用户名: 密码: 验证码:
朊蛋白诱导的量子点聚集及其生物分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点(又称半导体纳米晶,quantum dots,QDs)是近年来发展起来的新型荧光纳米材料。由于其直径小(与核酸、蛋白质等相近)、光学性能卓越(宽吸收、窄发射、光稳定性好等)、生物相容性良好等优点,在生命科学研究中备受青睐,被广泛应用于细胞和活体成像、荧光共振能量转移的研究、生物大分子检测等领域。朊蛋白(Proin Protein)是一种能在动物和人类中引起多种神经变性型疾病的传染性蛋白,其致病机理是正常的朊蛋白发生错误折叠,形成富含β折叠的抗蛋白酶水解的致病型朊蛋白。不稳定的致病型朊蛋白继续发生强烈的聚集,进而白组装成低聚物、纤维前体和淀粉样纤维结构。本文主要的研究工作如下:
     (1)合成了荧光性能优良的巯基乙酸修饰的CdTe QDs,以重组人朊蛋白(rPrP)为模式蛋白,研究了朊蛋白诱导的CdTe QDs的聚集和CdTe QDs对朊蛋白纤维化的影响。
     (2)基于朊蛋白诱导CdTe QDs发生聚集的现象,以CdTe QDs为荧光探针,对朊蛋白进行了可视化定性、半定量的检测,并利用CdTe QDs与朊蛋白相互作用后上清荧光强度的降低和上清荧光最大发射波长的蓝移分别对朊蛋白进行了定量检测。共存物质的干扰试验表明该检测方法选择性好,灵敏度高。同时也检测了表达朊蛋白的大肠杆菌裂解液中朊蛋白的含量。透射电子显微镜(TEM)实验表明,在二者聚集产生的沉淀中存在蛋白质纤维和淀粉样斑块,证实CdTe QDs的聚集与朊蛋白纤维化过程有关。
     (3)基于朊蛋白优先导致大粒径CdTe QDs聚集并引起上清最大发射峰蓝移的现象,以朊蛋白做“生物分离试剂”,对三种不同粒径的CdTe QDs进行了分离,包括三种CdTe QDs的两两分离和三种混合QDs的彼此分离。同时计算了分离回收率,并探讨了分离机制。
Quantum dots, also known as semiconductor nanocrystals, are a novel type of fluorescent nanomaterials developed in recent years. They attracted a growing notice in biological research due to small diameter (similar with nucleic acids and proteins), perfect optical property (broad absorption, narrow emission, strong light stability, etc.), biocompatibility, etc., and they have been widely applied to cell and in vivo imaging, the study of fluorescence resonance energy transfer, and detection of biological macromolecules. Prion protein is a kind of infectious protein which could cause many neurodegenerative diseases in animal and human. The pathogenic mechanism is the misfolding of normal PrPc which form theβ-sheep-rich and protease-resistant PrPSc. The unstable PrPSc possesses a high tendency to aggregate and form oligomers, the precursor of amyloid fiber and amyloid plaques. The main work on this thesis can be summarized as follows:
     (1) CdTe QDs with excellent fluorescent properity were synthesized and modified by mercaptoacetic acid, and high purity of prion protein was purified from Escherichia coli. Subsequently, we discussed the aggregation of CdTe QDs induced by prion protein and the effects of CdTe QDs on the progress of fibrosis of prion protein.
     (2) Based on the aggregation of CdTe QDs induced by prion protein, CdTe QDs were used as a fluorescent probe for colorimetric qualitative and semi-quantitative detection of prion protein. Meanwhile, both the decrease in fluorescence intensity and the blue-shift of maximal emission peak of the supernatant could be used for quantitative detection of prion protein. Interference test showed that this detection had high selectivity and sensitivity. To demonstrate the potential application of this detection system, we also detected prion protein in the diluted solution of Escherichia coli lysate. Finally, transmission electron microscopy results showed that fibrils existed in the precipitates and were partly transformed to amyloid plaques.
