用户名: 密码: 验证码:
基于关联光学的精密测量理论和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上个世纪80年代诞生的量子信息学在最近的三十几年里得到了飞速发展,各种量子信息处理方案先后被提出,量子信息学在诸多领域不断地得到完善和发展,同时也带动各种相关的实验技术不断发展成熟。其中,以光学系统为基础的各种量子技术,较其他方法得到了更快的发展,因为光场易于传输,且相对成熟的光电技术为非经典光场的制备与检测提供了必要的实验基础。在其不断发展的过程中,光场的关联特性逐渐得到了人们越来越多的关注,并且在测量和成像等方面表现出独特的优势。
     本文围绕着光场关联特性在测量上的应用的一些热点问题展开研究,主要讨论了形如(|N0+|0N)/√2的双模路径纠缠光子数态,即多光子NOON态的制备和超出散粒噪声极限的光学陀螺两方面的问题,主要内容有:
     1.基于腔量子电动力学技术的多光子NOON态制备近年来,理论和实验研究发现利用处于路径纠缠的光子数态,即所谓的“NOON”态,的光场可以达到海森堡测量极限。然而,目前实验上能制备的NOON态所含的光子数比较少,无法满足实际测量的需求。如何制备含有大量光子的NOON态成为了一个亟待解决的问题。因此,本文提出了两个利用腔QED技术制备多光子NOON态的方案。
     (a)利用原子与腔场之间的Bragg散射可以将原子束相干的分为两束,分别进入空间分离的两个光学腔中,从而得到在两个空间模之间的纠缠。随后,通过一个受激拉曼跃迁过程在其中一个腔中产生光子数态,由此得到两个空间模之间纠缠的光子数态。
     (b)通过原子与腔场之间的相互作用,可以对双面腔的反射率和透射率进行调制。因此,利用一个阶梯型三能级原子与单模双面腔之间的相互作用,可以制备出一个两个空间模之间纠缠的光场。将这个纠缠光场用于激发分别囚禁于两个空间分离的腔中的原子系宗,使其辐射光子,从而制备出多光子NOON态。与以往工作相比,这两个方案提高了NOON态光场中的光子数目,减低了对腔寿命时间的限制,同时也降低了实际操作中的复杂度。
     2.以双模压缩相干态光场为光源的光学陀螺
     研究表明利用光场关联性质可以将干涉测量灵敏度由散粒噪声极限提高至海森堡极限,则以干涉为基础的传感器的测量精确度也可以进一步提高的。为此,我们就如何提高相位敏感型光学陀螺的测量精确度问题展开研究。从实际应用的角度考虑,本文采用了强度相对来说更大,制备方法较为成熟的双模压缩相干态光场。研究显示,在这种情况下,光学陀螺的测量灵敏度不仅与压缩参数有关,而且也会受到制备双模压缩光场的初始相干光场的复振幅相位影响。当陀螺光源为孪生光束时,光学陀螺的测量灵敏将会突破散粒噪声极限,在信噪比、动态范围等方面均显示出极大的优势。在灵敏度相等的情况下,相对于传统光纤陀螺,表现出更低的噪声水平和更低的对光源强度的需求。
     3.噪声对超精密相位测量的影响
     一般来说,在噪声环境中测量精度会降低。对于以双模压缩相干态作为光源的光学陀螺,本文分别考察了光源和光传输过程中的噪声对测量灵敏度的影响。对于光源的噪声,主要分析了光源两模强度不相等和两模相位不同步两种情况下测量灵敏度的变化。同时,从能量损耗的角度对光路中的噪声进行讨论,详细分析了光路中噪声对易和非对易两种情况下测量灵敏度的变化。结果表明,噪声将会降低陀螺测量精度,但是在一定条件下通过增大压缩参数,降低由于光源的光子噪声引起的相位涨落,以弥补传输过程中其他噪声对测量灵敏度的影响。仍然可以得到超出散粒噪声极限的测量精度。
Quantum Information Theory, born in80’s of the last century, experiencesa rapid development during the next three decades. Various schemes of quan-tum information processing has been proposed, and quantum information scienceconstantly improved and developed in many felds. These drive the relative ex-perimental techniques process. Among these quantum techniques, a variety ofquantum technology based on the optical system has been developed more fastcompared with other methods, because the light feld is easy for transport, andthe relatively mature photoelectron technology provides a necessary experimentalbasis for the preparing and testing of the non-classical light feld. In the processof its constant development, the correlation of the light feld has gradually at-tracted more and more attention, and shown unique advantages in measurementand imaging.
