用户名: 密码: 验证码:
肝癌干细胞样细胞生物学特性初步研究及miR-1301对肝癌细胞的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝癌是高度恶性并严重危害人类健康的疾病,但其发病机制仍不十分清楚。虽然现在有很多的方法用于治疗原发性肝癌,如化疗、放疗、外科手术、生物治疗等,但是都不能明显的提高原发性肝癌患者的生存率。因此寻找有效的治疗手段有非常重要的意义。根据肿瘤干细胞理论,在原发性肝癌中也必然有肝癌干细胞存在,与正常组织是由少数正常组织干细胞通过自我更新和不断的分化产生正常的组织细胞来维持正常功能相似,肿瘤组织也是由少数肿瘤干细胞不断自我更新和分化来触发和维持肿瘤生长的。考虑到目前传统的化疗和放疗只能使肿瘤组织缩小,而不能从根本上消除肿瘤,原因可能是这些传统的治疗方法不能有效的杀灭肿瘤组织中的肿瘤干细胞。因此,深入研究肝癌干细胞特有的生物学特性对于我们深入理解肝癌的发病机制及设计有效的治疗策略都有重要的意义。
     miRNA是一类内源性非蛋白编码的单链小分子RNA,长度为20-25nt,广泛存在于真核生物中。成熟miRNA与靶mRNA 3非翻译区互补结合,诱导靶mRNA降解或抑制靶mRNA的翻译,从而实现转录后基因调控作用。miRNA对细胞的增殖、分化和凋亡有重要的调节作用。miRNA参与了机体的免疫调控,并在肿瘤发生中发挥重要的调节作用。
     本研究对肝癌miRNA进行检测,观察肝癌组织中miRNA变化情况。同时根据检测结果,应用miRNA转染,观察转染后肝癌细胞NF-κB信号通路、β-catenin、抑癌基因P53基因和Tg737基因的变化情况,及凋亡相关基因caspase-3、caspase-8的变化情况。同时以CD90阳性细胞为肝癌干细胞标记物,分离肝癌干细胞样细胞,检测肝癌干细胞样细胞上述基因和部分蛋白的变化情况,观察肝癌细胞的生物学特性。对揭示肝癌发生发展的病理机制,从而为研究设计肝癌特异性的诊断和治疗方法提供可能的新思路。
     研究方法:
     1.经病理组织学确诊的肝癌组织及癌旁组织标本,TRIzol法提取细胞总RNA和按照miRNA提取分离试剂盒提取miRNA,用realtime-PCR检测miR-155、miR-198、miR-373、miR-520b、miR-548c、miR-1289、miR-1301等miRNA及NF-kB、β-catenin、p53、Tg737基因mRNA表达情况。
     2.人肝癌细胞株HepG2,根据上述结果选择miR-1301 mimics进行转染,提取细胞总RNA,用realtime-PCR检测转染后p65、β-catenin、p53、Tg737、bcl-2、bcl-XL、caspase-3、caspase-8等基因的变化情况;Western Blot检测相关蛋白表达情况;划痕实验观察细胞迁移能力:transwell小室检测细胞侵袭能力;MTT法观察细胞生长抑制情况。
     3.人肝癌细胞株HepG2,以CD90作为肝癌干细胞标记物,免疫磁珠法筛选CD90阳性细胞,提取细胞总RNA,用realtime-PCR检测miR-155、198、373、548c-5p、1289、145、375、874、1183、1324等水平,检测p65、β-catenin、p53、Tg737、caspase-3、caspase-8、bcl-2、bcl-XL等基因转录情况。选择miR-548c-5p顺式转染,用realtime-PCR检测转染后p65、β-catenin、p53、Tg737、caspase-3、caspase-8、bcl-2、bcl-XL等基因mRNA表达情况。Western Blot检测相关蛋白表达情况。
     结果:
     1.在肝癌组织中,miR-155、miR-198、miR-373、miR-520b、miR-1301表达下降。miR-548c、miR-1289在肝癌组织表达增高。β-catenin、Tg737基因表达下降。NF-kB、p53基因无明显变化。
     2.转染miR-1301后p53基因水平上调、P53蛋白增加,bcl-2、bcl-XL基因水平下调,Bcl-2、Bcl-XL蛋白减少。转染miR-1301后,划痕实验观察到转染后细胞迁移能力,(?)answell小室观察到细胞侵袭力下降,细胞生长受到抑制。
     3.肝癌干细胞样细胞中miR-548c-5p.miR-145、miR-375、miR-874水平下降。miR-155、miR-198、miR-1289升高。miR-373、miR-1183、miR-1324无明显变化。
     肝癌干细胞样细胞中caspase-3、bcl-2基因水平下调,caspase-8基因水平上调,Bcl-XL无明显变化,p65、β-catenin、p53、Tg737等表达无明显变化。
     转染miR-548c-5p后肝癌干细胞样细胞中P-catenin、Tg737、bcl-2、bcl-XL、Caspase-3基因水平下调,Bcl-2、Bcl-XL、Caspase-3蛋白水平下降,p65、p53、Caspase-8基因水平变化没有统计学意义。转染后transwell小室观察到细胞侵袭力下降。
     结论
     肝癌组织中miRNA表达水平有变化。转染miR-155、198、373、520b等可引起P65、β-catenin、P53、Tg737、Caspase-3、Caspase-8基因的变化,推测miR-155、198、373、520b等可miRNA对肝癌细胞的生物学特性产生重要影响。
     miR-1301可上调p53基因、下调bcl-2、bcl-XL基因。推测miR-1301总体上对肿瘤发生发展可能起抑制作用,但需要进一步研究。
     肝癌干细胞样细胞中,转染miR-548c-5p mimics后对Bcl-2、Bcl-XL、Caspase-3等多个基因产生影响,这些说明miR-548c-5p可能在肝癌干细胞样细胞的凋亡-抗凋亡过程中起一定作用。肝癌干细胞样细胞中miR-145、miR-375、miR-874、miR-155、miR-198、miR-1289等水平发生改变,这些说明miRNAs可能在肝癌干细胞的发生发展中起重要作用。
     肝癌干细胞样细胞caspase-3、bcl-2基因水平下调,caspase-8基因水平上调,推测肝癌干细胞样细胞可能存在凋亡-抗凋亡功能紊乱,从而影响肝癌细胞的生物学特性。
