplan SA. Chronic Inflammation in Benign Prostate Hyperplasia is Associated With Focal Upregulation of CycIooxygenase-2, Bcl-2, and Cell Proliferation in the Glandular Epithelium. J Urol 2005; 173: 1266-1267.
    
    228 Wang W, Bergh A, Damber JE. Chronic inflammation in benign prostate hyperplasia is associated with focal upregulation of cyclooxygenase-2, Bcl-2, and cell proliferation in the glandular epithelium. Prostate 2004; 61: 60-72.
    
    229 Tjiu JW, Chen JS, Shun CT, Lin SJ, Liao YH, Chu CY, et al. Tumor-Associated Macrophage-Induced Invasion and Angiogenesis of Human Basal Cell Carcinoma Cells by Cyclooxygenase-2 Induction. J Invest Dermatol 2008.
    
    230 Nunez O, Fernandez-Martinez A, Majano PL, Apolinario A, Gomez-Gonzalo M, Benedicto I, et al. Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins. Gut 2004; 53: 1665-1672.
    
    231 Senzaki M, Ishida S, Yada A, Hanai M, Fujiwara K, Inoue S, et al. CS-706, a novel cyclooxygenase-2 selective inhibitor, prolonged the survival of tumor-bearing mice when treated alone or in combination with anti-tumor chemotherapeutic agents. Int J Cancer 2008; 122: 1384-1390.
    
    232 Mustafa A, Kruger WD. Suppression of tumor formation by a cyclooxygenase-2 inhibitor and a peroxisome proliferator-activated receptor gamma agonist in an in vivo mouse model of spontaneous breast cancer. Clin Cancer Res 2008: 14: 4935-4942.
    
    233 Baryawno N, Sveinbjornsson B. Eksborg S, Orrego A, Segerstrom L, Oqvist CO, et al. Tumor-growth-promoting cyclooxygenase-2 prostaglandin E2 pathway provides medulloblastoma therapeutic targets. Neuro Oncol 2008: 10: 661-674.
    
    234 Jung HJ, Shim JS, Suh YG, Kim YM, Ono M, Kwon HJ. Potent inhibition of in vivo angiogenesis and tumor growth by a novel cyclooxygenase-2 inhibitor, enoic acanthoic acid. Cancer Sci 2007; 98:1943-1948.
    
    235 Belghiti J. Panis Y. Farges O, Benhamou JP, Fekete F. Intrahepatic recurrence after resection of hepatocellular carcinoma complicating cirrhosis. Ann Surg 1991; 214: 114-117.
    