     (3) According to the phenomenon that prion protein precipitated with larger CdTe QDs preferentially and caused the blue-shift of maximal emission peak of the supernatant, we used prion protein as a "biological separating reagents" to separate three different sizes of CdTe QDs, including the separation of two kinds of CdTe QDs, and three kinds of CdTe QDs from each other. In addition, the recoveries of these separation methods were calculated and the mechanism was discussed.
引文
[1]Zhang X Q, Guo Q, Cui D X. Recent advances in nanotechnology applied to biosensors [J]. Sensors,2009,9(2):1033-1053.
    [2]Kim P S, Djazayeri S, Zeineldin R. Novel nanotechnology approaches to diagnosis and therapy of ovarian cancer [J]. Gynecol. Oncol.,2011,120(3):393-403.
    [3]Zhang Z, Fu Y M, Li B J, et al. Self-assembly-based structural DNA nanotechnology [J]. Curr. Org. Chem.,2011,15(4):534-547.
    [4]Baruah S, Dutta J. Nanotechnology applications in pollution sensing and degradation in agriculture:a review [J]. Environ. Chem. Lett.,2009,7(3):191-204.
    [5]Slevin M, Badimon L, Grau-Olivares M, et al. Combining nanotechnology with current biomedical knowledge for the vascular imaging and treatment of atherosclerosis [J]. Mol. Biosyst.,2010,6(3):444-450.
    [6]Zhao X. Fabrication of nanobiological materials through molecular self-assembly and its application in nanomedicine [J]. Nanomedicine-Nanotechnology Biology and Medicine,2007, 3(4):341.
    [7]Amiji M M. Nanomedicine for cancer therapy [J]. Pharm. Res.,2011,28(2):181-186.
    [8]Gao J, Feng S S, Guo Y J. Antibody engineering promotes nanomedicine for cancer treatment [J]. Nanomedicine,2010,5(8):1141-1145.
    [9]Azzazy H M, Mansour M M, Kazmierezak S C. Nanodiagonostics:a new frontier for clinical laboratory medicine [J]. Clin. Chem.,2006,52(7):1238-1246.
    [10]Bakalova R, Ohba H, Zhelev Z, et al. Quantum dots as photosensitizers [J]. Biotech.,2004, 22(11):1360-1361.
    [11]Mattoussi H, Mauro J M, Goldman E R, et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein [J]. J. Am. Chem. Soc.,2000,122(49): 12142-12150.
    [12]Schroedter A, Weller H, Eritja R, et al. Biofunctionalization of silica-coated CdTe and gold nanocrystals [J]. Nano Lett.,2002,2(12):1363-1367.
    [13]Hoppe K, Geidel E, Weller H, et al.Covalently bound CdTe nanocrystals [J]. Phys. Chem. Chem. Phys.,2002,4(10):1704-1706.
    [14]Wei H, Wang Z D, Zhang J Q, et al. Time-dependent protein-directed growth of gold nanoparticles within a single crystal of lysozyme [J]. Nat. Nanotechnol,2011,6(2):92-96.
    [15]Hong S, Choi I, Lee S, et al. Sensitive and colorimetric detection of the structural evolution of superoxide dismutase with gold nanoparticles [J]. Anal. Chem.,2009,81(4):1378-1382.
    [16]Jamieson T, Bakhshi R, Petrova D, et al. Biological applications of quantum dots [J]. Biomater., 2007,28(31):4717-4732.
    [17]Biju V, Itoh T, Anas A, et al. Semiconductor quantum dots and metal nanoparticles:syntheses, optical proterities, and biological applications [J]. Anal. Bioanal. Chem.,2008,391(7): 2469-2495.
    [18]Freeman R, Gill R, Shweky 1, et al. Biosensing and probing of intracellular metabolic pathways by NADH-Sensitive quantum dots [J]. Angew. Chem. Int. Ed.,2009,48(2):309-313.
    [19]Medintz I L, Pons T, Boeneman K, et al. Resonance energy transfer between luminescent quantum dots and diverse fluorescent protein acceptors [J]. J. Phys. Chem. C,2009,113(43): 18552-18561.