Background Hepatocellular carcinoma(HCC) is a common malignant tumor in China. Researchers have long been searching for the cellular origin and causes of HCC to try to find effective preventive and treatment measures under the hints of the pathogenesis of HCC. Recent researches had discovered that there were some stem-like subpopulations in tumor tissues which had the potential to proliferate infinitely and played much crucial role in initiating carcinogenesis and development, while the other cells would die after transitory differentiation. It was thought that the tumor growth resulted from the proliferation of some tumor stem cells with special surface markers. For this reason, the tumor treatment must aim directly at the tumor stem cells but not at the bulk of tumor cells with little ability to proliferate and differentiate. This theory might bring about some revolutionary in tumor therapeutics.
     The key point of the research on tumor stem cells was how to establish the special surface markers of them. However, it was hope to achieve an efficient sorting scheme of tumor stem cells by detecting the surface markers with some directing antigens, which would save a lots of time and research funds. But the following findings published in recent years are exciting:the marker molecule ABCG2 of liver SP cells, which have the biological characteristics of liver cancer stem cells, acts as a marker of liver cancer stem cells; CD 133 is also considered as a marker of liver cancer stem cells; and CD90 is another specific marker of liver cancer stem cells.
     MicroRNAs(miRNAs), a new class of endogenous, noncoding and single-stranded RNAs, were recently discovered in both animals and plants. They trigger translational repression and/or mRNA degradation mostly through complementary binding to the 3'-untranslated regions of target mRNAs. Studies have shown that miRNAs can regulate a wide array of biological processes such as cell proliferation, differentiation, and aberrant expression. Metabolism of miRNAs are associated with human diseases including malignancy. Alterations of miRNAs expression may play various roles in the pathogenesis of many human cancers. Some miRNAs have been shown to possess oncogenic or tumor suppressor activity, influencing cell transformation, tumor progression or metastasis. Accumulating evidences suggest that miRNAs could potentially be widely used in the diagnosis, prognosis and therapy of human cancer.
     Objective In this study, we screened differentially miRNAs expressed between hepatocellular carcinoma tissue and adjacent non-tumor tissue through realtime PCR technology, and hope to find that miRNAs changes in tumor tissue. Than we transfected these miRNAS into cells. We colledted the total RNA. Realtime PCR were used to examine the different expression of the potential target mRNA in test groups and the control groups. We hope our study could provide convincing evidences on miRNAs association with hepatocellular carcinoma tumorigenesis, and facilitate the search of suitable candidates for cancer targeting therapy.