     The dissertation focuses on some hot issues associated with the applicationof the correlation of the light feld in measurement, mainly discusses the problemsof the generation of multi-photon NOON state and the optical gyroscope beyondshot-noise limit. Our works are as follows:
     1. The generation of multi-photon NOON state based on technology of cavityquantum electrodynamics Current theories and experiments have provedthat for phase measurement Heisenberg limit is the fundamental limit setby the quantum mechanics, while it can only reach the shot noise limit bythe traditional methods of measurement. And it is found that the feldin path-entangled Fock state, the so-called “NOON” state, can be appliedto achieved the Heisenberg limit measurement. However, the NOON stategenerated in present experiment condition contained a few photons, whichcan not meet the requirement of the practical measurement. How to prepare a NOON state contain large number of photons is a urgent problem to besolved. In the present thesis, two novel scheme for generating the opticalNOON state by the method of cavity QED technology have been proposed.
     (a) By using the atomic Bragg scattering with the cavity feld, a beamof atoms can be split coherently, and fy into two spatially separatedcavities, so that the entanglement between two spatial modes can beestablished. And then, through a stimulated Raman transition a op-tical Fock state is generated in either one of the two cavities. Conse-quently, the entangled optical Fock state between two spatial modesis obtained.
     (b) The refectance and the transmittance of a two-sided cavity will bemodulated by the interaction between the atom and the cavity. There-fore, a entangled light feld between two spatial modes can be preparedby using the interaction between a ladder-type three-level atom anda single-mode two-sided optical cavity. Then, the entangled feld isapplied to induce two atomic ensembles trapped in two spatially sep-arated cavities to emit photons, so that a multi-photon NOON stateis generated.
     2. Optical gyroscope with the light feld in two-mode squeezed coherent stateas light source
     It has been proved by plenty theoretical and experimental studies that themeasurement limit of interferometry can be improved from the shot-noiselimit to Heisenberg limit, which means that the accuracy of the sensorsbased on interferometry can be further improved. For this reason, we in-vestigate the problem about how to improve the measurement accuracy ofthe phase-sensitive sensors, especially that of the phase-sensitive opticalgyroscope. From the perspective of the practical application, the light feldin the two-mode coherent state, which is rather strong in power and easy inpreparation, is adapted in our work. While, the method for measurementis still frst-order interferometry by measuring the intensity diference. Itshows that in this condition the sensitivity of the optical gyroscope not onlyis relative to the squeezing parameters, but also depends on phase of the amplitude of the initial coherent light feld used to prepare the two-modesqueezed light feld. Specifcally, when the light source is so-called twinbeam the sensitivity of the optical gyroscope will beyond the shot-noiseand shows great advantage in the signal-to-noise rate, the dynamic range,and so on. Compared with the classical optical gyroscope, the noise level isreduced greatly and the demand on the light source intensity is decreasedas well.
     3. Infuence of the noise
     In addition, we investigate the infuence of the noise in the source and in theprocess of optical transmission. On the one hand, we discuss the infuence ofthe intensity-diference and phase-diference of the two-mode squeezed lightfeld using as the source of the gyroscope. On the other hand, the infuenceof the noise in the light path, both commutative and non-commutative, isanalyzed in detail from the perspective of the energy loss.It shows that ina given condition, though the noise will cause a decrease in the sensitivityof the gyroscope the phase sensitivity below the shot-noise limit can still beachieved by increasing the squeezing parameter which decreases the photonstatistical noise, and then compensates the loss caused by other noise.
引文
[1] R. Hanbury Brown and R. Q. Twiss,“A test of a new type of stellar interferometeron Sirius” Nature,178,1046(1956).
    [2] H. Lee, P. Kok, and J. P. Dowling, J. Mod. Opt.,49,2325(2002).