    236 Seki E. De Minicis S. Osterreicher CH. Kluwe J. Osawa Y, Brenner DA, et al TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007: 13: 1324-1332.
    1 Mueller MM.Fusenig NE.Friends or foes-bipolar effects of the tumour stroma in cancer.Nat Rev Cancer 2004:4:839-849.
    2 Olaso E.Santisteban A.Bidaurrazaga J.Gressner AM.Rosenbaum J.Vidal-Vanaclocha F.Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis.Hepatology 1997:26:634-642.
    3 Yen TW.Aardal NP.Bronner MP.Thorning DR.Savard CE.Lee SP.et al.Myofibroblasts are responsible for the desmoplastic reaction surrounding human pancreatic carcinomas.Surgery 2002:131:129-134.
    4 Sappino AP.Skalli O.Jackson B.Schurch W.Gabbiani G.Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues.Int J Cancer 1988:41:707-712.
    5 Schor SL,Schor AM,Rushton G,Smith L.Adult,foetal and transformed fibroblasts display different migratory phenotypes on collagen gels:evidence for an isoformic transition during fbetal development.J Cell Sci 1985;73:221-234.
    6 Tuxhorn JA,Ayata GE,Smith MJ,Smith VC,Dang TD,Rowley DR.Reactive stroma in human prostate cancer:induction of myofibroblast phenotype and extracellular matrix remodeling.Clin Cancer Res 2002;8:2912-2923.
    7 Cassiman D.Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers.Journal of Hepatology 2002;36:200.
    8 Micke P.Ostman A.Tumour-stroma interaction:cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 2004;45 Suppl 2:S163-175.
    9 Elenbaas B,Weinberg RA.Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation.Exp Cell Res 2001;264:169-184.
    10 Nakayama H,Enzan H,Miyazaki E,Naruse K,Kiyoku H,Hiroi M.The role of myofibroblasts at the tumor border of invasive colorectal adenocarcinomas.Jpn J Clin Oncol 1998;28:615-620.
    11 Cassiman D,Libbrecht L,Desmet V,Denef C.Roskams T.Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers.J Hepatol 2002:36:200-209.
    12 Buniatian GH.Stages of activation of hepatic stellate cells:effects of ellagic acid.an inhibiter of liver fibrosis,on their differentiation in culture.Cell Prolif 2003:36:307-319.
    13 Morini S.Carotti S,Carpino G,Franchitto A.Corradini SG.Merli M.et al.GFAP expression in the liver as an early marker of stellate cells activation,Ital J Anat Embryol 2005:110:193-207.
    14 Tomanovic N,Boricic I.Brasanac D.[Immunohistochemical analysis of alpha-SMA and GFAP expression in liver stellate cells].Vojnosanit Pregl 2006:63:553-557.
    15 Enzan H.Himeno H.Iwamura S.Onishi S.Saibara T.Yamamoto Y,et al.Alpha-smooth muscle actin-positive perisinusoidal stromal cells in human hepatocellular carcinoma.Hepatology 1994:19:895-903.
    16 Okamura N,Yoshida M.Shibuya A.Sugiura H.Okayasu I.Ohbu M.Cellular and stromal characteristics in the scirrhous hepatoccllular carcinoma:comparison with hepalocellular carcinomas and intrahepatic cholangiocarcinomas.Pathol Int 2005:55:724-731.
    17 Cheng JD.Valianou M.Canutescu AA.Jaffe EK.Lee HO.Wang H.et al Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth.Mol Cancer Ther 2005:4:351-360.
    18 Cheng JD.Dunbrack RL.Jr..Valianou M.Rogatko A.Alpaugh RK.Weiner LM.Promotion of tumor growth by murine fibroblast activation protein,a serine protease,in an animal model.Cancer Res 2002:62: 4767-4772.
    
    19 Welt S, Divgi CR, Scott AM, Garin-Chesa P, Finn RD, Graham M, et al. Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts.J Clin Oncol 1994; 12: 1193-1203.
    
    20 Park JE, Lenter MC, Zimmermann RN, Garin-Chesa P, Old LJ, Rettig WJ. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem 1999; 274: 36505-36512.
    
    21 Scanlan MJ, Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, et al. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci U S A 1994; 91: 5657-5661.
    
    22 Niedermeyer J, Scanlan MJ, Garin-Chesa P, Daiber C, Fiebig HH, Old LJ, et al. Mouse fibroblast activation protein: molecular cloning, alternative splicing and expression in the reactive stroma of epithelial cancers. Int J Cancer 1997: 71: 383-389.
    
    23 Dolznig H, Schweifer N. Puri C, Kraut N, Rettig WJ, Kerjaschki D, et al. Characterization of cancer stroma markers: in silico analysis of an mRNA expression database for fibroblast activation protein and endosialin. Cancer Immun 2005; 5: 10.
    
    24 Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci U S A 1990; 87: 7235-7239.
    
    25 Ramirez-Montagut T. Blachere NE, Sviderskaya EV. Bennett DC. Reltig WJ. Garin-Chesa P. et al. FAPalpha, a surface peptidase expressed during wound healing, is a tumor suppressor. Oncogene 2004: 23:5435-5446.
    
    26 Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006: 6: 392-401.
    
    27 Blazejewski S. Le Bail B. Boussarie L. Blanc .IF. Malaval L. Okubo K. et al. Osteonectin (SPARC) expression in human liver and in cultured human liver myofibroblasts. Am J Pathol 1997: 151: 651-657.
    