    [20]Choi J H, Chen K H, Strano M S. Aptamer-capped nanocrystal quantum dots:a new method for label-free protein detection [J]. J. Am. Chem. Soc.,2006,128(49):15584-15585.
    [21]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science,1996, 27(5251):933-937.
    [22]Rossetti R, Nakahara S, Brus L E. quantum size effects in the redox potentials, resonance raman spectra and electronic spectra of CdS crystallites in aqueous solutions [J]. J. Chem. Phys.,1983, 79:1086-1088.
    [23]Marcel B J, Mario M, Peter G, et al. Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281(5385):2013-2016.
    [24]Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281(5385):2016-2018.
    [25]Medintz I L, Uyeda H T, Goldman E R, et al. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing [J]. Nat. Mater.,2005,4(6):435-446.
    [26]Jaiswal J K, Mattoussi H, Mauro J M, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates [J]. Nat. Biotechnol.,2003,21(1):47-51.
    [27]Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J]. Nat. Biotechnol.,2003,21(1):41-46.
    [28]Dong W, Ge X, Wang M, et al. Labeling of BSA and imaging of mouse T-lymphocyte as well as mouse spleen tissue by L-glutathione capped CdTe quantum dots [J]. Luminescence,25(1): 55-60.
    [29]Kairdolf B A, Smith A M, Nie S. One-Pot sthesis, encapsulation, and solubilization of size-tuned quantum dots with amphiphilic multidentate ligands [J]. J. Am. Chem. Soc.,2008, 130(39):12866-12867.
    [30]Gao X, Yang L, Petros J A, et al. In vivo molecular and cellular imaging with quantum dots [J]. Curr. Opin. Biotechnol.,2005,16(1):63-72.
    [31]Wu, X Y, Liu, H J, Liu, J Q, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J]. Nat. Biotechnol.,2003,21(4):41-46.
    [32]Gao X, Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat. Biotechnol.,2004,22(8):969-976.
    [33]Gao X, Yarig L, Petros J A, et al. In vivo molecular and cellular imaging with quantum dots [J]. Curt. Opin. Biotechnol.,2005,16(1):63-72.
    [34]Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE(E=sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J. Am. Chem. Soc., 1993,115(19):8706-8715.
    [35]Peng Z A, Peng X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor [J]. J. Am. Chem. Soc.,2001,123(1):183-184.
    [36]Nikolai G, Dmitri V T, Andrey L R, et al. Thiol-capping of CdTe nanocrystals:An alternative to organometallic synthetic routes [J]. J. Phys. Chem. B,2002,106(29):7177-7185.
    [37]Vossmeyer T, Katsikas L, Giersig M, et al. CdS nanoclusters:Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy and reversible absorbance shift [J]. J. Phys. Chem.,1994,98(31):7665-7673.
    [38]Selvin P R. Fluorescence resonance energy transfer [J]. Methods Enzymol.,1995,246: 300-334.
    [39]Cloninger M J. Biological applications of dendrimers [J]. Curr. Opin. Chem. Biol.,2002,6(6): 742-748.
    [40]Algar W R, Krull U J. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET) [J]. Anal. Chim. Acta,2007,581(2):193-201.
    [41]Daisuke K, Ryoji A, Issei I, et al. FRET analysis of protein conformational change through position-specific incorporation of fluorescent amino acids [J]. Nat. Methods,2006,3(11): 923-929.
    [42]Shi L F, De Paoli V, Rosenzweig N, et al. Synthesis and application of quantum dots FRET-based protease sensors [J]. J. Am. Chem. Soc.,2006,128(32):10378-10379.
    [43]Zheng Y G, Gao S J, Ying J Y. Synthesis and cell-imaging application of glutathione-capped CdTe quantum dots [J]. Adv. Mater.,2007,19(3):376-380.
    [44]Gao X H, Cui Y Y, Nie S M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat. Biotechnol.,2004,22(8):969-976.
    [45]Kerman K, Endo T, Tsukamoto M, et al. Quantum dot-base immunosensor for the detection of prostate-specific antigen using fluorescence microscopy [J]. Talanta,2007,71(4):1494-1499.