     Using CD90 as specific marker of liver cancer stem cells,we isolate, culture and identify the stem-like subpopulations from HepG2 cells in vitro, to investigate the basic characteristics of stem-like liver cancer cells.
     Methods
     Tissue samples were obtained from 20 patients undergoing hepatectomy for hepatocellular carcinoma. Tumor samples were resected at surgery. Non-tumor samples from the macroscopic tumor margin were isolated at the same patients and used as the matched adjacent non-neoplastic tissue. Real-time PCR technology was applied to screen differentially expressed miR-155, miR-198, miR-373, miR-520b, miR-548c, miR-1289, miR-1301 between tumor tissue and adjacent non-tumor tissue.
     We transfected miR-1301 mimics into HepG2 cells. Real-time PCR technique was applied to screen p65,β-catenin, p53, Tg737, bcl-2, bcl-XL, caspase-3, caspase-8 mRNA between transfected groups and contral groups. Western Blot technique was applied to detect their protein. Transwell cabin was used to observe cellular invasiveness. The cellular growth activity was assayed by MTT assay.
     Using CD90 as specific marker of liver cancer stem cells, we isolate, culture and identify the stem-like subpopulations from HepG2 cells in vitro. Real-time PCR technique was applied to screen miR-155, miR-198, miR-373, miR-568c-5p, miR-1289, miR-145, miR-375, miR-874, miR-1183, and miR-1324 between CD90 positive cells and negative cells. P65,β-catenin, P53, Tg737, caspase-3, caspase-8,bcl-2, bcl-XL mRNA between CD90 positive cells and negative cells were also detectd by Real-time PCR method. miR-568c-5p mimics was transfected into CD90 positive cells, and change of P65,β-catenin, P53, Tg737, caspase-3, caspase-8,bcl-2, bcl-XL mRNA were detected. Western Blot technique was applied to detect their protein. Transwell cabin was used to observe cellular invasion capacity. Results 1. Compared with adjacent non-tumor tissues, miR-155, miR-198, miR-373, miR-520b, miR-1301 were down-regulated while miR-548c,miR-1289 were up-regulated in tumor tissue.
     2. p53 mRNA and protein were up-regulated in miR-1301 transfected groups. bcl-2, bcl-XL mRNA and protein were down-regulated in miR-1301 transfected groups. Cellular invasive capacity was depressed. Cellular inhibition ratio were high in transfected groups.
     3. In CD90 positive cells, miR-155, miR-198, miR-1289 were up-regulated while miR-548c-5p,miR-145, miR-375, miR-874were down-regulated.
     Caspase-3,bcl-2 mRNA were down-regulated in CD90 positive cells while Caspase-8 mRNA were up-regulated. There were no changes in p65,β-catenin, p53, Tg737, bcl-XL mRNA.
     β-catenin, Tg737, bcl-2, bcl-XL, caspase-3 were down-regulated in miR-548c-5p transfected groups in CD90 positive cells. bcl-2, bcl-XL, caspase-3 protein were down-regulated in miR-548c-5p transfected groups. Cellular invasive capacity was depressed.
     Conclusions
     miR-1301 may inhibitor tumor process through p53, bcl-2, and bcl-XL. miR-548c-5p may affect the level of caspase-3, bcl-2, and bcl-XL mRNAs and their proteins.
     Expression level of miRNAs were alterd in hepatocellular carcinoma and in liver cancer stem-like cells. p65,β-catenin, p53, Tg737, bcl-2, bcl-XL, caspase-3, caspase-8 mRNA were up-regulated or down-regulated in experiment groups. We may suppose that miRNAs may have great effects on hepatocellular carcinoma and liver cancer stem-like cells. Disorder of apotosis mechanism may plays important role in liver cancer stem cells.
引文
[1]Dumble ML, Croager EJ, Yeoh GC, et al. Generation and characterization of p53 null transformed hepatic progenitor ceils:oval cells give rise to hepatocellular carcinoma. Carcinogenesis,2002,23(3):435-455.
    [2]Louis L, Rita DV, David C, et al. Hepatic Progenitor Cells in Hepatocellular Adenomas. American Journal of Surgical Pathology,2001,25(11):1388-1396.
    [3]Liu BB, Qin LX, Liu YK. Adult stem cells and cancer stem cells:tie in or tear apart? Cancer Res Clin Oneol,2005,2:432-439.