    28 Nakatani K. Seki S. Kawada N. Kitada T. Yamada T. Sakaguchi H. et al Expression of SPARC by activated hepatic stellate cells and its correlation with the stages of fibrogenesis in human chronic hepatitis. Virchows Arch 2002: 441: 466-474.
    
    29 Infante JR. Matsubayashi H. Sato N. Tonascia J. Klein AP. Riall TA. et al. Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol 2007: 25:319-325.
    
    30 Koukourakis Ml. Giatromanolaki A. Brckken RA. Sivridis E. Gatter KC. Harris AL. et al. Enhanced expression of SPARC/osteonectin in the tumor-associated stroma of non-small cell lung cancer is correlated with markers of hypoxia/acidity and with poor prognosis of patients.Cancer Res 2003;63:5376-5380.
    31 Puolakkainen PA,Brekken RA,Muneer S,Sage EH.Enhanced growth of pancreatic tumors in SPARC-null mice is associated with decreased deposition of extracellular matrix and reduced tumor cell apoptosis.Mol Cancer Res 2004;2:215-224.
    32 Brekken RA,Puolakkainen P,Graves DC,Workman G,Lubkin SR,Sage EH.Enhanced growth of tumors in SPARC null mice is associated with changes in the ECM.J Clin Invest 2003;111:487-495.
    33 Orimo A,Gupta PB,Sgroi DC,Arenzana-Seisdedos F,Delaunay T,Naeem R,et al.Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion.Cell 2005;121:335-348.
    34 Ohira S.Sasaki M,Harada K,Sato Y,Zen Y,Isse K,et al.Possible regulation of migration of intrahepatic cholangiocarcinoma cells by interaction of CXCR4 expressed in carcinoma cells with tumor necrosis factor-alpha and stromal-derived factor-1 released in stroma.Am J Pathol 2006;168:1155-1168.
    35 Schimanski CC,Bahre R,Gockel I.Muller A,Frerichs K,Homer V,et al.Dissemination of hepatocellular carcinoma is mediated via chemokine receptor CXCR4.Br J Cancer 2006;95:210-217.
    36 Ohira S,Itatsu K,Sasaki M,Harada K,Sato Y,Zen Y,et al.Local balance of transtbrming growth factor-betal secreted from cholangiocarcinoma cells and stromal-derived factor-1 secreted from stromal fibroblasts is a factor involved in invasion of cholangiocarcinoma.Pathol Int 2006:56:381-389.
    37 Matsumoto K.Nakamura T.NK4(HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics.Cancer Sci 2003;94:321-327.
    38 Zhang YW.Vande Woude GF.HGF/SF-met signaling in the control of branching morphogenesis and invasion.J Cell Biochem 2003:88:408-417.
    39 Grant DS.Kleinman HK.Goldberg ID.Bhargava MM.Nickoloff BJ.Kinsella JL.et al.Scatter factor induces blood vessel formation in vivo.Proc Natl Acad Sci U S A 1993:90:1937-1941.
    40 D'Errico A.Fiorentino M.Ponzetto A.Daikuhara Y.Tsubouchi H.Brechot C,et al,Liver hepatocyte growth factor does not always correlate with hepatocellular proliferation in human liver lesions:its specific receptor c-met does.Hepatology 1996:24:60-64.
    41 Neaud V.Faouzi S.Guirouilh J.Le Bail B.Balabaud C.Bioulac-Sage P.et al.Human hepatic myofibroblasts increase invasiveness of hepatocellular carcinoma cells:evidence for a role of hepatocyte growth factor.Hepatology 1997:26:1458-1466.
    42 Guirouilh J.Castroviejo M.Balabaud C.Desmouliere A.Rosenbaum J.Hepatocarcinoma cells stimulate hepatocyte growth factor secretion in human liver my ofibroblasts,Int J Oncol 2000:17:777-781.
    43 Kim K.J.Wang L.Su YC.Gillespie GY.Salhotra A.Lat B.et al.Systemic anti-hcpatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts. Clin Cancer Res 2006; 12: 1292-1298.
    