    [3] V. Giovannetti, S. Lloyd, and L. Maccone, Science306,1330(2004).
    [4] A. L. Migdall, IEEE Trans. Instrum. Meas.,50,478(2001).
    [5] D. M. Greenberger, M. A. Horne, and A, Zeilinger, in “Bell’s Theorem, QuantumTheory, and Conceptions of the Universe”, edited by M. Katafos, Kluwer Academic,Dordrecht, The Netherlands,(1989).
    [6] Z. Y. Ou,”Multi-photon interference and Temporal distinguishability of photons,”e-printe quant-ph/0708.0077.
    [7] J. P. Dowling,“Quantum optical metrology-the lowdown on high-N00N states”,Contemporary Physics49,125(2008).
    [8] C. M. Caves,“Quantum mechanical noise in an interferometer”, Phys. Rev. D23,1693(1981).
    [9] J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen,“Optimal frequencymeasurements with maximally correlated states”, Phys. Rev. A.54, R4649(1996).
    [10] Z. Y. Ou,“Complementarity and fundamental limit in precision phase measurement”, Phy. Rev. Lett.77,2352(1996).
    [11] Z. Y. Ou,“Fundamental quantum limit in precision phase measurement”, Phys.Rev. A.55,2598(1997).
    [12] B. Yurke,“Input state for enhancement of fermion interferometer sensitivity”, Phys.Rev. Lett.56,1515(1986).
    [13] B. Yurke, S. L. McCall, and J. R. Klauder,“SU(2) and SU(1,1) interferometers”,Phys. Rev. A33,4033(1986).
    [14] H. P. Yuen,“Generation, Detection and Application of High-Intensity Photon-Nimber-Eigenstate Fields”, Phys. Rev. Lett.56,2176(1986).
    [15] M. J. Holland and K. Burmett,“Interferometric detection of optical phase shifts atthe Heisenberg limit”, Phys. Rev. Lett.71,1355(1993).
    [16] M. Hillery and L. Mlodinow,“Interferometers and minimum-uncertainty states”,Phys. Rev. A48,1548(1993)
    [17] M. Hillery, M. Zou, and V. Buzek,“Diference-phase squeezing from amplitudesqueezing by means of a beam splitter”, Quantum Semiclassic. Opt.8,1041(1996).
    [18] T. Kim, O. Pfster, M. J. Holland, J. Noh, and J. Hall,“Infuence of decorrelationon Heisenberg-limited interferometry with quantum correlated photons”, Phys. Rev.A57,4004(1998)
    [19] X. Chen and L. Jiang,“The entanglement and phase measurement performance ofthe damped NOON state”, J. Phys. B: At. Mol. Opt. Phys.40,2799(2007).
    [20] T. Kim, J. Shin, Y. Ha, H. Kim, G. Park, T.-G. Noh, and C. Ki Hong,“Thephase-sensitivity of a Mach-Zehnder interferometer for the Fock state inputs”, Opt.Commun.156,37(1998).
    [21] T. Kim, Y. Ha, J. Shin, H. Kim, G. Park, K. Kim, T.-G. Noh, and C. K. Hong,“Efectof the detector efciency on the phase sensitivity in a Mach-Zehnder interferometer”, Phys. Rev. A60,708(1999).
    [22] R. C. Pooser and O. Pfster,“Particle-number scaling of the phase sensitivity inrealistic Bayesian twin-mode Heisenberg-limited interferometry”, Phys. Rev. A69,043616(2004).
    [23] L. Pezzéand A. Smerzi,“Phase sensitivity of a Mach-Zehnder interferometry”, Phys.Rev. A73,011801(2006).
    [24] L. Pezzéand A. Smerzi,“Phase detection at the quantum limit with multiphotonMach-Zehnder interferometry”, Phys. Rev. Lett.99,223603(2007).
    [25] L. Pezzéand A. Smerzi,“Mach-Zehnder interferometry at the Heisenberg limit withcoherent and squeezed-vacuum light”, Phys. Rev. Lett.100,073601(2008).