    [46]Liu X A, Zhang Y Y, Lei J P, et al. Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification with self-produced coreactant from oxygen reduction [J]. Anal. Chem.,82(17):7351-7356.
    [47]Lovric J, Bazzi H S, Cuie Y, et al. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots [J]. J. Mol. Med.,2005,83(5):377-385.
    [48]Zheng H Z, Liu L, Lu Y H, et al. Rapid determination of nanotoxicity using luminous bacteria [J]. Anal. Sci.,2010,26(1):125-128.
    [49]Hoshino A, Fujioka K, Oku T, et al. Physicochemical properities and cellular toxicity of nanocrystal quantum dots depend on their surface modification [J]. Nano Lett.,2004,4(11): 2163-2169.
    [50]Wang L L, Zheng H Z, Long Y J, et al. Rapid determination of the toxicity of quantum dots with luminous bacteria [J]. J. Hazard. Mater.,2010,177:1134-1137.
    [51]Agrawal A, Tripp R A, Anderson L J, et al. Real-time detection of virus particles and viral protein expression with two-color nanoparticle probes [J]. J. Virol.,2005,79(13):8625-8628.
    [52]Yang L J, Li Y B. Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels [J]. Analyst,2006,131(3):394-401.
    [53]Lee L Y, Ong, S L, Hu J Y, et al. Use of semiconductor quantum dots for photostable immunofluorescence labeling of cryptosporidium parvum [J]. Appl. Environ. Microb.,2004, 70(10):5732-5736.
    [54]Bakalova R, Ohba H, Zhelev Z, et al. Quantum dot anti-CD conjugates:Are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? [J]. Nano Letter.,2004,4(9):1567-1573.
    [55]Samia A, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy [J]. J. Am. Chem. Soc.,2003,125(51):15736-15737.
    [56]Bakalova R, Ohba H, Zhelev Z, et al. Quantum dots as photosensitizers? [J], Nat. Biotechnol., 2004,22(11):1360-1361.
    [57]Zhang C Y, Yeh H C, Kuroki M T, et al. Single-quantum-dot-based DNA nanosensor[J]. Nat. Mater.,2005,4(11):826-831.
    [58]Zhao D, Chan W H, He Z K, et al. Quantum dot-ruthenium complex dyads:recognition of double-strand DNA through dual-color fluorescence detection [J]. Anal. Chem.,2009,81(9): 3537-3543.
    [59]Yuan J P, Guo W W, Yang X R, et al. Anticancer drug-DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots [J]. Anal. Chem.,2009,81(1):362-368.
    [60]You C J, Wilmes S, Beutel O, et al. Self-controlled monofunctionalization of quantum dots for multiplexed protein tracking in live cells [J]. Angew. Chem. Int. Ed.,2010,49(24):4108-4112.
    [61]Xu X H, Liu X, Nie Z, et al. Label-free fluorescent detection of protein kinase activity based on the aggregation behavior of unmodified quantum dots [J]. Anal. Chem.,2011,83(1):52-59.
    [62]Xiao S J, Hu P P, Huang C Z, et al. Sensitive discrimination and detection of prion disease-associated isoform with a dual-aptamer strategy by developing a sandwich structure of magnetic microparticles and quangtum dots [J]. Anal. Chem.,2010,82(23):9736-9742.
    [63]Shen J S, Yu T. Xie J W, et al. Photoluminescence of CdTe nanocrystals modulated by methylene blue and DNA. A label-free luminescent signaling nanohybrid platform [J]. Phys. Chem. Chem. Phys.,2009,11(25):5062-5069.
    [64]Hu P P, Chen L Q, Huang C Z, et al. Ultra-sensitive detection of prion protein with a long range resonance energy transfer strategy [J]. Chem. Commun.,2010,46(43):8285-8287.
    [65]Sun X M, Tabakman S M, Seo W S, et al. Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals [J]. Angew. Chem. Int. Ed.,2009,48(5):939-942.
    [66]Krueger K M, Al-Somali A M, Falkner J C, et al. Characterization of nanocrystalline CdSe by size exclusion chromatography [J]. Anal. Chem.,2005,77(11):3511-3515.