    44 Son G, Hirano T, Seki E, Iimuro Y, Nukiwa T, Matsumoto K, et al. Blockage of HGF/c-Met system by gene therapy (adenovirus-mediated NK4 gene) suppresses hepatocellular carcinoma in mice. J Hepatol 2006; 45: 688-695.
    
    45 Yokosaki Y, Monis H, Chen J, Sheppard D. Differential effects of the integrins alpha9betal, alphavbeta3, and alphavbeta6 on cell proliferative responses to tenascin. Roles of the beta subunit extracellular and cytoplasmic domains. J Biol Chem 1996; 271: 24144-24150.
    
    46 Orend G, Chiquet-Ehrismann R. Tenascin-C induced signaling in cancer. Cancer Lett 2006; 244: 143-163.
    
    47 Brunner A, Mayerl C, Tzankov A, Verdorfer 1. Tschorner I, Rogatsch H, et al. Prognostic significance of tenascin-C expression in superficial and invasive bladder cancer. J Clin Pathol 2004; 57: 927-931.
    
    48 De Wever O. Nguyen QD, Van Hoorde L. Bracke M, Bruyneel E. Gespach C, et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. Faseb J 2004: 18: 1016-1018.
    
    49 Parekh K, Ramachandran S, Cooper J. Bigner D, Patterson A. Mohanakumar T. Tenascin-C, over expressed in lung cancer down regulates effector functions of tumor infiltrating lymphocytes. Lung Cancer 2005; 47: 17-29.
    
    50 De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol 2003: 200: 429-447.
    
    51 Kuperwasser C. Chavarria T, Wu M, Magrane G. Gray JW. Carey L, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A 2004: 101:4966-4971.
    
    52 Olumi AF, Grossfeld GD, Hayward SW. Carroll PR. Tlsty ID. Cunha GR. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999: 59: 5002-5011.
    
    53 Bhowmick NA, Neilson EG, Moses HL. Stroma! flbroblasts in cancer initiation and progression. Nature 2004; 432: 332-337.
    
    54 Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003: 3: 807-821.
    
    55 Lochter A. Galosy S. Muschler .J. Freedman N. Werb Z. Bissell M.I. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epilhelial-to-mesench\mal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 1997: 139: 1861-1872.
    56 Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005; 435: 969-973.
    
    57 Hartmann TN, Burger JA, Glodek A, Fujii N. Burger M. CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene 2005; 24: 4462-4471.
    
    58 Ayala G, Tuxhorn JA, Wheeler TM, Frolov A, Scardino PT, Ohori M, et al. Reactive stroma as a predictor of biochemical-free recurrence in prostate cancer. Clin Cancer Res 2003; 9:4792-4801.
    
    59 Henry LR, Lee HO, Lee JS, Klein-Szanto A, Watts P, Ross EA, et al. Clinical implications of fibroblast activation protein in patients with colon cancer. Clin Cancer Res 2007; 13: 1736-1741.
    
    60 Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889; 1: 571-573.
    
    61 Wuest T, Moosmayer D, Pfizenmaier K. Construction of a bispecific single chain antibody for recruitment of cytotoxic T cells to the tumour stroma associated antigen fibroblast activation protein. J Biotechnol 2001;92: 159-168.
    
    62 Loeffler M, Kruger JA. Niethammer AG Reisfeld RA. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest 2006; 116: 1955-1962.
    
    63 Maeno H, Ono T, Dhar DK, Sato T, Yamanoi A, Nagasue N. Expression of hypoxia inducible factor-1 alpha during liver regeneration induced by partial hepatectomy in rats. Liver Int 2005: 25:1002-1009.
    
    64 Koukourakis Ml GA. Brekken RA, Sivridis E. Gatter KC, Harris AL. Sage EH. Enhanced expression of SPARC/osteonectin in the tumor-associated stroma of non-small cell lung cancer is correlated with markers of hypoxia/acidity and with poor prognosis of patients. Cancer Res 2003: 63: 5376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700