    [26] L. Pezzéand A. Smerzi,“Entanglement, nonlinear dynamics, and the Heisenberglimit”, Phys. Rev. Lett.102,100401(2009).
    [27] J. Jacobson, G. Bjork, I. Chuang, and Y. Yamamoto,“Photonic de Broglie Waves”, Phys. Rev. Lett.74,4835(1995).
    [28] T. Kim and H. Kim,“Phase sensitivity of a quantum Mach-Zehnder interferometerfor a coherent state input”, J. Opt. Soc. Am. B26,671(2009).
    [29] C. C. Gerry,“Heisenberg-limit interferometry with four-wave mixers operating in anonlinear regime”, Phys. Rev. A61,043811(2000).
    [30] C. C. Gerry and A. Benmoussa,“Heisenberg-limit interferometry and photolithog-raphy with nonlinear four-wave mixing”, Phys. Rev. A65,033822(2002).
    [31] C. C. Gerry and R. A. Campos,“Generation of maximally entangled photonic stateswith a quantum-optical Fredkin gate”, Phys. Rev. A64,063814(2001).
    [32] T. Kim,“Precision measurement scheme using a quantum interferometer”, Phys.Rev. A72,055801(2005).
    [33] A. Kolkiran and G.S. Agarwal,“Towards the Heisenberg limite in magnetometrywith parametric down converted photons”, Phys. Rev. A74,053810(2003).
    [34] A. Kolkiran and G.S. Agarwal,“quantum interferometry using coherent beam stim-ulated parametric down-conversion”, Opt. Express16,6479(2008).
    [35] S. Feng and O. Pfster,“Quantum interference of ultrastable twin optical beams,”Phys. Rev. Lett.92,203601(2004).
    [36] C. Brif, and A. Mann,“Nonclassical interfeometry with intelligent light”, Phys.Rev. A54,4505(1996).
    [37] J. P. Dowling,“Correlated input-port, matter-wave interferometer: quantum-noiselimits to the atom-laser gyroscope”, Phys. Rev. A57,4736(1998)
    [38] B. C. Sanders, and G. J. Miburn,”Optimal Quantum Measurements for Phase Esti-mation,” Phys. Rev. Lett.75,2944(1995).
    [39] B. C. Sanders, G. J. Milburn, and Z. Zhang,“Optimal quantum measurements forphase-shift estimation in optical interferometry”, J. Mod. Opt.44,1309(1997).
    [40] R. A. Campos, C. C. Gerry, and A. Benmoussa,“Optical interferometry at theHeisenberg limit with twin Fock states and parity measurements”, Phys. Rev. A68,023810(2003).
    [41]孙方稳,多光子态的干涉和区分,博士论文(2007)
    [42] F. W. Sun,B. H. Liu, Y. X. Gong, Y. F. Huang, Z. Y. Ou, and G. C. Guo,“Ex-perimental demonstration of phase measurement precision beating standard quantumlimit by projection measruement”, EPL82,24001(2008).
    [43] F. Shafei, P. Srinivasan, and Z. Y. Ou,“Generation of three-photon entangled stateby quantum interference between a coherent state and parametric down-conversion”,Phys. Rev. A70,043803(2004).
    [44] B. Liu and Z. Y. Ou,“Enginering multiphoton entangled states by quantum inter-ference”, Phys. Rev. A74,035802(2006).
    [45] H. F. Hofmann,“Generation of hightly nonclassical n-photon polarization states bysuperbunching at a photon bottleneck”, Phys. Rev. A70,023812(2004).
    [46] M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg,“Super-resolving phase mea-surements with a multiphoton entangled state”, Nature429,161(2004).
    [47] K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brienand A. G. White,“Time-Reversal and Super-Resolving Phase Measurement”, Phys.Rev. Lett.98,223601(2007).
    [48] O. Steuernagel and S. Scheel,“Approaching the Heisenberg limit with two modesqueezed states”, J. Opt. B: Quantum Semiclass. Opt.6, S66(2004).
    [49] K. Edamatsu, R. Shimizu, and T. Itoh,“Measurement of the Photonic de BroglieWavelength of Entangled Photon Pairs Generated by Spontaneous Parametric Down-Conversion”, Phys. Rev. Lett.89,213601(2002).