    [67]Hanauer M, Pierrat S, Zins I, et al. Separation of nanoparticles by gel electrophoresis according to size and shape [J]. Nano Lett.,2007,7(9):2881-2885.
    [68]Bai L, Ma X J, Liu J F, et al. Rapid separation and purification of nanoparticles in organic density gradients [J]. J. Am. Chem. Soc.,2010,132(7):2333-2337.
    [69]Prusiner S B. Prion disease and the BSE crisis [J]. Science,1997,278(5336):245-251.
    [70]Prusiner S B. Novel proteinaceous infectious particles cause scrapie [J]. Science,1982, 216(4542):136-144.
    [71]Aguzzi A, Polymenidou M. Mammalian prion biology:one century of evolving concepts [J]. Cell,2004,116(2):313-327.
    [72]Delasnerie-Laupretre N, Poser S, Pocchiari M, et al. Creutzfeldt-Jakob disease in Europe [J]. Lancet,1995,346(8979):898
    [73]Brown P. Reflections on a half-century in the field of transmissible spongiform encephalopathy [J]. Folia Neuropathol,2009,47(2):95-103.
    [74]Morillas M, Vanik D L, Surewicz W K. On the mechanism of a-helix to p-sheet transition in the recombinant prion protein [J]. Biochem.,2001,40(23):6982-6987.
    [75]Soto C, Saborio G P. Prions:disease propagation and disease therapy by conformational transmission [J]. Trends Mol. Med.,2001,7(3):109-114.
    [76]Castilla J, Morales R, Abid K, et al. Protein misfolding cyclic amplification for diagnosis and prion propagation studies [C]. Amyloid, prion, and other protein aggregates,2006,412:3-21.
    [77]Atarashi R. Recent advances in cell-free PrPSc amplification technique [J]. Prot. Pept Lett., 2009,16(3):256-259.
    [78]Korth C, Streit P, Oesch B. Monoclonal antibodies specific for the native disease-associated isoform of the prion protein [J]. Amyloid, prion, and other protein aggregates,1999,309: 106-122.
    [79]Curin S. Monoclonal antibody against a peptide of human prion protein discriminates between Creutzfeldt-Jacob's disease-affected and normal brain tissue [J]. J. Biol. Chem.,2004,279(5): 3694-3698.
    [80]Zou W Q, Zheng J, Gray D M, et al. Antibody to DNA detects scrapie but not normal prion protein [J]. Proc. Natl. Acad. Sci. U. S. A.,2004,101(5):1380-1385.
    [81]Kramer M L, Bartz J C. Rapid high-throughput detection of PrPSc by 96-well immunoassay [J]. Prion,2009,3(1):44-48.
    [82]Miller A E, Hollars C W, Lane S M, et al. Fluorescence cross-correlation spectroscopy as a universal method for protein detection with low false positives [J]. Anal. Chem.,2009,81(14): 5614-5622.
    [83]Lindgren M, Hammarstrom P. Amyloid oligomers:spectroscopic characterization of amyloidogenic protein states [J]. FEBS,2010,277(6):1380-1388.
    [84]Xiao S J, Hu P P, Huang C Z, et al. Aptamer-mediated turn-on fluorescence assay for prion protein based on guanine quenched fluophor [J]. Talanta,2009,79(5):1283-1286.
    [85]Muramoto T, Scott M, Cohen F F, et al. Recombinant scrapie-like prion protein of 106 amino acids is soluble [J]. Proc. Natl. Acad. Sci. U. S. A.,1996,93(26):15457-15462.
    [86]Deleault N R, Lucassen R W, Supattapone S. RNA molecules stimulate prion protein conversion [J]. Nature,2003,425(6959):717-720.
    [87]Linse S, Xue W F, Lynch I, et al. Nucleation of protein fibrillation by nanoparticles [J]. Proc. Natl. Acad. Sci. U. S. A.,2007,104(21):8691-8696.
