用户名: 密码: 验证码:
文昌鱼REL、NFAT、TGFBI基因克隆表达及TLR信号通路进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文昌鱼作为脊椎动物的祖先物种,对研究脊椎动物形态发生、发育和免疫系统的进化过程起到关键作用。随着大量物种基因组测序的完成与比较免疫学的迅速发展,以及佛罗里达文昌鱼全基因组测序的完成,为我们系统的研究脊椎动物免疫系统的起源与进化提供了物质基础。因此,本论文以文昌鱼EST数据库(http://rich.yunda.org/test/amphioxusest/)和一些公共数据库为基础,对白氏文昌鱼(Branchostoma belcheri)REL、NFAT、GFBI基因的功能与进化进行研究;并利用比较基因组学的研究方法对动物TLR信号通路的起源与进化进行了详细的研究,从而揭示自然选择在基因复制、基因结构的改变和结构域变化过程中的作用。具体工作如下:
     1、哺乳动物核因子活化B细胞K轻链增强子(nuclear factor kappa-light-chain-enhancer of activated B cells,NF-κB)蛋白家族基因是一类非常重要的转录因子,在信号传递、细胞凋亡、先天性免疫和适应性免疫等过程中起到关键的作用。我们在白氏文昌鱼基因组中克隆了一个NF-κB蛋白家族基因(命名为AmphiREL),该基因全长2700bp,编码773个氨基酸,含有RHD和IPT两个结构域。在LPS免疫刺激下能够参与到文昌鱼的先天性免疫反应过程中,在刺激后6h时表达量达到最高,为对照组(注射PBS)的2.4倍。基因共线性与基因结构比较分析结果显示文昌鱼AmphiREL基因与人类的RELB基因直系同源,与人类的RELA和REL基因是旁系同源关系。在进化过程中Rel亚家族基因的保守motif发生规律性的改变,并受到较强的纯化选择。我们的研究结果为更好的理解Rel亚家族基因的功能和进化提供了重要线索。
     2、活化T细胞核因子(Nuclear Factor of Activated T cells,NFAT)最早是在细胞核提取物中被发现,它是一类能够结合在白细胞介素-2(IL-2)上的可诱导的DNA结合因子。NFAT在免疫系统和调节脊椎动物发育过程中起到非常重要的作用。我们首先在白氏文昌鱼基因组中克隆了一个NFAT蛋白家族基因(命名为AmphiNFAT),其基因全长为3547bp,编码605个氨基酸,包含一个非常保守的DNA结合结构域(RHR domain)、一个中度保守的调节结构域(NHRdomain)、和一个不太保守的C端结构域。在LPS免疫刺激下,该基因能够参与文昌鱼的先天性免疫反应过程。空间表达模式分析结果显示,文昌鱼AmphiNFAT基因在肌肉和脊索中表达量最高,在鳃中表达量次之,在肠、肝盲囊和性腺中表达量最低。进化研究结果表明NFAT蛋白家族基因最早存在于腔肠动物门动物的共同祖先中,并且在进化过程中文昌鱼和海胆基因组丢失了NFAT1-4基因。另外,在进化过程中NFAT蛋白家族基因受到较强的纯化选择。我们提出NFAT蛋白家族基因的复制及新功能的产生与自然选择压力的关系模型。我们的结果为更好的理解NFAT蛋白家族基因的功能和进化提供有力的证据。
     3、转化生长因子β诱导基因(transforming growth factor β induced gene,TGFBI)最初是在TGFβ1诱导的肺癌细胞系中被发现,它能够编码一个细胞外基质(ECM)蛋白。我们首先在文昌鱼基因组中克隆了一个TGFBI蛋白家族基因(命名为AmphiTGFBI),该基因全长3095bp,编码867个氨基酸,包含一个信号肽序列、一个EMI结构域和5个Fas1结构域,然而其他物种中最多含有4个Fas1结构域。组织表达模式分析结果显示,文昌鱼AmphiTGFBI基因在所有检测的5个组织中都有表达。进化研究结果表明TGFBI蛋白家族成员最早出现在海绵动物的共同祖先基因组中,并且无脊椎动物TGFBI蛋白家族成员的基因结构和保守motif都存在规律性的变化。这些变化可能是由TGFBI蛋白家族成员在进化过程中Fas1结构域的丢失和一些分枝受到正选择的作用导致的。这些研究结果为深入研究TGFBI蛋白家族成员的功能与进化提供了理论依据。
     4、Toll样受体信号通路(Toll-like receptor signaling pathway)的网络结构和功能从昆虫到哺乳动物都是非常保守的,并且在果蝇和哺乳动物的先天性免疫反应过程中起到关键作用。另外,基因在行使其生物学功能过程中往往需要大量蛋白分子相互作用的复杂网络来实现的。因此,我们在网络水平上对TLR(Toll-like receptor)信号通路的起源与进化进行了研究。其研究结果表明TLR信号通路相关基因在进化过程中受到较强的纯化选择压力,并且这些基因受到的选择压力跟基因在通路中所处的位置成反比。另外,TLR信号通路可能最早出现在海绵和早期多细胞动物共同祖先的基因组中,并在进化过程中伴随着TLR、IKK、IκB、NF-κB等基因的复制和接头分子的扩增,以及NF-κB基因的结构和保守结构域的变化。这些结果能够更好的帮助我们理解动物TLR信号通路的进化历史和网络结构之间的联系。
     本论文对文昌鱼基因REL,NFAT,TGFBI的功能和进化及TLR信号通路的进化和起源问题进行了研究,率先揭示了REL、NFAT、TGFBI和TLR信号通路的起源和进化过程。对自然选择在基因复制,基因结构的改变及保守结构域的变化过程中所起的作用进行了探讨,为我们更好地理解自然选择与基因新功能的获得奠定了基础。
Amphoxus, as an ancestral species of vertebrate animals, play important roles in the evolution of vertebrate morphogenesis, development, immunity. With the development of whole genome sequencing finished, the rapid development of the comparative immunology and the completion of Branchostoma florida genome sequencing which could provide the material basis for systematically studying the evolution and the origin of vertebrate immune system. Therefore, we studied the function and evolution of amphoxus(Branchostoma belcheri) REL, NEAT, TGFBI genes based on the amphioxus EST database (http://rich.yunda.org/test/amphioxusest/) and some public database and then we used the comparative genomics research methods to study the evolution and origin of TLR signaling pathway in order to reveal the relationship between the natural selection and gene duplication, the shifted of gene structure, and the changed of gene domains. The detail results as following:
     1. NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), as a very important transcription factor, play an important roles in cell signalling, apoptosis, innate immunity and adaptive immunity and so on. We cloned a NF-κB gene from Branchostoma belcheri genome (named as AmphiREL). Its full-length has2700bp and encodes a putative protein with773aa, which including two conserved domains:RHD domain and IPT domain. AmphiREL could involve in amphioxus innate immunity after LPS stimulation, which gene expression was significantly up-regulated up to2.4fold (P<0.01) at6h after LPS challenge. The results of gene synteny and gene structure analysis have shown that AmphiREL gene may be orthologous to human RELB, whereas human RELA and REL are paralogous genes of the AmphiREL gene. The conserved motif of Rel subfamily genes has regular change and all genes under very strong negtive selection in the evolutionary history. Together, our results provide important clues for understanding the evolution and function of Rel subfamily genes.
     2. NFAT (Nuclear Factor of Activated T cells), which paly an important roles in immunity system and development of vertebrate, was first identified in nuclear extracts of activated T cells as an inducible DNA-binding factor that binds to IL-2. We cloned a NFAT gene from Branchostoma belcheri genome (named as AmphiNFAT) which full-length has3547bp, encodes a putative protein with605aa. The polypeptide has a highly conserved DNA-binding domain (Rel homology region, RHR), a moderately conserved regulatory domain (NFAT homology region, NHR), and a non-conserved carboxyterminal domain. The AmphiNFAT could response to LPS-induced innate immunity of amphioxus. Tissue expression pattern of AmphiNFAT gene has shown that the expression of AmphiNFAT was high in the muscles and notochord, moderate in gonad and gills, and low in the intestine and hepatic cecum. The NFAT family genes were present in a common ancestor with cnidaria, and NFAT1-4paralogs were lost early in Branchiostoma and Strongylocentrotus genomes. Besides, we discovered that NFAT family genes underwent strong purifying selection. Finally, we propose a model of the relationship between natural selection and NFAT genes duplication. Taken together, our findings provide an insight into the innate immune response of amphioxus and the evolution of the NFAT gene family.
     3. TGFBI (transforming growth factor β induced) encoding an extracellular matrix (ECM) protein, was identified from a TGFβ1treated lung adenocarcinoma cell line. We cloned a TGFBI gene from Branchostoma belcheri genome (named as AmphiTGFBT), which full-length has3095bp, encodes a putative protein with867aa. The AmphiTGFBI contains a signal peptide (SP), an EMI domain, five Fasl domains (Fasla-e) compared to no more than4Fasl domains in other animals. The tissue expression patterm has shown that AmphiTGFBI was detected in all tissues. The TGFBI family genes were present in a common ancestor with Amphimedon queenslandica and the gene structures and conserved motifs of invertebrate TGFBIs were found to present regular changes during the evolutionary history. Positive selection and Fasl domain loss might cause the regular changes of gene structures and conserved motifs in invertebrate TGFBI during the evolutionary history. Together, our findings provided an insight into the function and evolution of the TGFBI family.