    [4]Fiegel HC, Gluer S, Roth B, et al. Stem-like cells in human hepatoblastoma. J Histochemi Cytochemi.2004,52(11):1495-1501.
    [5]Yang W, Yan HX, Chen L, et al. W nt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res,2008,68:4287-4295.
    [6]Ma S, Chan KW, Lee TK, et al. Aldehyd dehydrogenase discriminates the CD 133 liver cancer stem cell populations. Mol Cancer Res,2008,6:1146-1153.
    [7]Yang ZF, Ngai P, Ho DW, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology,2008,47(3):919-92.
    [8]Shi GM, Xu Y, Fan J, et al. Identification of side po pulation cells in human hepatocellular carcinoma eel1 lines with stepwise metastatic potentials. J Cancer Res Clin Oncol,2008,134:1155-1163.
    [9]Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology,2006,44:240-251.
    [10]Lee RC, Feinbanm RL, Ambros V. The C. elegans heteroehronic gene lin-4 encodes small RNAs with antisense complementarity to lin-4[J]. Cell,1993,75(5):843-854.
    [11]Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorgenesis. Br J Cancer,2006,94(6):776-80.
    [12]Marcus E. Peter. Let-7 and miR-200 microRNAs:Guardians against pluripotency and cancer progression. Cell Cycle.2009,15,8(6):843-852.
    [13]Lindsay MA. microRNAs and the immune response. Trends Immunol,2008,29(7): 343-351
    [14]Zhang B, Pan X, Cobb G P, et al. microRNAs as oncogenes and tumor suppressors. Dev Biol,2007,302:1-12
    [15]Chan J A, Krichevsky A M, Kosik K S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res,2005,65:6029-6033.
    [16]Huang YS, Dai Y, Yu XF, et al. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues withour viral hepatitis. J Gastroenterol Hepatol,2008,23:87-94.
    [17]Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol,2008,10: 593-601.
    [18]Feitelson MA, Lee J. Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett,2007,252:157-170.
    [19]Mishra L, Banker T, Murray J, et al. Liver stem cells ang hepatocellular carcinoma. Hepatology,2009,49(1):318-329.
    [20]Pikarsky E, Porat RM, Stein I, et al. NF-kappa B functions as a tumour promoter in inflammation-associated cancer. Nature,2004,431 (7007):461-466.
    [21]Hyun Hwa Choa HH, Songa JS, Yua JM,b, Yud SS, Choie SJ, Kim DH, Jung JS. Differential effect of NF-jB activity on b-catenin/Tcf pathway in various cancer cells. FEBS Letters,2008,582:616-622.
    [22]Zhang Q, Davenport JR, Croyle MJ, Haycraft CJ, Yoder BK. Disruption of IFT results in both exocrine and endocrine abnormalities in the pancreas of Tg737(orpk) mutant mice, Lab. Invest.2005,85:45-64.
    [23]Isfort RJ, Cody DB, Doersen CJ, et al. The tetratricopeptide repeat containing Tg737 gene is a liver neoplasia tumor suppressor gene. Oncogene,1997,15(15):1797-1803.
    [1]Lee RC, Feinbanm RL, Ambros V. The C. elegans heteroehronic gene lin-4 encodes small RNAs with antisense complementarity to lin-4. Cell,1993,75(5):843-854.
    [2]Wu L. Fan J. Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci, 2006,103(11):4034-4039.
    [3]Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorgenesis. Br J Cancer, 2006,94(6):776-80.
    [4]Marcus E. Peter. Let-7 and miR-200 microRNAs:Guardians against pluripotency and cancer progression. Cell Cycle.2009,15,8(6):843-852.
    [5]Lindsay MA. microRNAs and the immune response. Trends Immunol,2008,29(7):343-351.
    [6]Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA,2006,103(33):12481-12486.
    [7]Stanczyk J, Pedrioli DM, Brentano F, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum,2008,58(4):1001-1009.
    [8]Lecellier CH, Dunoyer P, Arar K, et al. A cellular microRNA mediates antiviral defense in human cells. Science,2005,308(5721):557-560.
    [9]Monticelli S, Ansel KM, Xiao C, et al. MicroRNA profiling of the murine hematopoieticsystem system. Genome Biol,2005,6(8):R71.
    [10]Zhang B, Pan X, Cobb GP, et al. microRNAs as oncogenes and tumor suppressors. Dev Biol,2007, 302:1-12.
    [11]Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res,2005,65:6029-6033.