    [50] A. Kolkiran and G.S. Agarwal,“Heisenberg limited Sagnac interferometry”, Opt.Express15,6798(2007).
    [51] G. Y. Xiang, Y. F. Huang, F. W. Sun, P. Zhang, Z. Y. Ou, and G. C. Guo,“Demon-stration of temporal distinguishability in a four-photon state and a six-photon state”,Phys. Rev. Lett.97,023604(2006).
    [52] Z. Y. Ou, J.-K. Rhee, and L. J. Wang,“Photon bunching and multiphoton interfer-ence in parametric down-conversion”, Phys. Rev. A60,593(1999).
    [53] V. Giovannetti, S. Lloyd and L. Maccone,“Advances in quantum metroloty”, Naturephoton.5,222(2011).
    [54] U.Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W.Wasilewski, K.Banaszek, and I. A.Walmsley,“Dorner, et al. Optimal quantum phase estimation”,Phys. Rev. Lett.102,040403(2009).
    [55] Z.Hradil, R. Myska, J. Peˇrina, M. Zawisky, Y. Hasegawa, and H. Rauch,“Quantumphase in interferometry”, Phys. Rev. Lett.76,4295(1996).
    [56] Z. Hradil, and J. Rehácek,“Quantum interference and Fisher information” Phys.Lett. A334,267(2005).
    [57] G. A. Duking, and J. P. Dowling,“Local and global distinguishability in quantuminterferometry”, Phys. Rev. Lett.99,070801(2007).
    [58] L. Pezze and A. Smerzi,“Sub shot-noise interferometric phase sensitivity with beryl-lium ions Schroinger cat states”, Europhys. Lett.78,30004(2007).
    [59] A. Monras,“Optimal phase measurements with pure Gaussian states”, Phys. Rev. A73,033821(2006).
    [60] H. Cable and G. A.“Durkin, Parameter estimation with entangled photons producedby parametric down-conversion”, Phys. Rev. Lett.105,013603(2010).
    [61] R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen, W. Wasilewski, K.Banaszek, and I. A. Walmsley, Quantum phase estimation with lossy interferometers.Phys. Rev. A80,013825(2009).
    [62] T.W. Lee, S. D. Huver, H. Lee, L. Kaplan, S. B. McCracken, C. Min1, D. B. Uskov, C.F. Wildfeuer, G. Veronis, and J. P. Dowling,“Optimization of quantum interferometricmetrological sensors in the presence of photon loss”, Phys. Rev. A80,063803(2009).
    [63] M. Kacprowicz, R. Demkowicz-Dobrzanski, W. Wasilewski, K. Banaszek and I. A.Walmsley,“Experimental quantum-enhanced estimation of a lossy phase shift”, NaturePhoton.4,357(2010).
    [64] C. C. Gerry and J. Mimih,“Heisenberg-limited interferometry with pair coherentstates and parity measurement”, Phys. Rev. A82,013831(2010).
    [65] P. M. Anisimov, G. M. Raterman, A. Chiruvelli, W. N. Plick, S. D. Huver, H. Lee andJ. P. Dowling,“Quantum metrology with two-mode squeezed vacuum parity detectionbeats the heisenberg limit”, Phys. Rev. Let.104,103602(2010).
    [66] Berry, D. W., and Wiseman, H. M.,“Optimal states and almost optimal adaptivemeasurements for quantum interferometry”, Phys. Rev. Lett.,85,5098(2000); Berry,D. W., Wiseman, H. M., and Breslin, J. K.,“Optimal input states and feedback forinterferometric phase estimation”, Phys. Rev. A63,053804(2001).
    [67] B. L. Higgins, D. W. Berry, S. D. Bartlett, M. W. Mitchell, H. M. Wiseman, and G.J. Pryde,“Demonstrating Heisenberg-limited unambiguous phase estimation withoutadaptive measurements”, New Journal of Physics11,073023(2009).
    [68] William N Plick1,3, Jonathan P Dowling1and Girish S Agarwal2,“Coherent-light-boosted, sub-shot noise, quantum interferometry”,New J. Phys.12,083014(2010).