     4. The TLR signaling pathway, which plays a central role in innate immunity from Drosophila to mammal, is highly conserved in structure and function from insects to vertebrates. Otherwise, genes carry out their biological functions through pathways in complex networks consisting of many interacting molecules. Therefore, we studied the evolution and origin of animal TLR signaling pathway revealed by network-level molecular evolutionary analyses. All genes in TLR signaling pathway were highly conserved and underwent strong purifying selection and the selection constraint of genes was negatively correlated with its position along TLR signaling pathway. The TLR signaling pathway might present in a common ancestor of sponges and eumetazoa, and evolve via the TLR, IKK, IκB and NF-κB genes underwent duplication events as well as adaptor molecular enlargement, and gene structure and conservation motif of NF-κB genes shifted in their evolutionary history. Our results will improve our understanding on the evolutionary history of animal TLR signaling pathway as well as the relationship between the network architecture and the sequences evolution of individual protein.
     In this thesis, the function and evolutionary history of amphioxus REL, NFAT, TGFBI genes and the evolution and origin of animal TLR signaling pathway have been studied. We first revealed the proccess of evolution and origin of Rel subfamily, NFAT family, TGFBI family and TLR signaling pathway, and discussed the relationship between natural selection and gene duplication, the change of gene structure and the change of conserved domain. Our results will improve our understanding on the relationship between natural selection and new function obtained of proteins.
引文
[1]N.H. Putnam, T. Butts, D.E. Ferrier, et al., The amphioxus genome and the evolution of the chordate karyotype, Nature,453 (2008) 1064-1071.
    [2]J.K. Yu, L.Z. Holland, Cephalochordates (amphioxus or lancelets):a model for understanding the evolution of chordate characters, Cold Spring Harbor protocols, 2009 (2009) pdb emo 130.
    [3]T. Kon, M. Nohara, Y. Yamanoue, et al., Phylogenetic position of a whale-fall lancelet (Cephalochordata) inferred from whole mitochondrial genome sequences, BMC Evol Biol,7 (2007) 127.
    [4]A.O. Kovalevskij, Entwickelungsgeschichte des Amphioxus lanceolatus, Acad. Imperiale des Sciences,1867.
    [5]R. Hirakow, N. Kajita, An electron microscopic study of the development of amphioxus, Branchiostoma belcheri tsingtauense:cleavage, Journal of Morphology, 203(1990)331-344.
    [6]N.D. Holland, L.Z. Holland, Fine structural study of the cortical reaction and formation of the egg coats in a lancelet (= amphioxus), Branchiostoma floridae (phylum Chordata:subphylum Cephalochordata= Acrania), The Biological Bulletin, 176(1989) 111-122.
    [7]M. Theodosiou, A. Colin, J. Schulz, et al., Amphioxus spawning behavior in an artificial seawater facility, J Exp Zool B Mol Dev Evol,316 (2011) 263-275.
    [8]N. Turner, R. Grose, Fibroblast growth factor signalling:from development to cancer, Nature Reviews Cancer,10 (2010) 116-129.
    [9]S. Bertrand, A. Camasses, I. Somorjai, et al., Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits, Proc Natl Acad Sci U S A,108 (2011)9160-9165.
    [10]M. Schubert, L.Z. Holland, N.D. Holland, Characterization of an amphioxus Wnt gene, AmphiWntl 1, with possible roles in myogenesis and tail outgrowth, Genesis,27 (2000) 1-5.
    [11]L.Z. Holland, N.D. Holland, M. Schubert, Developmental expression of AmphiWntl, an amphioxus gene in the Wnt 1/wingless subfamily, Development genes and evolution,210 (2000) 522-524.
    [12]M. Schubert, L.Z. Holland, M.D. Stokes, et al., Three Amphioxus Wnt Genes (AmphiWnti, AmphiWnt5, and AmphiWnt6) Associated with the Tail Bud:the Evolution of Somitogenesis in Chordates, Developmental biology,240 (2001) 262-273.
    [13]M. Schubert, L.Z. Holland, N.D. Holland, et al., A phylogenetic tree of the Wnt genes based on all available full-length sequences, including five from the cephalochordate amphioxus, Molecular biology and evolution,17 (2000) 1896-1903.
    [14]T. Onai, H.-C. Lin, M. Schubert, et al., Retinoic acid and Wnt/β-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus, Developmental biology,332 (2009) 223-233.
    [15]J. Massague, TGFβ signalling in context, Nature reviews Molecular cell biology, 13(2012)616-630.
    [16]K. Kawamoto, A. Pahuja, B.J. Hering, et al., Transforming growth factor beta 1 (TGF-betal) and rapamycin synergize to effectively suppress human T cell responses via upregulation of FoxP3+Tregs, Transpl Immunol,23 (2010) 28-33.
    [17]N.J. Thornburg, B. Shepherd, J.E. Crowe, Transforming growth factor beta is a major regulator of human neonatal immune responses following respiratory syncytial virus infection, J Virol,84 (2010) 12895-12902.
    [18]T. Gaarenstroom, C.S. Hill, TGF-β signaling to chromatin:How Smads regulate transcription during self-renewal and differentiation, in:Seminars in cell & developmental biology, Elsevier,2014.
    [19]B. Bragdon, O. Moseychuk, S. Saldanha, et al., Bone morphogenetic proteins:a critical review, Cellular signalling,23 (2011) 609-620.
    [20]S. Mirzoeva, C.A. Franzen, J.C. Pelling, Apigenin inhibits TGFβ induced VEGF expression in human prostate carcinoma cells via a Smad2/3-and Src-dependent mechanism, Molecular carcinogenesis, (2013).
    [21]X. Yu, J. Li, H. Liu, et al., Identification and expression of amphioxus AmphiSmadl/5/8 and AmphiSmad4, Science China Life Sciences,54 (2011) 220-226.
    [22]F. Xing, X. Tan, P.-J. Zhang, et al., Characterization of amphioxus GDF8/11 gene, an archetype of vertebrate MSTN and GDF11, Development genes and evolution,217 (2007) 549-554.
    [23]T. Elsdale, D. Davidson, Somitogenesis in amphibia Ⅳ. The dynamics of tail development, Journal of embryology and experimental morphology,76 (1983) 157-176.
    [24]T. Nakao, A. Ishizawa, Light and electron microscopic observations of the tail bud of the larval lamprey (Lampetra japonica), with special reference to neural tube formation, American journal of anatomy,170 (1984) 55-71.
    [25]M. Uehara, T. Ueshima, Studies of neural tube development in the chicken embryo tail, Anatomy and embryology,179(1988) 149-155.
    [26]C.M. Griffith, M. Wiley, E.J. Sanders, The vertebrate tail bud:three germ layers from one tissue, Anatomy and embryology,185 (1992) 101-113.
    [27]Y. Katsuyama, Y. Sato, S. Wada, et al., Ascidian Tail Formation Requires caudal Function, Developmental biology,213 (1999) 257-268.
    [28]M. Schubert, L.Z. Holland, G.D. Panopoulou, et al., Characterization of amphioxus AmphiWnt8:insights into the evolution of patterning of the embryonic dorsoventral axis, Evolution & development,2 (2000) 85-92.
    [29]C.W. Beck, M. Whitman, J.M. Slack, The Role of BMP Signaling in Outgrowth and Patterning of the Xenopus Tail Bud, Developmental biology,238 (2001) 303-314.
    [30]E. van den Akker, S. Forlani, K. Chawengsaksophak, et al., Cdx1 and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis elongation, Development,129 (2002) 2181-2193.
    [31]D. Lohnes, The Cdxl homeodomain protein:an integrator of posterior signaling in the mouse, Bioessays,25 (2003) 971-980.
    [32]J. Dubrulle, O. Pourquie, fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo, Nature,427 (2004) 419-422.
    [33]A. Wodarz, R. Nusse, Mechanisms of Wnt signaling in development, Annual review of cell and developmental biology,14 (1998) 59-88.
    [34]J. Huelsken, J. Behrens, The Wnt signalling pathway, Journal of cell science,115 (2002) 3977-3978.
    [35]Y. Yang, Wnts and wing:Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis, Birth Defects Research Part C:Embryo Today: Reviews,69(2003)305-317.
    [36]R.F. Bachvarova, T. Masi, L. Hall, et al., Expression of Axwnt-8 and Axszl in the urodele, axolotl:comparison with Xenopus, Development genes and evolution,211 (2001)501-505.
    [37]P. Itaranta, Y. Lin, J. Perasaari, et al., Wnt6 is expressed in the ureter bud and induces kidney tubule development in vitro, Genesis,32 (2002) 259-268.
    [38]I. Oishi, H. Suzuki, N. Onishi, et al., The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway, Genes to Cells,8 (2003) 645-654.
    [39]C. Beck, J. Slack, Analysis of the developing Xenopus tail bud reveals separate phases of gene expression during determination and outgrowth, Mechanisms of development,72 (1998) 41-52.
    [40]V. Gawantka, N. Pollet, H. Delius, et al., Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning, Mechanisms of development,77 (1998) 95-141.
    [41]J.S. Reece-Hoyes, I.D. Keenan, H.V. Isaacs, Cloning and expression of the Cdx family from the frog Xenopus tropicalis, Developmental dynamics,223 (2002) 134-140.
    [42]M. Tada, J. Smith, Xwntll is a target of Xenopus Brachyury:regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway, Development,127 (2000) 2227-2238.
    [43]A.F. Schier, Axis formation and patterning in zebrafish, Current opinion in genetics & development,11 (2001) 393-404.
    [44]C.W. Beck, J.M. Slack, Notch is required for outgrowth of the Xenopus tail bud, International Journal of Developmental Biology,46 (2002) 255-258.
    [45]D.C. Myers, D.S. Sepich, L. Solnica-Krezel, Bmp activity gradient regulates convergent extension during zebrafish gastrulation, Developmental biology,243 (2002)81-98.