    [12]] Hernando E. microRNAs and cancer:role in tumorigenesis, patient classification and therapy. Clin Transl Oncol,2007,9:155-160.
    [13]Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A,2004,101(9): 2999-3004.
    [14]Johnson SM, Grosshans H, Shingara J, et al. Ras is regulated by the let-7 microRNA family. Cell, 2005,120:635-657.
    [15]AkaO Y, Nakagawa Y, Naoe T. MicmRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep,2006,16(4):845-850.
    [16]Iorio MV, Ferracin M, Liu CC, et al. MicroRNA gene epression deregulation in human breast cancer. Cancer Res,2005,65(16):7065-7070.
    [17]Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian DL, Diehn M, Liu HP, Panula SP, Chiao E, Dirbas FM, Somlo G, Reijo P, Lao KQ, Clarkel MF. Downregulation of miRNA-200c Links Breast Cancer Stem Cells with Normal Stem Cells. Cell,138:592-603.
    [18]Qi LQ, Bart J, Tan LP, Platteel I, van den Sluis T, Huitema S, Harms G, Fu L, Hollema H, van den Berg A. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer,2009,9(163):1-8.
    [19]Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZG, Brock JE, Richardson AL, Weinberg RA. A Pleiotropically Acting MicroRNA, miR-31, Inhibits Breast Cancer Metastasis. Cell, 137,1032-1046.
    [20]Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell,2006,9(3):189-198.
    [21]Brueckner B, Stresemann C, Kuner R, et al. The human let-7a-3 locus contains an pigenetically regulated microRNA gene with Oncogenic function. Cancer Res,2007,67(4):1419-1423.
    [22]Huang YS, Dai Y, Yu XF, et al. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues withour viral hepatitis. J Gastroenterol Hepatol,2008,23:87-94.
    [23]Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol,2008,10:593-601.
    [24]Varnholt H, Drebber U, schulze F, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology,2008,47(4):1223-1232
    [25]Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis Of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene,2006,25(17):2537-2545.
    [26]Budhu A, Jia HL, Forgues M, et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology,2008,47(3):897-907.
    [27]Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, van den Berg A. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol,2005,207:243-249.
    [28]Tam W, Dahlberg JE. miR-155/BIC as an oncogenic microRNA. Genes Chromosomes Cancer. 2006,45:211-212.
    [29]Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR et al. Requirement of bic/microRNA-155 for normal immune function. Science,2007;316(5824):608-611.
    [30]Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP, Odenthal M. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology,2008,47(4):1223-1232.
    [31]Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. PNAS,2008,105(5):1608-1613.
    [32]Yang K, Handorean AM, Iczkowski KA. MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. Int J Clin Exp Pathol,2009,2:361-369.
    [33]Ren J, Jin P, Wang E, Marincola FM Stroncek DF. MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. Journal of Translational Medicine,2009,7:20:1-17.
    [34]Maes OC, An J, Sarojini H, Wu H, Wang E. Changes in MicroRNA expression patterns in human fibroblasts after low-LET radiation. J Cell Biochem.2008,105(3):824-34.
    [35]Moynagh P N. The NF-kappaB pathway. J Cell Sci,2005,118(20):4589-4592.
    [36]Du GS, Wang JM, Lu JX, Li Q, Ma CG, Du JT, Zou SQ. Expression of P-aPKC-ti, E-cadherin, and b-catenin related to invasion and metastasis in hepatocellular carcinoma. Ann Surg Oncol,2009, 6:1578-1586.
    [37]Dumble ML, Croager EJ, Yeoh GC, et al. Generation and characterization of p53 null transformed hepatic progenitor ceils:oval cells give rise to hepatocellular carcinoma. Carcinogenesis,2002, 23(3):435-455.
    [38]Isfort RJ, Cody DB, Doersen CJ, et al. The tetratricopeptide repeat containing Tg737 gene is a liver neoplasia tumor suppressor gene. Oncogene,1997,15(15):1797-1803.
    [1]Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorgenesis. Br J Cancer, 2006,94(6):776-80.
    [2]Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A,2004,101(9): 2999-3004.
    [3]Huang YS, Dai Y, Yu XF, et al. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues withour viral hepatitis. J Gastroenterol Hepatol,2008,23:87-94.
    [4]Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol,2008,10:593-601.
    [5]Varnholt H, Drebber U, schulze F, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology,2008,47(4):1223-1232.
    [6]Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis Of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene,2006,25(17):2537-2545.