    [69] C.C.Gerry, A. Benmoussa, and R.A. Campos,“Nonlinear interferometer as a resourcefor maximally entangled photonic states: Application to interferometry”, Phys. Rev.A66,(2002).
    [70] Jietai Jing, Cunjin Liu, Zhifan Zhou, Z. Y. Ou, and Weiping Zhang,“Realization ofa nonlinear interferometer with parametric amplifers”, Appl. Phys. Lett.99,011110(2011).
    [71] B. C. Sanders,“Quantum dynamics of the nonlinear rotator and the efects of con-tinual spin measurement”, Phys. Rev. A40,2417(1989).
    [72] A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P.Dowling,“quantum interferometric optical lithography: exploiting entanglement tobeat the difraction limit”, Phys. Rev. Lett.85,2733(2000)
    [73] H. Wang and T. Kobayashi,“Phase measurement at the Heisenberg limit with threephotons”, Phys. Rev. A71,021802(R)(2005)
    [74] C. K. Hong, Z. Y. Ou, and L. Mandel,“Measurement of subpicosecond time intervalsbetween two photons by interference”, Phys. Rev. Lett.59,2044(1987).
    [75] H. Lee, P. Kok, N. J. Cerf and J. P. Dowling,“Linear optics and projective measure-ments alone sufce to create large-photon-number path entanglement”, Phys. Rev. A65,030101(R)(2002).
    [76] P. Kok, H. Lee, and J. P. Dowling,“Creation of large-photon-number path entan-glement conditioned on photodetection”, Phys. Rev. A65,052104(2002).
    [77] P. Walther, J-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni and A. Zeilinger,“De Broglie wavelength of a non-local four-photon state”, Nature (London)429,158(2004).
    [78] E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brunne, J.M. Raimond and S.Haroche,“Generation of Einstein-Podolsky-Rosen Pairs of Atoms”, Phys. Rev. Lett.79,1(1997).
    [79] A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J-M. Raimond andS. Haroche,“Step-by-Step Engineered Multiparticle Entanglement”, Science,288,2024(2000).
    [80] A. Rauschenbeutel, P Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimondand S. Haroche,“Controlled entanglement of two feld modes in a cavity quantumelectrodynamics experiment”, Phys. Rev. A,64,050301(2001).
    [81] J. Ye, D. W. Vernooy and H. J. Kimble,“Trapping of Single Atoms in Cavity QED”, Phys. Rev. Lett.83,4987(1999).
    [82] J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nagerl, D. M. Stamper-Kurn and H. J. Kimble,“State-Insensitive Cooling and Trapping of Single Atoms inan Optical Cavity”, Phys. Rev. Lett.90,133602(2003).
    [83] J. McKeever, A. Baca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich and H.J. Kimble,“Deterministic generation of single photons from one atom trapped in acavity”, Science303,1992(2004).
    [84] H. Carmichael and L. A. Orozco,“Single atom lases orderly light”, Nature425,246(2003).
    [85] J. McKeever, J. R. Buck, A. D. Boozer and H. J. Kimble,“Determination of thenumber of atoms trapped in an optical cavity”, Phys. Rev. Lett.93,143601(2004).
    [86] K. T. Kapale, J. P. Dowling,“Bootstrapping approach for generating maximallypath-entangled photon states”, Phys. Rev. Lett.99,053602(2007).
    [87] Rameez-ul-Islam, M. Ikram, and F. Saif1,“Engineering maximally entangled N-photon NOON feld states using an atom interferometer based on Bragg regime cavityQED”, J. Phys. B: At. Mol. Opt. Phys.40,1359(2007).
    [88] F. Saif, Rameez-ul-Islam and A. H. Khosa,“An engineering two-mode feld NOONstate in cavity QED”, J. Phys. B: At. Mol. Opt. Phys.43,015501(2010)
    [89] Z-R. Zhong,“A simplifed scheme for realizing multi-atom NOON state”, Optic.Commun.283,189(2010).
    [90] A. A. Khan and M. S. Zubairy,“Quantum logic gate operating on atomic scatteringby standing wave feld in Bragg regime”, Fortschr. Phys.46,417(1998).