    [46]S. Huang, S. Yuan, L. Guo, et al., Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity, Genome Res,18 (2008) 1112-1126.
    [47]S. Akira, Toll-like receptors and innate immunity, Adv Immunol,78 (2001) 1-56.
    [48]E.F. Kenny, L.A. O'Neill, Signalling adaptors used by Toll-like receptors:an update, Cytokine,43 (2008) 342-349.
    [49]S. Yuan, S. Huang, W. Zhang, et al., An amphioxus TLR with dynamic embryonic expression pattern responses to pathogens and activates NF-κB pathway via MyD88, Molecular immunology,46 (2009) 2348-2356.
    [50]S. Yuan, K. Wu, M. Yang, et al., Amphioxus SARM involved in neural development may function as a suppressor of TLR signaling, J Immunol,184 (2010) 6874.
    [51]J.L. Tenor, A. Aballay, A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity, EMBO Rep,9 (2008) 103-109.
    [52]L.W. Belinda, W.X. Wei, B.T. Hanh, et al., SARM:a novel Toll-like receptor adaptor, is functionally conserved from arthropod to human, Mol Immunol,45 (2008) 1732-1742.
    [53]M. Carty, R. Goodbody, M. Schroder, et al., The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling, Nat Immunol,7 (2006) 1074-1081.
    [54]C. Couillault, N. Pujol, J. Reboul, et al., TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM, Nat Immunol,5 (2004) 488-494.
    [55]S. Yuan, T. Liu, S. Huang, et al., Genomic and functional uniqueness of the TNF receptor-associated factor gene family in amphioxus, the basal chordate, J Immunol, 183(2009)4560-4568.
    [56]X. Song, P. Jin, J. Hu, et al., Involvement of AmphiREL, a Rel-like gene identified in Brachiastoma belcheri, in LPS-induced response:Implication for evolution of Rel subfamily genes, Genomics,99 (2012) 361-369.
    [57]L. Zhou, P. Jin, J. Qian, et al., Molecular cloning and characterization of an IKK homologue from amphioxus(Branchiostoma belcheri), Molecular biology reports,39 (2012)10751-10758.
    [58]S. Yuan, J. Zhang, L. Zhang, et al., The Archaic Roles of the Amphioxus NF-κB/IκB Complex in Innate Immune Responses, The Journal of Immunology,191 (2013)1220-1230.
    [59]S. Huang, H. Tian, Z. Chen, et al., The evolution of vertebrate tetraspanins:gene loss, retention, and massive positive selection after whole genome duplications, BMC evolutionary biology,10 (2010) 306.
    [60]P. Jin, J. Hu, J. Qian, et al., Identification and characterization of a putative lipopolysaccharide-induced TNF-α factor (LITAF) gene from Amphioxus (Branchiostoma belcheri):An insight into the innate immunity of Amphioxus and the evolution of LITAF, Fish & shellfish immunology,32 (2012) 1223-1228.
    [61]S. Huang, S. Yuan, M. Dong, et al., The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms, Genomics,86 (2005) 674-684.
    [62]P. Li, S. Zhang, C. Fan, COMMD6 from amphioxus Branchiostoma belcheri (BbCOMMD6) interacts with creatine kinase and inhibits its activity, The international journal of biochemistry & cell biology,41 (2009) 2459-2465.
    [63]P. Jin, Y. Gao, L. Chen, et al., Cloning and characterization of a COMMD4 gene from amphioxus (Branchiostoma belcheri):An insight into the function and evolution of COMMD4, Immunology letters,148 (2012) 110-116.
    [64]S. Bertrand, H. Escriva, Evolutionary crossroads in developmental biology: amphioxus, Development,138 (2011) 4819-4830.
    [65]S.J. Bourlat, T. Juliusdottir, C.J. Lowe, et al., Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida, Nature,444 (2006) 85-88.
    [66]N.D. Holland, J. Chen, Origin and early evolution of the vertebrates:new insights from advances in molecular biology, anatomy, and palaeontology, Bioessays, 23(2001)142-151.
    [67]S. Ohno, Evolution by gene duplication, London:George Alien & Unwin Ltd. Berlin, Heidelberg and New York:Springer-Verlag.,1970.
    [68]L. Skrabanek, K.H. Wolfe, Eukaryote genome duplication-where's the evidence?, Current opinion in genetics & development,8 (1998) 694-700.
    [69]H. Escriva, L. Manzon, J. Youson, et al., Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution, Molecular biology and evolution,19(2002) 1440-1450.
    [70]P. Dehal, J.L. Boore, Two rounds of whole genome duplication in the ancestral vertebrate, PLoS biology,3 (2005) e314.
    [71]N.H. Putnam, T. Butts, D.E. Ferrier, et al., The amphioxus genome and the evolution of the chordate karyotype, Nature,453 (2008) 1064-1071.
    [72]S. Kuraku, A. Meyer, S. Kuratani, Timing of genome duplications relative to the origin of the vertebrates:did cyclostomes diverge before or after?, Molecular biology and evolution,26 (2009) 47-59.
    [73]J. Garcia-Fernandez, P.W. Holland, Archetypal organization of the amphioxus Hox gene cluster, Nature,370 (1994) 563-566.
    [74]C.T. Amemiya, S.J. Prohaska, A. Hill-Force, et al., The amphioxus Hox cluster: characterization, comparative genomics, and evolution, Journal of Experimental Zoology Part B:Molecular and Developmental Evolution,310 (2008) 465-477.
    [75]H. Wada, J. Garcia-Fernandez, P.W. Holland, Colinear and segmental expression of amphioxus Hox genes, Developmental biology,213 (1999) 131-141.
    [76]M. Manzanares, H. Wada, N. Itasaki, et al., Conservation and elaboration of Hox gene regulation during evolution of the vertebrate head, Nature,408 (2000) 854-857.
    [77]T. Huxford, D.-B. Huang, S. Malek, et al., The crystal structure of the IκBα/NF-κB complex reveals mechanisms of NF-κB inactivation, Cell,95 (1998) 759-770.
    [78]J. Napetschnig, H. Wu, Molecular basis of NF-κB signaling, Annual review of biophysics,42(2013)443.
    [79]Song X, Pin Jin, Qin S, et al., The evolution and origin of animal Toll-like receptor signaling pathway revealed by network-level molecular evolutionary analyses, Plos ONE,7(12) (2012) e51657.
    [80]T.T. Huang, N. Kudo, M. Yoshida, et al., A nuclear export signal in the N-terminal regulatory domain of IκBα controls cytoplasmic localization of inactive NF-κB/IκBα complexes, PNAS,97 (2000) 1014-1019.
    [81]W.F. Tam, L.H. Lee, L. Davis, et al., Cytoplasmic sequestration of rel proteins by IκBα requires CRM1-dependent nuclear export, Molecular and cellular biology,20 (2000) 2269-2284.
    [82]S. Ghosh, M. Karin, Missing pieces in the NF-κB puzzle, Cell,109 (2002) S81-S96.
    [83]D. Basseres, A. Baldwin, Nuclear factor-KB and inhibitor of kB kinase pathways in oncogenic initiation and progression, Oncogene,25 (2006) 6817-6830.
    [84]G Courtois, T. Gilmore, Mutations in the NF-κB signaling pathway:implications for human disease, Oncogene,25 (2006) 6831-6843.
    [85]P.A. Baeuerle, D. Baltimore, IκB:a specific inhibitor of the NF-κB transcription factor, Science,242 (1988) 540-546.
    [86]U. Zabel, P.A. Baeuerle, Purified human IκB can rapidly dissociate the complex of the NF-κB transcription factor with its cognate DNA, Cell,61 (1990) 255-265.
    [87]T.T. Huang, S. Miyamoto, Postrepression activation of NF-κB requires the amino-terminal nuclear export signal specific to IκBα, Molecular and cellular biology, 21 (2001)4737-4747.
    [88]S. Malek, Y. Chen, T. Huxford, et al., IκBβ, but not IκBα, functions as a classical cytoplasmic inhibitor of NF-κB dimers by masking both NF-κB nuclear localization sequences in resting cells, Journal of Biological Chemistry,276 (2001) 45225-45235.
    [89]W.F. Tam, R. Sen, IκB family members function by different mechanisms, Journal of Biological Chemistry,276 (2001) 7701-7704.
    [90]E. Fiorini, I. Schmitz, W.E. Marissen, et al., Peptide-induced negative selection of thymocytes activates transcription of an NF-κB inhibitor, Molecular cell,9 (2002) 637-648.
    [91]M.D. Jacobs, S.C. Harrison, Structure of an IκBα/NF-κB complex, Cell,95 (1998) 749-758.
    [92]S. Malek, D.-B. Huang, T. Huxford, et al., X-ray crystal structure of an IκBβ NF-κB p65 homodimer complex, Journal of Biological Chemistry,278 (2003) 23094-23100.
    [93]J.A. DiDonato, M. Hayakawa, D.M. Rothwarf, et al., A cytokine-responsive IκB kinase that activates the transcription factor NF-κB, Nature,388 (1997) 548-554.
    [94]E. Zandi, D.M. Rothwarf, M. Delhase, et al., The IκB kinase complex (IKK) contains two kinase subunits, IKKa and IKKβ, necessary for IκB phosphorylation and NF-κB activation, Cell,91 (1997) 243-252.
    [95]M.K. Meffert, J.M. Chang, B.J. Wiltgen, et al., NF-κB functions in synaptic signaling and behavior, Nature neuroscience,6 (2003) 1072-1078.