    [7]Budhu A, Jia HL, Forgues M, et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology,2008,47(3):897-907.
    [8]Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, van den Berg A. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol,2005,207:243-249.
    [9]Tam W, Dahlberg JE. miR-155/BIC as an oncogenic microRNA. Genes Chromosomes Cancer. 2006,45:211-212.
    [10]Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR et al. Requirement of bic/microRNA-155 for normal immune function. Science,2007;316(5824):608-611.
    [11]Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP, Odenthal M. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology,2008,47(4):1223-1232.
    [12]Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. PNAS,2008,105(5):1608-1613.
    [13]Yang K, Handorean AM, Iczkowski KA. MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. Int J Clin Exp Pathol,2009,2:361-369.
    [14]Ren J, Jin P, Wang E, Marincola FM Stroncek DF. MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. Journal of Translational Medicine,2009,7:20:1-17.
    [15]Huang CY, Fong YC, Lee CY, Chen MY, Tsai HC, Hsu HC, Tang CH. CCL5 increases lung cancer migration via PI3K, Akt and NF-kB pathways. Biochemical pharmacology,2009,77:794-803.
    [16]Ansari SA, Safak M, Valle LD. Cell cycle regulation of NF-κB-binding activity in cells from human glioblastomas. Exp Cell Res,2001,265(2):221-33.
    [17]Park JH, Liu L, Kim IH. Identification of the genes involved in enhanced fenretinide-induced apoptosis by parthenolide in human hepatoma cells. Cancer Res,2005,65(7):2804-14.
    [18]Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer, 2008,8(5):387-398.
    [19]Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol,2006,4(4):e115.
    [20]Zuidervaart W, Pavey S, van Nieuwpoort FA, et al. Expression of W nt5a and its downstream effector beta-catenin in uveal melanoma. Melanoma Res,2007,17(6):380-386.
    [21]Du GS, Wang JM, Lu JX, Li Q, Ma CQ, Du JT, Zou SQ. Expression of P-aPKC-t, E-cadherin, and (3-catenin related to invasion and metastasis in hepatocellular carcinoma. Ann Surg Oncol,2009, 16:1578-1586.
    [22]Zhang Q, Davenport JR, Croyle MJ, Haycraft CJ, Yoder BK. Disruption of IFT results in both exocrine and endocrine abnormalities in the pancreas of Tg737(orpk) mutant mice, Lab. Invest.2005, 85:45-64.
    [23]Isfort RJ, Cody DB, Doersen CJ, et al. The tetratricopeptide repeat containing Tg737 gene is a liver neoplasia tumor suppressor gene. Oncogene,1997,15(15):1797-1803.
    [1]Park CH, Bergsagel DE, Mcculloch EA. Mouse myeloma tumor stem cells:a primary cell culture assay. J Natl Cancer Inst,1971,46:411-42.
    [2]Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med,1997,3:730-737.
    [3]Al-Hajj M, Wicha MS, Benito-Hemandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA,2003,100(7):3983-3988.
    [4]Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res,2005,65(13):5506-5511.
    [5]Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell,2005,121: 823-835.
    [6]Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D, Yang S, Zheng S, Gu J. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer, 2007,120:1444-1450.
    [7]Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun,2006, 351:820-824.
    [8]Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology,2007,132: 2542-2556.
    [9]Zhang F, Chen XP, Zhang W. Combined hepatocellular cholangiocarcinoma originating from hepatic progenitor cells:immunohistochemical and double-fluorescence immunostaining evidence. Histopathology,2008,52(2):224-23.
    [10]Yang W, Yan HX, Chen L, et al. W nt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res,2008,68:4287-4295.
    [11]Ma S, Chan KW, Lee TK, et al. Aldehyd dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res,2008,6:1146-1153.
    [12]Yang ZF, Ngai P, Ho DW, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology,2008,47(3):919-92.
    [13]Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H. Side population purified from hepatocellular carcinoma cells harbors cancer stem eell-like properties. Hepatology,2006,44:240-251.
    [14]Shi GM, Xu Y, Fan J, et al. Identification of side po pulation cells in human hepatocellular carcinoma eell lines with stepwise metastatic potentials. J Cancer Res Clin Oncol,2008,134: 1155-1163.
    [15]Enari M, Sakahira H, et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature,2004,391:43.
    [16]Pawlowski J, Kraft AS. Bax-induced apoptotic cell death. PNAS,2005,97:529-531.