    [91] A. Kuhn, M. Hennrich, T. Bondo and G. Rempe,“Controlled generation of singlephotons from a strongly coupled atom-cavity system”, Appl. Phys. B: Lasers Opt.69373,(1999).
    [92] K. R. Brown, K. M. Dani, D. M. Stamper-Kurn and K. B. Whaley,“Deterministicoptical Fock-state generation”, Phys. Rev. A67,043818(2003).
    [93] A. Kuhn, M. Hennrich and G. Rempe,“Deterministic single-photon source for dis-tributed quantum networking”, Phys. Rev. Lett.89,067901(2002).
    [94] C. Champenois, M. Bu chner, R. Delhuille, R. Mathenvet, C. Robillaird, C. Rizzoand J. Vigue˙,“Atomic difraction by a laser standing wave: Analysis using Blochstates”, Eur. Phys. J. D13,271(2001); E. Schumacher, M. Wilkens, P. Meystreand S. Glasgow,“Spontaneous emission in the near-resonant kapitza-dirac efect”,Appl. Phys. B: Photophys. Laser Chem.54,451(1992); M. Marte and S. Stenholm,“Multiphoton resonances in atomic bragg scattering”, Appl. Phys. B: Photophys.Laser Chem.54,443(1992).
    [95] A. E. A. Koolen, G. T. Jansen, K. F. E. M. Domen, H. C. W. Beijerinck and K.A. H. van Leeuwen,“Large-angle adjustable coherent atomic beam splitter by Braggscattering”, Phys. Rev. A65,041601(R)(2002); S. Du rr, and G. Rempe,“Acceptanceangle for Bragg refection of atoms from a standing light wave”, Phys. Rev. A59,1495(1999); C. Keller, J. Schmiedmayer, A. Zeilinger, T. Nonn, S. Du rr and G. Rempe,“Adiabatic following in standing-wave difraction of atoms”, Appl. Phys. B: LasersOpt.69,303(1999).
    [96] D. M. Giltner, R. W. McGrown, S. A. Lee,“Atom interferometer based on Braggscattering from standing light waves”, Phys. Rev. Lett.75,2638(1995); S. Du rr, T.Nonn and G. Rempe,“Origin of quantum-mechanical complementarity probed by a’which-way’ experiment in an atom interferometer”, Nature (London)395,33(1998).
    [97] J. Ye, D. W. Vernooy, H. J. Kimble,“Trapping of single atom in cavity QED”, Phys.Rev. Lett.83,4987(1999); J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H-C.Nagerl, D. M. Stamper-Kurn, H. J. Kimble,“State-insensitive cooling and trappingof single atoms in an optical cavity”, Phys. Rev. Lett.90,133602(2003).
    [98] J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley and M. S. Chapman,“CavityQED with optically transported atoms”, Phys. Rev. A69,051804(R)(2004).
    [99] P. Xu, X. He, J. Wang and M. Zhan,“Trapping a single atom in a blue detunedoptical bottle beam trap”, Opt. Lett.35,2164(2010).
    [100] X. He, P. Xu, J. Wang, M. Zhan,“High efcient loading of two atoms into a micro-scopic optical trap by dynamically reshaping the trap with a spatial light modulator”, Opt. Express18,13586(2010).
    [101] H. J. Kimble,“Strong interactions of single atoms and photons in cavity QED”,Phys. Scripta. T76,127(1998).
    [102] S. Kunze, S. Durr and G. Rempe,“Bragg scattering of slow atoms from a standinglight wave”, Europhys. Lett.34,343(1996).
    [103] A. H. Khosa, M. Ikram and M. S. Zubairy,“Measurement of entangled states viaatomic beam defection in Bragg’s regime”, Phys. Rev. A70,052312(2004).
    [104] D. F. Walls and G. J. Milburn,“Quantum Optics”, Springer-Verlag, Berlin,(1994).
    [105] B. Wang and L.-M. Duan,“Implementation scheme of controlled SWAP gatesfor quantum fngerprinting and photonic quantum computation”Phys. Rev. A75,050304(R)(2007).