    [96]V. Fridmacher, B. Kaltschmidt, B. Goudeau, et al., Forebrain-specific neuronal inhibition of nuclear factor-KB activity leads to loss of neuroprotection, The Journal of neuroscience,23 (2003) 9403-9408.
    [97]B. Kaltschmidt, D. Ndiaye, M. Korte, et al., NF-κB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling, Molecular and cellular biology,26 (2006) 2936-2946.
    [98]A. O'Mahony, J. Raber, M. Montano, et al., NF-KB/Rel regulates inhibitory and excitatory neuronal function and synaptic plasticity, Molecular and cellular biology, 26 (2006) 7283-7298.
    [99]H. Gutierrez, V.A. Hale, X. Dolcet, et al., NF-κB signalling regulates the growth of neural processes in the developing PNS and CNS, Development,132 (2005) 1713-1726.
    [100]C. Schultz, H.-G Konig, D. Del Turco, et al., Coincident enrichment of phosphorylated IκBα, activated IKK, and phosphorylated p65 in the axon initial segment of neurons, Molecular and Cellular Neuroscience,33 (2006) 68-80.
    [101]M. Hafner, M. Landthaler, L. Burger, et al., Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP, Cell,141 (2010) 129-141.
    [102]K.D. Taganov, M.P. Boldin, K.-J. Chang, et al., NF-KB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses, PNAS,103 (2006) 12481-12486.
    [103]D.R. Hurst, M.D. Edmonds, G.K. Scott, et al., Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis, Cancer research,69 (2009) 1279-1283.
    [104]Y. Li, T.G. VandenBoom, Z. Wang, et al., miR-146a suppresses invasion of pancreatic cancer cells, Cancer research,70 (2010) 1486-1495.
    [105]M.M. Perry, S.A. Moschos, A.E. Williams, et al., Rapid changes in miR-146a expression negatively regulate the IL-1 β-induced inflammatory response in human lung alveolar epithelial cells, The Journal of Immunology,180 (2008) 5689-5698.
    [106]J. Kluiver, S. Poppema, D. de Jong, et al., BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas, The Journal of pathology,207 (2005) 243-249.
    [107]R.M. O'Connell, K.D. Taganov, M.P. Boldin, et al., miR-155 is induced during the macrophage inflammatory response, PNAS,104 (2007) 1604-1609.
    [108]D. Rai, S. Karanti, I. Jung, et al., Coordinated expression of miR-155 and predicted target genes in diffuse large B-cell lymphoma, Cancer genetics and cytogenetics,181 (2008) 8-15.
    [109]B. Wang, S. Majumder, G. Nuovo, et al., Role of miR-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice, Hepatology,50 (2009) 1152-1161.
    [110]B. Xiao, Z. Liu, B.-S. Li, et al., Induction of miR-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response, Journal of Infectious Diseases,200 (2009) 916-925.
    [111]N.K. Cervigne, P.P. Reis, J. Machado, et al., Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma, Human molecular genetics,18 (2009) 4818-4829.
    [112]F. Bazzoni, M. Rossato, M. Fabbri, et al., Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals, PNAS,106 (2009) 5282-5287.
    [113]R. Chen, A. Alvero, D. Silasi, et al., Regulation of IKKβ by miR-199a affects NF-κB activity in ovarian cancer cells, Oncogene,27 (2008) 4712-4723.
    [114]C. Lindenblatt, K. Schulze-Osthoff, G. Totzke, IκBz expression is regulated by miR-124a, Cell Cycle,8 (2009) 2019-2023.
    [115]P.M. Borralho, B.T. Kren, R.E. Castro, et al., miR-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells, FEBS journal,276 (2009) 6689-6700.
    [116]X. Zhang, S. Liu, T. Hu, et al., Up-regulated miR-143 transcribed by nuclear factor κB enhances hepatocarcinoma metastasis by repressing fibronectin expression, Hepatology,50 (2009) 490-499.
    [117]T. Li, M.J. Morgan, S. Choksi, et al., MicroRNAs modulate the noncanonical transcription factor NF-κB pathway by regulating expression of the kinase IKK [alpha] during macrophage differentiation, Nature immunology,11 (2010) 799-805.
    [118]J.-P. Shaw, P.J. Utz, D.B. Durand, et al., Identification of a putative regulator of early T cell activation genes, Science,241 (1988) 202-205.
    [119]GR. Crabtree, S.L. Schreiber, SnapShot:Ca2+-calcineurin-NFAT signaling, Cell, 138(2009)210.
    [120]M.R. Muller, A. Rao, NFAT, immunity and cancer:a transcription factor comes of age, Nature Reviews Immunology,10 (2010) 645-656.
    [121]H. Miyakawa, S.K. Woo, S.C. Dahl, et al., Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity, PNAS,96 (1999) 2538-2542.
    [122]F. Macian, NFAT proteins:key regulators of T-cell development and function, Nature Reviews Immunology,5 (2005) 472-484.
    [123]C. L6pez-Rodriguez, J. Aramburu, L. Jin, et al., Bridging the NFAT and NF-κB families:NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress, Immunity,15 (2001) 47-58.
    [124]F. Macian, NFAT proteins:key regulators of T-cell development and function, Nat Rev Immunol,5 (2005) 472-484.
    [125]M.R. Muller, A. Rao, NFAT, immunity and cancer:a transcription factor comes of age, Nat Rev Immunol,10 (2010) 645-656.
    [126]H. Li, A. Rao, P.G. Hogan, Interaction of calcineurin with substrates and targeting proteins, Trends in cell biology,21 (2011) 91-103.
    [127]J. Aramburu, M.B. Yaffe, C. Lopez-Rodriguez, et al., Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A, Science,285 (1999) 2129-2133.
    [128]M.R. Muller, Y. Sasaki, I. Stevanovic, et al., Requirement for balanced Ca2+/NFAT signaling in hematopoietic and embryonic development, Proceedings of the National Academy of Sciences,106 (2009) 7034-7039.
    [129]F. Granucci, I. Zanoni, N. Pavelka, et al., A contribution of mouse dendritic cell-derived IL-2 for NK cell activation, The Journal of experimental medicine,200 (2004) 287-295.
    [130]I. Zanoni, R. Ostuni, G. Capuano, et al., CD 14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation, Nature,460 (2009) 264-268.
    [131]A.T. Kamath, S. Henri, F. Battye, et al., Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs, Blood,100 (2002) 1734-1741.
    [132]E. Sgouroudis, M. Kornete, C.A. Piccirillo, IL-2 production by dendritic cells promotes Foxp3+ regulatory T-cell expansion in autoimmune-resistant NOD congenic mice, Autoimmunity,44 (2011) 406-414.
    [133]C. Jennings, B. Kusler, P.P. Jones, Calcineurin inactivation leads to decreased responsiveness to LPS in macrophages and dendritic cells and protects against LPS-induced toxicity in vivo, Innate immunity,15 (2009) 109-120.
    [134]H.Z. Elloumi, N. Maharshak, K.N. Rao, et al., A cell permeable peptide inhibitor of NFAT inhibits macrophage cytokine expression and ameliorates experimental colitis, PloS one,7 (2012) e34172.
    [135]S. Kawano, K. Otsu, A. Kuruma, et al., ATP autocrine/paracrine signaling induces calcium oscillations and NFAT activation in human mesenchymal stem cells, Cell calcium,39 (2006) 313-324.
    [136]H. Takayanagi, Osteoimmunology:shared mechanisms and crosstalk between the immune and bone systems, Nature Reviews Immunology,7 (2007) 292-304.
    [137]L.B. Ivashkiv, A signal-switch hypothesis for cross-regulation of cytokine and TLR signalling pathways, Nature Reviews Immunology,8 (2008) 816-822.
    [138]M. Vukcevic, F. Zorzato, G. Spagnoli, et al., Frequent calcium oscillations lead to NFAT activation in human immature dendritic cells, Journal of biological chemistry, 285(2010) 16003-16011.
    [139]S.N. Abraham, A.L.S. John, Mast cell-orchestrated immunity to pathogens, Nature Reviews Immunology,10 (2010) 440-452.
    [140]A. Dudeck, C.A. Suender, S.L. Kostka, et al., Mast cells promote Th1 and Th17 responses by modulating dendritic cell maturation and function, European journal of immunology,41 (2011) 1883-1893.
    [141]A. Vega, P. Chacon, J. Monteseirin, et al., Expression of the transcription factor NFAT2 in human neutrophils:IgE-dependent, Ca2+-and calcineurin-mediated NFAT2 activation, Journal of cell science,120 (2007) 2328-2337.
    [142]M.B. Greenblatt, A. Aliprantis, B. Hu, et al., Calcineurin regulates innate antifungal immunity in neutrophils, The Journal of experimental medicine,207 (2010) 923-931.
    [143]T. Jinquan, S. Quan, H.H. Jacobi, et al., Cutting edge:expression of the NF of activated T cells in eosinophils:regulation by IL-4 and IL-5, The Journal of Immunology,163 (1999) 21-24.
    [144]J.T. Schroeder, K. Miura, H.-H. Kim, et al., Selective expression of nuclear factor of activated T cells 2/cl in human basophils:evidence for involvement in IgE-mediated IL-4 generation, Journal of allergy and clinical immunology,109 (2002) 507-513.
    [145]J. Aramburu, L. Azzoni, A. Rao, et al., Activation and expression of the nuclear factors of activated T cells, NFATp and NFATc, in human natural killer cells: regulation upon CD 16 ligand binding, The Journal of experimental medicine,182 (1995) 801-810.