    [17]Depraetere V, Golstein P. Dismantling in cell death:molecular mechanisms and relationship to caspase activation. Scand J Immtmol,2005,47:523-531.
    [18]Sun Y, Chen XY, Liu J, et al. Differential caspase-3 expression in noncancerous, premalignant and cancer tissues of stomach and its clinical implication. Cancer Detect Prev,2006,30(2):168.
    [19]Tong X, Lin S, Fujii M, et al. Moleculer mechanisms of echincystic acid-induced apoptosis in HepG2 cells. Biochem Biophys Res Commun,2004,321(3):539-546.
    [20]Algeciras SA, Bamhart BC, Peter ME. Apoptosis-independent functions of killer caspases. Curt Opin Cell Biol,2002,14(6):721.
    [21]Himeji D, Horiuchi T, Tsukamoto H, et al. Characterization of easpase-8L:a novel isoform of caspase-8 that behaves as inhibitor of the caspase cascade. Blood,2002,99(11):4070.
    [22]Chami M, Prandini A. Bcl-2 and bax exert opposing effects on Ca2+ signaling, which do not depend on their putative pore-forming region. Biol Chem,2004,79(52):54581-54589.
    [23]Kim R, Emi M. Therapeutic potential of antisense Bcl-2as a chemosensitizer for patients with gastric carcinoma. Journal of Clinical Ontology,2005,23(16S):4050.
    [24]Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorgenesis. Br J Cancer,2006,94(6):776-80.
    [25]Marcus E. Peter. Let-7 and miR-200 microRNAs:Guardians against pluripotency and cancer progression. Cell Cycle.2009,15,8(6):843-852.
    [26]Lindsay MA. microRNAs and the immune response. Trends Immunol,2008,29(7):343-351.
    [27]Zhang B, Pan X, Cobb GP, et al. microRNAs as oncogenes and tumor suppressors. Dev Biol,2007, 302:1-12.
    [28]Chan J A, Krichevsky A M, Kosik K S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res,2005,65:6029-6033.
    [29]Huang YS, Dai Y, Yu XF, et al. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues withour viral hepatitis. J Gastroenterol Hepatol,2008,23:87-94.
    [30]Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Bioi,2008,10:593-601.
    [31]Feitelson MA, Lee J. Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett,2007,252:157-170.
    [1]Lee RC, Feinbanm RL, Ambros V. The C. elegans heteroehronic gene lin-4 encodes small RNAs with antisense complementarity to lin-4. Cell,1993,75(5):843-854.
    [2]Wu L. Fan J. Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci, 2006,103(11):4034-4039.
    [3]Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorgenesis. Br J Cancer, 2006,94(6):776-80.
    [4]Marcus E. Peter. Let-7 and miR-200 microRNAs:Guardians against pluripotency and cancer progression. Cell Cycle.2009,15,8(6):843-852.
    [5]Lindsay MA. microRNAs and the immune response. Trends Immunol,2008,29(7):343-351.
    [6]Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA,2006,103(33):12481-12486.
    [7]Stanczyk J, Pedrioli DM, Brentano F, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum,2008,58(4):1001-1009.
    [8]Lecellier CH, Dunoyer P, Arar K, et al. A cellular microRNA mediates antiviral defense in human cells. Science,2005,308(5721):557-560.
    [9]Monticelli S, Ansel KM, Xiao C, et al. MicroRNA profiling of the murine hematopoieticsystem system. Genome Biol,2005,6(8):R71.
    [10]Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR et al. Requirement of bic/microRNA-155 for normal immune function. Science,2007;316(5824):608-611.
    [11]Zhang B, Pan X, Cobb GP, et al. microRNAs as oncogenes and tumor suppressors. Dev Biol,2007, 302:1-12.
    [12]Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res,2005,65:6029-6033.
    [13]Hernando E. microRNAs and cancer:role in tumorigenesis, patient classification and therapy. Clin Transl Oncol,2007,9:155-160.
    [14]Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A,2004,101(9): 2999-3004.
    [15]Johnson SM, Grosshans H, Shingara J, et al. Ras is regulated by the let-7 microRNA family. Cell, 2005,120:635-657.
    [16]Akao Y, Nakagawa Y, Naoe T. MicmRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep,2006,16(4):845-850.
    [17]Iorio MV, Ferracin M, Liu CC, et al. MicroRNA gene epression deregulation in human breast cancer. Cancer Res,2005,65(16):7065-7070.