    [106] V. Mayer, M. A. Rowe, D. Kielpinski, C. A. Sackett, W. M. Itano, C. Monroe and D.J. Wineland,“Experimental demonstration of entanglement-enhanced rotation angleestimation using trapped ions”, Phys. Rev. Lett.86,5870(2001).
    [107] A. Kuzmich and L. Mandel,“Sub-shot-noise interferometric measurements with two-photon states”, J. Opt. B: Quantum Semiclass. Opt.10,493(1998).
    [108] R. T. Glasser, H. Cable, and J. P. Dowling,“Entanglement-seeded, dual, opticalparametric amplifcation: Applications to quantum imaging and metrology”, Phys.Rev. A78,012339(2008).
    [109] S. D. Huver, C. F. Wildfeuer, and J. P. Dowling,“Entangled Fock state for robustquantum optical metrology, imaging, and sensing”, Phys. Rev. A78,063828(2008).
    [110] F. W. Sun, B. H. Liu, Y. X. Gong, Y. F. Huang, Z. Y. Ou and G. C. Guo,“Ex-perimental demonstration of phase measurement precision beating standard quantumlimit by projection measurement”, EuroPhys. Lett.82,24001(2008).
    [111] R. W. Simmonds, A. Marchenkov, E. Hoskinson, J. C. Davis and R. E. Packard,“Quantum interference of superfuid3He” Nature412,55(2001).
    [112] G. E. Stedman,“Ring-laser tests of fundamental physics and geophysics”, Rep. Prog.Phys.60,615(1997)
    [113] G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi,“Single-photonSagnac interferometer”, J. Phys. B39,1011–1016(2006).
    [114] O.Aytur and P. Kumar,“Pulsed twin beams of light”, Phys. Rev. Lett.65,1551(1990).
    [115] D. T. Smithey, M. Beck, M. Belsley and M. G. Raymer,“Sub-shot-noise correlationof total photon number using macroscopic twin pulses of light”, Phys. Rev. Lett.69,2650(1992).
    [116] H. H. Adamyan and G. Yu. Kryuchkyan,“Continuous-variable entanglement ofphase-locked light beams”, Phys. Rev. A69,053814(2004)
    [117] H. H. Adamyan, N. H. Adamyan, S. B. Manvelyan and G. Yu. Kryuchkyan,“Quadra-ture entanglement and photon-number correlations accompanied by phase-locking”,Phys. Rev. A73,033810(2006)
    [118] M. Bondani, A. Allevi, G. Zambra, M. G. A. Paris and A. Andreoni,“Sub-shot-noise photon-number correlation in a mesoscopic twin beam of light”, Phys. Rev. A76,013833(2007).
    [119]王巍,《干涉型光纤陀螺仪技术》,北京:中国宇航出版社,2010.
    [120] I. N. Agafonov1, M. V. Chekhova and G. Leuchs,“Two-Color Bright Squeezed Vac-uum”, Phys. Rev. A82,011801(2010).
    [121]张桂才,《光纤陀螺原理与技术》,北京:国防工业出版社,2008.
    [122] J. Laurat, T. Coudreau, N. Treps, A. Maitre, and C. Fabre,“Conditional preparationof a quantum state in the continuous variable regime: Generation of a sub-Poissonianstate from twin beams”, Phys. Rev. Lett.91,213601(2003).
    [123] H. ZOU, S.Zhai, J. Guo, R. Yang, and J. Gao “Preparation and measurement oftunable high-power sub-Poissonian light using twin beams”, Optic. Lett.31,1735(2006).
    [124] D. Wang, Y. Shang, Z. Yan, W. Wang, X. Jia, C. Xie, and K. Peng,“Experimentalinvestigation about the infuence of pump phase noise on phase-correlation of outputoptical felds from a non-degenerate parametric oscillator”, EPL82,24003(2008).
    [125] M. A. Rubin and S. Kaushik,“Loss-induced limits to phase measurement precisionwith maximally entangled states”, Phys. Rev. A75,050805(2007).
    [126] S. D. Huver, C. F. Wildfeuer, and J. P. Dowling,“Entangled Fock states for robustquantum optical metrology, imaging, and sensing”, Rev. Phys. A78,063828(2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700