    [146]I. Tassi, M. Cella, R. Presti, et al., NK cell-activating receptors require PKC-θ for sustained signaling, transcriptional activation, and IFN-y secretion, Blood,112 (2008)4109-4116.
    [147]C. Sommerer, S. Meuer, M. Zeier, et al., Calcineurin inhibitors and NFAT-regulated gene expression, Clinica Chimica Acta,413 (2012) 1379-1386.
    [148]L. Romani, P. Puccetti, Protective tolerance to fungi:the role of IL-10 and tryptophan catabolism, Trends in microbiology,14 (2006) 183-189.
    [149]Z. Liu, J. Lee, S. Krummey, et al., The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease, Nature immunology,12 (2011) 1063-1070.
    [150]K.H. Brettingham-Moore, S. Rao, T. Juelich, et al., GM-CSF promoter chromatin remodelling and gene transcription display distinct signal and transcription factor requirements, Nucleic acids research,33 (2005) 225-234.
    [151]J. Skonier, M. Neubauer, L. Madisen, et al., cDNA cloning and sequence analysis of βig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-P, DNA and cell biology,11 (1992) 511-522.
    [152]J.-E. Kim, S.-J. Kim, B.-H. Lee, et al., Identification of motifs for cell adhesion within the repeated domains of transforming growth factor-β-induced gene, βig-h3, Journal of Biological Chemistry,275 (2000) 30907-30915.
    [153]O. Kitahara, Y. Furukawa, T. Tanaka, et al., Alterations of gene expression during colorectal carcinogenesis revealed by cDNA microarrays after laser-capture microdissection of tumor tissues and normal epithelia, Cancer Research,61 (2001) 3544-3549.
    [154]J. Becker, S. Volland, I. Noskova, et al., Keratoepithelin reverts the suppression of tissue factor pathway inhibitor 2 by MYCN in human neuroblastoma:a mechanism to inhibit invasion, International journal of oncology,32 (2008) 235-240.
    [155]C. Echiburu-Chau, βigH3 protein expression as a marker for breast cancer, International journal of molecular medicine,21 (2008) 561-568.
    [156]D. Matsuda, S.K. Khoo, A. Massie, et al., Identification of copy number alterations and its association with pathological features in clear cell and papillary RCC, Cancer letters,272 (2008) 260-267.
    [157]Y.L. Zhao, C.Q. Piao, T.K. Hei, Downregulation of βig-h3 gene is causally linked to tumorigenic phenotype in asbestos treated immortalized human bronchial epithelial cells, Oncogene,21 (2002) 7471-7477.
    [158]J.N. Shah, G. Shao, T.K. Hei, et al., Methylation screening of the TGFBI promoter in human lung and prostate cancer by methylation-specific PCR, BMC cancer,8 (2008) 284.
    [159]Y. Zhang, G. Wen, G. Shao, et al., TGFBI deficiency predisposes mice to spontaneous tumor development, Cancer research,69 (2009) 37-44.
    [160]S. Morand, V. Buchillier, F. Maurer, et al., Induction of apoptosis in human corneal and HeLa cells by mutated BIGH3, Investigative ophthalmology & visual science,44 (2003) 2973-2979.
    [161]A.A. Ahmed, A.D. Mills, A.E. Ibrahim, et al., The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel, Cancer Cell,12 (2007) 514-527.
    [162]S. Chan, A. Chan, B. Cheung, et al., Identification of genes expressed during myocardial development,116(2003) 1329-1332.
    [163]K. Schwab, L.T. Patterson, B.J. Aronow, et al., A catalogue of gene expression in the developing kidney, Kidney international,64 (2003) 1588-1604.
    [164]H.R. Kim, P.W. Ingham, The extracellular matrix protein TGFBI promotes myofibril bundling and muscle fibre growth in the zebrafish embryo, Developmental Dynamics,238 (2009) 56-65.
    [165]A.A. Ahmed, A.D. Mills, A.E. Ibrahim, et al., The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel, Cancer cell,12 (2007) 514-527.
    [166]C. Ma, Y. Rong, D.R. Radiloff, et al., Extracellular matrix protein βig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation, Genes & development,22 (2008) 308-321.
    [167]F. Wang, W. Hu, J. Xian, et al., The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling, Dev Biol,379 (2013) 16-27.
    [168]H. Rios, S.V. Koushik, H. Wang, et al., Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype, Molecular and cellular biology,25 (2005) 11131-11144.
    [169]D.W. Hamilton, Functional role of periostin in development and wound repair: implications for connective tissue disease, Journal of cell communication and signaling,2 (2008) 9-17.
    [170]S.J. Conway, J.D. Molkentin, Periostin as a heterofunctional regulator of cardiac development and disease, Current genomics,9 (2008) 548-555. [171] R.A. Norris, R.A. Moreno-Rodriguez, Y. Sugi, et al., Periostin regulates atrioventricular valve maturation, Developmental biology,316 (2008) 200-213. [172] A. Soltermann, V. Tischler, S. Arbogast, et al., Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non-small cell lung cancer, Clinical Cancer Research,14 (2008) 7430-7437.
    [173]K. Zinn, L. McAllister, C.S. Goodman, Sequence analysis and neuronal expression of fasciclin I in grasshopper and Drosophila, Cell,53 (1988) 577-587.
    [174]P. Baril, R. Gangeswaran, P. Mahon, et al., Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death:role of the β4 integrin and the PI3k pathway, Oncogene,26 (2007) 2082-2094.
    [175]J.T. Butcher, R.A. Norris, S. Hoffman, et al., Periostin promotes atrioventricular mesenchyme matrix invasion and remodeling mediated by integrin signaling through Rho/PI 3-kinase, Developmental biology,302 (2007) 256-266.
    [176]M. Shimazaki, K. Nakamura, I. Kii, et al., Periostin is essential for cardiac healingafter acute myocardial infarction, The Journal of experimental medicine,205 (2008)295-303.
    [177]R. Doliana, S. Bot, P. Bonaldo, et al., EMI, a novel cysteine-rich domain of EMILINs and other extracellular proteins, interacts with the gClq domains and participates in multimerization, FEBS letters,484 (2000) 164-168.
    [178]T. Sugiura, H. Takamatsu, A. Kudo, et al., Expression and characterization of murine osteoblast-specific factor 2 (OSF-2) in a baculovirus expression system, Protein expression and purification,6 (1995) 305-311.
    [179]H. Kudo, N. Amizuka, K. Araki, et al., Zebrafish periostin is required for the adhesion of muscle fiber bundles to the myoseptum and for the differentiation of muscle fibers, Developmental biology,267 (2004) 473-487.
    [180]G. Takayama, K. Arima, T. Kanaji, et al., Periostin:a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals, Journal of Allergy and Clinical Immunology,118 (2006) 98-104.
    [181]D.L. Coutu, J.H. Wu, A. Monette, et al., Periostin, a member of a novel family of vitamin K-dependent proteins, is expressed by mesenchymal stromal cells, Journal of Biological Chemistry,283 (2008) 17991-18001.
    [182]S. Takeshita, R. Kikuno, K.-i. Tezuka, et al., Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I, Biochem. J,294 (1993) 271-278.
    [183]K. Horiuchi, N. Amizuka, S. Takeshita, et al., Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor β, Journal of Bone and Mineral Research,14 (1999) 1239-1249.
    [184]R.O. Hynes, Integrins:bidirectional, allosteric signaling machines, Cell,110 (2002) 673-687.
    [185]S.J. Park, S. Park, H.-C. Ahn, et al., Conformational resemblance between the structures of integrin-activating pentapetides derived from Pig-h3 and RGD peptide analogues in a membrane environment, Peptides,25 (2004) 199-205.
    [186]J. Zhu, C. Mohan, Toll-like receptor signaling pathways—therapeutic opportunities, Mediators of inflammation,2010 (2010) doi:10.1155/2010/781235.
    [187]E.A. Leadbetter, I.R. Rifkin, A.M. Hohlbaum, et al., Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors, Nature,416 (2002) 603-607.
    [188]L.A. O'Neill, The interleukin-1 receptor/Toll-like receptor superfamily:10 years of progress, Immunological reviews,226 (2008) 10-18.
    [189]C.M. Barton, J.C. Kagan, A cell biological view of Toll-like receptor function: regulation through compartmentalization, Nature Reviews Immunology,9 (2009) 535-542.
    [190]H. Oshiumi, M. Matsumoto, K. Funami, et al., TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction, Nature immunology,4 (2003) 161-167.
    [191]K. Honda, H. Yanai, T. Mizutani, et al., Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling, PNAS, 101 (2004) 15416-15421.
    [192]S. Li, A. Strelow, E.J. Fontana, et al., IRAK-4:a novel member of the IRAK family with the properties of an IRAK-kinase, Proceedings of the National Academy of Sciences,99 (2002) 5567-5572.
    [193]S. Janssens, R. Beyaert, Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members, Molecular cell,11 (2003) 293-302.
    [194]S. Uematsu, S. Sato, M. Yamamoto, et al., Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR) 7-and TLR9-mediated interferon-a induction, The Journal of experimental medicine,201 (2005) 915-923.
    [195]B. Lemaitre, E. Nicolas, L. Michaut, et al., The Dorsoventral Regulatory Gene Cassette spatzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults, Cell,86 (1996) 973-983.
    [196]N. Silverman, T. Maniatis, NF-κB signaling pathways in mammalian and insect innate immunity, Genes Dev,15 (2001) 2321-2342.
    [197]N.H. Putnam, M. Srivastava, U. Hellsten, et al., Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization, Science,317 (2007) 86.
    [198]M. Srivastava, E. Begovic, J. Chapman, et al., The Trichoplax genome and the nature of placozoans, Nature,454 (2008) 955-960.