    [18]Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian DL, Diehn M, Liu HP, Panula SP, Chiao E, Dirbas FM, Somlo G, Reijo P, Lao KQ, Clarke 1 MF. Downregulation of miRNA-200c Links Breast Cancer Stem Cells with Normal Stem Cells. Cell,138:592-603.
    [19]Qi LQ, Bart J, Tan LP, Platteel I, van den Sluis T, Huitema S, Harms G, Fu L, Hollema H, van den Berg A. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer,2009,9(163):1-8.
    [20]Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZG, Brock JE, Richardson AL, Weinberg RA. A Pleiotropically Acting MicroRNA, miR-31, Inhibits Breast Cancer Metastasis. Cell, 137,1032-1046.
    [21]Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell,2006,9(3):189-198.
    [22]Brueckner B, Stresemann C, Kuner R, et al. The human let-7a-3 locus contains an pigenetically regulated microRNA gene with Oncogenic function. Cancer Res,2007,67(4):1419-1423.
    [23]Cho CS. OncomiRs:the discovery and progress of micro RNA in cancers. Molecular cancer,2007, 6(60):1-7.
    [24]Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, van den Berg A. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol,2005,207:243-249.
    [25]Tam W, Dahlberg JE. miR-155/BIC as an oncogenic microRNA. Genes Chromosomes Cancer. 2006,45:211-212.
    [26]Huang YS, Dai Y, Yu XF, et al. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues withour viral hepatitis. J Gastroenterol Hepatol,2008,23:87-94.
    [27]Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol,2008,10:593-601.
    [28]Varnholt H, Drebber U, schulze F, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology,2008,47(4):1223-1232
    [29]Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocel lular carcinoma and non-tumorous tissues. Oncogene,2006,25(17):2537-2545.
    [30]Budhu A, Jia HL, Forgues M, et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology,2008,47(3):897-907.
    [31]Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP, Odenthal M. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology,2008,47(4):1223-1232.
    [32]Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. PNAS,2008,105(5):1608-1613.
    [33]Yang K, Handorean AM, Iczkowski KA. MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. Int J Clin Exp Pathol,2009,2:361-369.
    [34]Ren J, Jin P, Wang E, Marincola FM Stroncek DF. MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. Journal of Translational Medicine,2009,7:20:1-17.
    [35]George AC, Calin DD, Masayoshi S, et al. Frequent deletions and down-reglllation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA,2002, 99(24):15524-15529.
    [36]Lin X, Dexin Z, Rui D, et al. Mir-15b and mir-16 modulate multidrug resistance by targeting Bcl-2 in human gastric cancer cells. Int J cancer,2008,123(2):372-379.
    [37]Liu XD, Nelson A, Wang XQ, et al. MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis. Biochemical and Biophysical Research Communications,2009,380:177-182.
    [38]石磊,程子昊,张军霞,等.探讨人胶质瘤细胞系U87细胞中反义miR-21诱导凋亡机制.中华医学遗传学杂志,2008,25(5):497-501.
    [39]Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res,2005,65:6029-6033.
    [40]Xu P, Vernooy SY, Guo M, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol,2003:790-795.
    [41]Akao Y, Nakagawa Y, Iio A, et al. Role of microRNA-143 in Fas-mediated apoptosis in human T-cell leukemia Jurkat cells. Leukemia Research,2009,33:1530-1538.
    [42]Chang TC, Wentzel EA, Kent OR, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell,2007,26:745-752.
    [43]Maatouk D, harfe B. MicroRNAs in development. Scientific World Journal,2006,6:1828-1840.
    [44]O'Donnell KA, Wentzdl EA, Zeller KL, et al. C-myc-regulated microRNAs modulate E2F1 expression. Nature,2005,435:839-843.
    [45]Cheng P, Li RS, Lin WQ, et al. Effect of miR-296 on the Apoptosis of Androgen-independent Prostate Cancer Cells. Journal of Reproduction & Contraception,2009,20(1):1-9.
    [46]Yu XY, Song YH, Geng YJ. Et al. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochemical and Biophysical Research Communications,2008,376:5448-552.
    [47]Xu C, Lu Y, Pan Z, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci,2007,120: 3045-3052.
    [48]Liu XQ, Jiang L, Wang AX, et al. MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Letters,2009,286:217-222.
    [49]Maes OC, An J, Sarojini H, Wu H, Wang E. Changes in MicroRNA expression patterns in human fibroblasts after low-LET radiation. J Cell Biochem.2008,105(3):824-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700