    [199]M. Srivastava, O. Simakov, J. Chapman, et al., The Amphimedon queenslandica genome and the evolution of animal complexity, Nature,466 (2010) 720-726.
    [200]A. Sebe-Pedros, A. de Mendoza, B.F. Lang, et al., Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki, Mol Biol Evol,28 (2011) 1241-1254.
    [201]N. Pujol, E.M. Link, L.X. Liu, et al., A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans, Current Biology,11 (2001) 809-821.
    [202]M. Kimura, The neutral theory of molecular evolution, Cambridge University Press,1984.
    [203]C. Pal, B. Papp, L.D. Hurst, Highly expressed genes in yeast evolve slowly, Genetics,158 (2001) 927-931.
    [204]S. Subramanian, S. Kumar, Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome, Genetics,168 (2004) 373-381.
    [205]H.B. Fraser, A.E. Hirsh, L.M. Steinmetz, et al., Evolutionary rate in the protein interaction network, Science,296 (2002) 750-752.
    [206]M.W. Hahn, A.D. Kern, Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks, Molecular Biology and Evolution,22 (2005) 803-806.
    [207]R. Jovelin, P.C. Phillips, Expression level drives the pattern of selective constraints along the insulin/Tor signal transduction pathway in Caenorhabditis, Genome Biol Evol,3 (2011) 715-722.
    [208]L. Montanucci, H. Laayouni, GM. Dall'Olio, et al., Molecular evolution and network-level analysis of the N-glycosylation metabolic pathway across primates, Mol Biol Evol,28 (2011) 813-823.
    [209]K.M. Wright, M.D. Rausher, The evolution of control and distribution of adaptive mutations in a metabolic pathway, Genetics,184 (2010) 483-502.
    [210]M.D. Rausher, Y. Lu, K. Meyer, Variation in constraint versus positive selection as an explanation for evolutionary rate variation among anthocyanin genes, Journal of molecular evolution,67 (2008) 137-144.
    [211]K. Livingstone, S. Anderson, Patterns of variation in the evolution of carotenoid biosynthetic pathway enzymes of higher plants, Journal of Heredity,100 (2009) 754.
    [212]H. Ramsay, L.H. Rieseberg, K. Ritland, The correlation of evolutionary rate with pathway position in plant terpenoid biosynthesis, Molecular biology and evolution,26 (2009) 1045-1053.
    [213]H.S. Yu, Y.H. Shen, G.X. Yuan, et al., Evidence of selection at melanin synthesis pathway loci during silkworm domestication, Molecular biology and evolution,28 (2011) 1785.
    [214]D. Alvarez-Ponce, M. Aguade, J. Rozas, Network-level molecular evolutionary analysis of the insulin/TOR signal transduction pathway across 12 Drosophila genomes, Genome Res,19 (2009) 234-242.
    [215]D. Alvarez-Ponce, S. Guirao-Rico, D.J. Orengo, et al., Molecular Population Genetics of the Insulin/TOR Signal Transduction Pathway:A Network-Level Analysis in Drosophila melanogaster, Mol Biol Evol,29 (2012) 123-132.
    [216]X. Wu, X. Chi, P. Wang, et al., The evolutionary rate variation among genes of HOG-signaling pathway in yeast genomes, Biol Direct,5 (2010) 46.
    [217]M. Han, S. Qin, X. Song, et al., Evolutionary rate patterns of genes involved in the Drosophila Toll and Imd signaling pathway, BMC evolutionary biology,13 (2013) 245.
    [218]J.A. Hoffmann, F.C. Kafatos, C.A. Janeway, et al., Phylogenetic perspectives in innate immunity, Science,284 (1999) 1313-1318.
    [219]J.A. Hoffmann, J.M. Reichhart, Drosophila innate immunity:an evolutionary perspective, Nat Immunol,3 (2002) 121-126.
    [220]M.S. Hayden, S. Ghosh, Shared principles in NF-kappaB signaling, Cell,132 (2008) 344-362.
    [221]W.E. Naugler, M. Karin, NF-κB and cancer-identifying targets and mechanisms, Curr Opin Genet Dev,18 (2008) 19-26.
    [222]A. Hoffmann, T.H. Leung, D. Baltimore, Genetic analysis of NF-κB/Rel transcription factors defines functional specificities, EMBO J,22 (2003) 5530-5539.
    [223]S. Ghosh, M.J. May, E.B. Kopp, NF-κB and Rel proteins:evolutionarily conserved mediators of immune responses, Annu Rev Immunol,16 (1998) 225-260.
    [224]P. Bork, Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally?, Proteins,17 (1993) 363-374.
    [225]W.E.G Muller, H.C. Schroder, A. Skorokhod, et al., Contribution of sponge genes to unravel the genome of the hypothetical ancestor of Metazoa (Urmetazoa), Gene,276 (2001) 161-173.
    [226]M. Gauthier, B.M. Degnan, The transcription factor NF-kappaB in the demosponge Amphimedon queenslandica:insights on the evolutionary origin of the Rel homology domain, Dev Genes Evol,218 (2008) 23-32.
    [227]Y. Jiang, X. Wu, Characterization of a Re1 NF-κB homologue in a gastropod abalone, Haliotis diversicolor supertexta, Dev Comp Immunol,31 (2007) 121-131.
    [228]N.H. Putnam, M. Srivastava, U. Hellsten, et al., Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization, Science,317 (2007) 86-94.
    [229]J.A. Chapman, E.F. Kirkness, O. Simakov, et al., The dynamic genome of Hydra, Nature,464 (2010) 592-596.
    [230]X.D. Huang, Z.X. Yin, X.T. Jia, et al., Identification and functional study of a shrimp Dorsal homologue, Dev Comp Immunol,34 (2010) 107-113.
    [231]M. Srivastava, O. Simakov, J. Chapman, et al., The Amphimedon queenslandica genome and the evolution of animal complexity, Nature,466 (2010) 720-726.
    [232]F. Delsuc, H. Brinkmann, D. Chourrout, et al., Tunicates and not cephalochordates are the closest living relatives of vertebrates, Nature,439 (2006) 965-968.
    [233]C. Yu, M. Dong, X. Wu, et al., Genes "waiting" for recruitment by the adaptive immune system:the insights from amphioxus, J Immunol,174 (2005) 3493-3500.
    [234]S.F. Altschul, W. Gish, W. Miller, et al., Basic local alignment search tool, J Mol Biol,215(1990)403-410.
    [235]D. Hilman, U. Gat, The evolutionary history of YAP and the hippo/YAP pathway, Mol Biol Evol,28 (2011) 2403-2417.
    [236]R.C. Edgar, MUSCLE:multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res,32 (2004) 1792-1797.
    [237]K. Tamura, D. Peterson, N. Peterson, et al., MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol Biol Evol,28 (2011) 2731-2739.
    [238]T.L. Bailey, C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in biopolymers, Proc Int Conf Intell Syst Mol Biol,2 (1994) 28-36.
    [239]Z. Yang, PAML:a program package for phylogenetic analysis by maximum likelihood, Comput Appl Biosci,13 (1997) 555-556.
    [240]Z. Yang, R. Nielsen, Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models, Mol Biol Evol,17 (2000) 32-43.
    [241]Z. Yang, PAML 4:phylogenetic analysis by maximum likelihood, Mol Biol Evol,24 (2007) 1586.
    [242]Z. Yang, W.S. Wong, R. Nielsen, Bayes empirical bayes inference of amino acid sites under positive selection, Mol Biol Evol,22 (2005) 1107-1118.
    [243]A. Haziot, E. Ferrero, F. Kontgen, et al., Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice, Immunity,4 (1996)407-414.
    [244]Y. Nagai, S. Akashi, M. Nagafuku, et al., Essential role of MD-2 in LPS responsiveness and TLR4 distribution, Nat Immunol,3 (2002) 667-672.
    [245]L. Verstrepen, T. Bekaert, T.L. Chau, et al., TLR-4, IL-1R and TNF-R signaling to NF-kappaB:variations on a common theme, Cell Mol Life Sci,65 (2008) 2964-2978.
    [246]S. Yuan, S. Huang, W. Zhang, et al., An amphioxus TLR with dynamic embryonic expression pattern responses to pathogens and activates NF-kappaB pathway via MyD88, Mol Immunol,46 (2009) 2348-2356.
    [247]S. Maere, S. De Bodt, J. Raes, et al., Modeling gene and genome duplications in eukaryotes, PNAS,102 (2005) 5454.
    [248]R.A. Studer, S. Penel, L. Duret, et al., Pervasive positive selection on duplicated and nonduplicated vertebrate protein coding genes, Genome Res,18 (2008) 1393-1402.
    [249]J.P. Shaw, P.J. Utz, D.B. Durand, et al., Identification of a putative regulator of early T cell activation genes, Science,241 (1988) 202-205.
    [250]LA. Graef, J.M. Gastier, U. Francke, et al., Evolutionary relationships among Rel domains indicate functional diversification by recombination, Proc Natl Acad Sci U S A,98 (2001) 5740-5745.
    [251]P. Keyser, K. Borge-Renberg, D. Hultmark, The Drosophila NFAT homolog is involved in salt stress tolerance, Insect Biochem Mol Biol,37 (2007) 356-362.
    [252]J.C. Sullivan, D. Kalaitzidis, T.D. Gilmore, et al., Rel homology domain-containing transcription factors in the cnidarian Nematostella vectensis, Dev Genes Evol,217 (2007) 63-72.
    [253]C.R. Beals, C.M. Sheridan, C.W. Turck, et al., Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3, Science,275 (1997) 1930-1934.
    [254]H. Okamura, C. Garcia-Rodriguez, H. Martinson, et al., A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1, Mol Cell Biol,24 (2004)4184-4195.
    [255]Y. Gwack, S. Sharma, J. Nardone, et al., A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT, Nature,441 (2006) 646-650.
    [256]P.G. Hogan, Transcriptional regulation by calcium, calcineurin, and NFAT, Genes & development,17 (2003) 2205-2232.
    [257]S. Feske, Calcium signalling in lymphocyte activation and disease, Nat Rev Immunol,7 (2007) 690-702.
    [258]P.G Hogan, R.S. Lewis, A. Rao, Molecular basis of calcium signaling in lymphocytes:STIM and ORAI, Annu Rev Immunol,28 (2010) 491-533.
    [259]J. Aramburu, M.B. Yaffe, C. Lopez-Rodriguez, et al., Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A, Science,285 (1999) 2129-2133.
    [260]F. Macian, C. Lopez-Rodriguez, A. Rao, Partners in transcription:NFAT and AP-1, Oncogene,20 (2001) 2476-2489.
    [261]J. Fric, T. Zelante, A.Y. Wong, et al., NFAT control of innate immunity, Blood, 120(2012) 1380-1389.
    [262]I. Zanoni, F. Granucci, Regulation and dysregulation of innate immunity by NFAT signaling downstream of pattern recognition receptors (PRRs), Eur J Immunol, 42(2012) 1924-1931.
    [263]W. Wu, R.S. Misra, J.Q. Russell, et al., Proteolytic regulation of nuclear factor of activated T (NFAT) c2 cells and NFAT activity by caspase-3, J Biol Chem,281 (2006) 10682-10690.
    [264]I. Puga, A. Rao, F. Macian, Targeted cleavage of signaling proteins by caspase 3 inhibits T cell receptor signaling in anergic T cells, Immunity,29 (2008) 193-204.
    [265]Y. Wu, M. Borde, V. Heissmeyer, et al., FOXP3 controls regulatory T cell function through cooperation with NFAT, Cell,126 (2006) 375-387.
    [266]H. Hu, I. Djuretic, M.S. Sundrud, et al., Transcriptional partners in regulatory T cells:Foxp3, Runx and NFAT, Trends Immunol,28 (2007) 329-332.
    [267]I. Zanoni, R. Ostuni, G. Capuano, et al., CD 14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation, Nature,460 (2009) 264-268.
    [268]M. Buxade, G. Lunazzi, J. Minguillon, et al., Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5, Journal of Experimental Medicine,209 (2012) 379-393.
    [269]L. Yu, X.Y. Wang, W. Jin, et al., Adaptive evolution of digestive RNASE1 genes in leaf-eating monkeys revisited:new insights from ten additional colobines, Mol Biol Evol,27(2010) 121-131.
    [270]X. Song, P. Jin, J. Hu, et al., Involvement of AmphiREL, a Rel-like gene identified in Brachiastoma belcheri, in LPS-induced response:implication for evolution of Rel subfamily genes, Genomics,99 (2012) 361-369.
    [271]S. Xu, Y. Chen, Y. Cheng, et al., Positive selection at the ASPM gene coincides with brain size enlargements in cetaceans, Proc Biol Sci,279 (2012) 4433-4440.
    [272]A. Meyer, Y. Van de Peer, From 2R to 3R:evidence for a fish-specific genome duplication (FSGD), Bioessays,27 (2005) 937-945.
    [273]S. Hoegg, A. Meyer, Hox clusters as models for vertebrate genome evolution, Trends Genet,21 (2005) 421-424.
    [274]M. Soskine, D.S. Tawfik, Mutational effects and the evolution of new protein functions, Nature Reviews Genetics,11 (2010) 572-582.
    [275]A. Aharoni, L. Gaidukov, O. Khersonsky, et al., The 'evolvability' of promiscuous protein functions, Nat Genet,37 (2005) 73-76.
    [276]M. Lynch, A. Force, The probability of duplicate gene preservation by subfunctionalization, Genetics,154 (2000) 459-473.
    [277]M. Nei, The new mutation theory of phenotypic evolution, Proc Natl Acad Sci USA,104 (2007) 12235-12242.
    [278]F. Granucci, I. Zanoni, N. Pavelka, et al., A contribution of mouse dendritic cell-derived IL-2 for NK cell activation, J Exp Med,200 (2004) 287-295.
    [279]F. Granucci, I. Zanoni, P. Ricciardi-Castagnoli, Natural killer (NK) cell functions can be strongly boosted by activated dendritic cells (DC), Eur J Immunol, 36(2006)2819-2820.
    [280]M.B. Greenblatt, A. Aliprantis, B. Hu, et al., Calcineurin regulates innate antifungal immunity in neutrophils, J Exp Med,207 (2010) 923-931.
    [281]I. Zanoni, C. Bodio, A. Broggi, et al., Similarities and differences of innate immune responses elicited by smooth and rough LPS, Immunol Lett,142 (2012) 41-47.
    [282]I. Zanoni, M. Foti, P. Ricciardi-Castagnoli, et al., TLR-dependent activation stimuli associated with Th1 responses confer NK cell stimulatory capacity to mouse dendritic cells, J Immunol,175 (2005) 286-292.
    [283]H.S. Goodridge, A.J. Wolf, D.M. Underhill, Beta-glucan recognition by the innate immune system, Immunol Rev,230 (2009) 38-50.
    [284]A. Mueller, J. Raptis, P.J. Rice, et al., The influence of glucan polymer structure and solution conformation on binding to (1->3)-β-D-glucan receptors in a human monocyte-like cell line, Glycobiology,10 (2000) 339-346.
    [285]M. Sato, H. Sano, D. Iwaki, et al., Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A, J Immunol,171 (2003) 417-425.
    [286]H.S. Goodridge, R.M. Simmons, D.M. Underhill, Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells, J Immunol,178 (2007) 3107-3115.
    [287]J. Skonier, M. Neubauer, L. Madisen, et al., cDNA cloning and sequence analysis of beta ig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-beta, DNA Cell Biol,11 (1992) 511-522.
    [288]J. Skonier, K. Bennett, V. Rothwell, et al., beta ig-h3:a transforming growth factor-beta-responsive gene encoding a secreted protein that inhibits cell attachment in vitro and suppresses the growth of CHO cells in nude mice, DNA Cell Biol,13 (1994)571-584.
    [289]B.H. Lee, J.S. Bae, R.W. Park, et al., betaig-h3 triggers signaling pathways mediating adhesion and migration of vascular smooth muscle cells through alphavbeta5 integrin, Exp Mol Med,38 (2006) 153-161.
    [290]V. Poulaki, K. Colby, Genetics of anterior and stromal corneal dystrophies, Semin Ophthalmol,23 (2008) 9-17.
    [291]P. Romero, M. Vogel, J.M. Diaz, et al., Anticipation in familial lattice corneal dystrophy type I with R124C mutation in the TGFBI (BIGH3) gene, Mol Vis,14 (2008) 829-835.
    [292]T.K. Hei, Y. Zhao, H. Zhou, et al., Mechanism of radiation carcinogenesis:role of the TGFBI gene and the inflammatory signaling cascade, Adv Exp Med Biol,720 (2011) 163-170.
    [293]G. Wen, M. Hong, B. Li, et al., Transforming growth factor-beta-induced protein (TGFBI) suppresses mesothelioma progression through the Akt/mTOR pathway, Int J Oncol,39(2011) 1001-1009.
    [294]B. Li, G. Wen, Y. Zhao, et al., The role of TGFBI in mesothelioma and breast cancer:association with tumor suppression, BMC Cancer,12 (2012) 239.
    [295]S.Y. Chan, A.K. Chan, B.P. Cheung, et al., Identification of genes expressed during myocardial development, Chin Med J (Engl),116 (2003) 1329-1332.
    [296]K. Schwab, L.T. Patterson, B.J. Aronow, et al., A catalogue of gene expression in the developing kidney, Kidney Int,64 (2003) 1588-1604.
    [297]H.R. Kim, P.W. Ingham, The extracellular matrix protein TGFBI promotes myofibril bundling and muscle fibre growth in the zebrafish embryo, Dev Dyn,238 (2009)56-65.
    [298]Y. Zhang, G. Wen, G. Shao, et al., TGFBI deficiency predisposes mice to spontaneous tumor development, Cancer Res,69 (2009) 37-44.
    [299]S. Hoersch, M.A. Andrade-Navarro, Periostin shows increased evolutionary plasticity in its alternatively spliced region, BMC Evol Biol,10 (2010) 30.
    [300]Y. Kudo, B.S. Siriwardena, H. Hatano, et al.:novel diagnostic and therapeutic target for cancer, Histol Histopathol,22 (2007) 1167-1174.
    [301]T.K. Borg, R. Markwald, Periostin:more than just an adhesion molecule, Circ Res,101(2007)230-231.
    [302]K. Inai, R.A. Norris, S. Hoffman, et al., BMP-2 induces cell migration and periostin expression during atrioventricular valvulogenesis, Dev Biol,315 (2008) 383-396.
    [303]M. Shimazaki, K. Nakamura, I. Kii, T. Kashima, et al., Periostin is essential for cardiac healing after acute myocardial infarction, J Exp Med,205 (2008) 295-303.
    [304]P. Snider, R.B. Hinton, R.A. Moreno-Rodriguez, et al., Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart, Circ Res,102 (2008) 752-760.
    [305]D.P. Wallace, M.T. Quante, G.A. Reif, et al., Periostin induces proliferation of human autosomal dominant polycystic kidney cells through alphaV-integrin receptor, Am J Physiol Renal Physiol,295 (2008) F1463-1471.
    [306]S. Yoshida, K. Ishikawa, R. Asato, et al., Increased expression of periostin in vitreous and fibrovascular membranes obtained from patients with proliferative diabetic retinopathy, Invest Ophthalmol Vis Sci,52 (2011) 5670-5678.
    [307]R.A. Norris, C.B. Kern, A. Wessels, et al., Detection of betaig-H3, a TGFbeta induced gene, during cardiac development and its complementary pattern with periostin, Anat Embryol (Berl),210 (2005) 13-23.
    [308]G.M. Calaf, C. Echiburu-Chau, Y.L. Zhao, et al., BigH3 protein expression as a marker for breast cancer, Int J Mol Med,21 (2008) 561-568.
    [309]GK. Klintworth, The molecular genetics of the corneal dystrophies--current status, Front Biosci,8 (2003) d687-713.
    [310]C. Ma, Y. Rong, D.R. Radiloff, et al., Extracellular matrix protein betaig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation, Genes Dev,22 (2008) 308-321.
    [311]S.J. Park, S. Park, H.C. Ahn, et al., Conformational resemblance between the structures of integrin-activating pentapetides derived from betaig-h3 and RGD peptide analogues in a membrane environment, Peptides,25 (2004) 199-205.
    [312]Y.L. Zhao, C.Q. Piao, T.K. Hei, Downregulation of Betaig-h3 gene is causally linked to tumorigenic phenotype in asbestos treated immortalized human bronchial epithelial cells, Oncogene,21 (2002) 7471-7477.
    [313]S. Bao, G. Ouyang. X. Bai, et al., Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway, Cancer Cell,5 (2004) 329-339.
    [314]G. Ouyang, M. Liu, K. Ruan, et al., Upregulated expression of periostin by hypoxia in non-small-cell lung cancer cells promotes cell survival via the Akt/PKB pathway, Cancer Lett,281 (2009) 213-219.
    [315]Y.C. Wu, M.D. Rasmussen, M. Kellis, Evolution at the subgene level:domain rearrangements in the Drosophila phylogeny, Mol Biol Evol,29 (2012) 689-705.
    [316]M. Lynch, J.S. Conery, The evolutionary fate and consequences of duplicate genes, Science,290 (2000) 1151-1155.
    [317]M. Long, E. Betran, K. Thornton, et al., The origin of new genes:glimpses from the young and old, Nat Rev Genet,4 (2003) 865-875.
    [318]C.P. Ponting, R.R. Russell, The natural history of protein domains, Annu Rev Biophys Biomol Struct,31 (2002) 45-71.
    [319]A.K. Bjorklund, D. Ekman, S. Light, et al., Domain rearrangements in protein evolution, J Mol Biol,353 (2005) 911-923.
    [320]S. Pasek, J.L. Risler, P. Brezellec, Gene fusion/fission is a major contributor to evolution of multi-domain bacterial proteins, Bioinformatics,22 (2006) 1418-1423.
    [321]V.J. Promponas, C.A. Ouzounis, I. Iliopoulos, Experimental evidence validating the computational inference of functional associations from gene fusion events:a critical survey, Brief Bioinform, (2012).
    [322]H. Zhao, S.J. Rossiter, E.C. Teeling, et al., The evolution of color vision in nocturnal mammals, Proc Natl Acad Sci U S A,106 (2009) 8980-8985.
    [323]H. Zhao, J.R. Yang, H. Xu, et al., Pseudogenization of the umami taste receptor gene Taslrl in the giant panda coincided with its dietary switch to bamboo, Mol Biol Evol,27 (2010) 2669-2673.
    [324]H.B. Fraser, A.E. Hirsh, L.M. Steinmetz, et al., Evolutionary rate in the protein interaction network, Science,296 (2002) 750-752.
    [325]M.W. Hahn, A.D. Kern, Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks, Mol Biol Evol,22 (2005) 803-806.
    [326]D. Vitkup, P. Kharchenko, A. Wagner, Influence of metabolic network structure and function on enzyme evolution, Genome Biol,7 (2006) R39.
    [327]C. Lu, Z. Zhang, L. Leach, et al., Impacts of yeast metabolic network structure on enzyme evolution, Genome Biol,8 (2007) 407.
    [328]R. Jovelin, P.C. Phillips, Evolutionary rates and centrality in the yeast gene regulatory network, Genome Biol,10 (2009) R35.
    [329]M.D. Rausher, R.E. Miller, P. Tiffin, Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway, Molecular biology and evolution,16 (1999) 266-274.
    [330]Y. Lu, M.D. Rausher, Evolutionary rate variation in anthocyanin pathway genes, Molecular biology and evolution,20 (2003) 1844-1853.
    [331]D. Alvarez-Ponce, M. Aguade, J. Rozas, Comparative genomics of the vertebrate insulin/TOR signal transduction pathway:a network-level analysis of selective pressures, Genome Biol Evol,3 (2011) 87-101.
    [332]N. Silverman, T. Maniatis, NF-κB signaling pathways in mammalian and insect innate immunity, Genes & development,15 (2001) 2321.
    [333]D.J. Miller, G Hemmrich, E.E. Ball, et al., The innate immune repertoire in cnidaria--ancestral complexity and stochastic gene loss, Genome Biol,8 (2007) R59.
    [334]T.C. Bosch, R. Augustin, F. Anton-Erxleben, et al., Uncovering the evolutionary history of innate immunity:the simple metazoan Hydra uses epithelial cells for host defence, Dev Comp Immunol,33 (2009) 559-569.
    [335]M.E. Gauthier, L. Du Pasquier, B.M. Degnan, The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways, Evol Dev,12 (2010) 519-533.
    [336]E. Birney, M. Clamp, R. Durbin, Gene Wise and Genomewise, Genome Res,14 (2004) 988-995.
    [337]C. Pal, B. Papp, L.D. Hurst, Highly expressed genes in yeast evolve slowly, Genetics,158 (2001) 927-931.
    [338]S. Subramanian, S. Kumar, Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome, Genetics,168 (2004) 373-381.
    [339]A. Bossi, B. Lehner, Tissue specificity and the human protein interaction network, Mol Syst Biol,5 (2009) 260.
    [340]P. Librado, J. Rozas, DnaSP v5:a software for comprehensive analysis of DNA polymorphism data, Bioinformatics,25 (2009) 1451-1452.
    [341]Q. Cui, E.O. Purisima, E. Wang, Protein evolution on a human signaling network, BMC Syst Biol,3 (2009) 21.
    [342]B. Lemos, B.R. Bettencourt, C.D. Meiklejohn, et al., Evolution of proteins and gene expression levels are coupled in Drosophila and are independently associated with mRNA abundance, protein length, and number of protein-protein interactions, Mol Biol Evol,22 (2005) 1345-1354.
    [343]P.K.. Ingvarsson, Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula, Mol Biol Evol,24 (2007) 836-844.
    [344]C. Hashimoto, K.L. Hudson, K.V. Anderson, The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein, Cell,52 (1988) 269-279.
    [345]Y. Wang, A. Abu Irqeba, M. Ayalew, et al., Sumoylation of transcription factor Tecl regulates signaling of mitogen-activated protein kinase pathways in yeast, PLoS One,4 (2009) e7456.
    [346]J. Huang, L. Teng, L. Li, et al., ZNF216 Is an A20-like and IkappaB kinase gamma-interacting inhibitor of NFkappaB activation, J Biol Chem,279 (2004) 16847-16853.
    [347]A. Mukhopadhyay, S. Vij, A.K. Tyagi, Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco, Proc Natl Acad Sci U S A,101 (2004) 6309-6314.
    [348]A. Hishiya, S. Iemura, T. Natsume, et al., A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy, EMBO J,25 (2006) 554-564.
    [349]S. Vij, A.K. Tyagi, A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response, Funct Integr Genomics,8 (2008)301-307.
    [350]D. Pincus, I. Letunic, P. Bork, et al., Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages, Proc Natl Acad Sci U S A,105 (2008) 9680-9684.
    [351]M. Gerdol, C. Manfrin, G. De Moro, et al., The Clq domain containing proteins of the Mediterranean mussel Mytilus galloprovincialis:a widespread and diverse family of immune-related molecules, Dev Comp Immunol,35 (2011) 635-643.
    [352]M. Wiens, M. Korzhev, S. Perovic-Ottstadt, et al., Toll-like receptors are part of the innate immune defense system of sponges (demospongiae:Porifera), Mol Biol Evol,24 (2007) 792-804.
    [353]A.G. Collins, Phylogeny of Medusozoa and the evolution of cnidarian life cycles, Journal of Evolutionary Biology,15 (2002) 418-432.
    [354]E.E. Ball, D.C. Hayward, R. Saint, et al., A simple plan—cnidarians and the origins of developmental mechanisms, Nature Reviews Genetics,5 (2004) 567-577.
    [355]C.A. Wolkow, K.D. Kimura, M.S. Lee, et al., Regulation of C. elegans life-span by insulinlike signaling in the nervous system, Science,290 (2000) 147-150.
    [356]D.H. Kim, R. Feinbaum, G. Alloing, et al., A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity, Science,297 (2002) 623-626.
    [357]D.A. Garsin, J.M. Villanueva, J. Begun, et al., Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens, Science,300 (2003) 1921.
    [358]V. Singh, A. Aballay, Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity, Proc Natl Acad Sci U S A,103 (2006) 13092-13097.
    [359]J.R. Powell, D.H. Kim, F.M. Ausubel, The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immune response, Proc Natl Acad Sci U S A,106 (2009) 2782-2787.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700