    [88]Colvin V L, Kulinowski K M. Nanoparticles as catalysts for protein fibrillation [J]. Proc. Natl. Acad. Sci. U. S. A.,2007,104(21):8679-8680.
    [89]Wu W H, Sun X, Li Y M, et al. TiO2 nanoparticles promote β-amyloid fibrillation in vitro [J]. Biochem. Biophys. Res. Commun.,2008,373(2):315-318.
    [90]Zhang D M, Neumann O, Wang H, et al. Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH [J]. Nano Lett.,2009,9(2):666-671.
    [91]Vannoy C H, Leblanc R M. Effects of DHLA-capped CdSe/ZnS quantum dots on the fibrillation of human serum albumin [J]. J. Phys. Chem. B,2010,114(33):10881-10888.
    [92]Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science,1996, 271(5251):933-937.
    [93]Jaiswal J K, Mattoussi H, Mauro J M, et at. Long-term multiple color imaging of live cells using quantum dot bioconjugates [J]. Nat. biotechnol.,2003,21(1):47-51.
    [94]Kim B Y S, Jiang W, Oreopoulos J, et al. Biodegradable quantum dot nanocomposites enable live cell labeling and imaging of cytoplasmic targets [J]. Nano Lett.,2008,8(11):3887-3892.
    [95]Gao J H, Xu B. Applications of nanomaterials inside cells [J]. Nano Today,2009,4(1):37-51.
    [96]Xie M, Luo K, Pang D W, et al. PEG-interspersed nitrilotriacetic acid-functionalized quantum dots for site-specific labeling of prion protein expressed on cell surfaces [J]. Biomaterials,2010, 31(32):8362-8370.
    [97]Nida D L, Rahman M S, Carlson K D, et al. Fluorescent nanocrystals for use in early cervical cancer detection [J]. Gynecol. Oncol,2005,99(3):S89-S94.
    [98]Wang H Z, Wang H Y, Liang R Q, et al. Detection of tumor marker CA125 Ⅰ ovrian carcinoma using quantum dots [J]. Acta. Biochim. Binphys. Sin,2004,36(10):681-686.
    [99]Yong K T, Ding H, Roy I, et al. Imaging pancreatic cancer using bioconjugated InP quantum dots [J]. ACS nano,2009,3(3):502-510.
    [100]Roach P, Farrar D, Perry C C. Surface tailoring for controlled protein adsorption:Effect of topography at the nanometer scale and chemistry [J]. J. Am. Chem. Soc.,2006,128(12): 3939-3945.
    [101]Lundqvist M, Sethson I, Jonsson B H. High-resolution 2D H-1-N-15 NMR characterization of persistent structural alterations of proteins induced by interactions with silica nanoparticles [J]. Langmuir,2005,21(13):5974-5979.
    [102]Supattapone S. Prion protein conversion in vitro [J]. J. Mol. Med.,2004,82(6):348-356.
    [103]Vanik D L, Surewicz W K. Disease-associated F198S mutation increase the propensity of the recombinant prion protein for conformational conversion to scrapie-like form [J]. J. Biol. Chem.,2002,277(50):49065-49070.
    [104]Ingrosso L, Vetrugno V, Cardone F, et al. Molecular diagnostics of transmissible spongiform encephalopathies [J]. Trends Mol. Med.,2002,8(6):273-280.
    [105]Moore R A, Taubner L M, Priola S A. Prion protein misfolding and disease [J]. Curr. Opin. Stru. Biol.,2009,19(1):14-22.
    [106]Jain S, Udgaonkar J B. Evidence for stepwise formation of amyloid fibrils by the mouse prion protein [J]. J. Mol. Biol.,2008,382(5):1228-1241.
    [107]Soto C, Saborio G P. Prions:disease propagation and disease therapy by conformational transmission [J]. Trends Mol. Med.,2001,7(3):109-114.
    [108]β-Sheep core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange [J]. Proc. Natl. Acad. Sci. U. S. A.,2007,104(5):1510-1515.
    [109]Gao M Y, Kirstein S, Mohwald H, et al. Strongly photoluminescent CdTe nanocrystals proper surface modification [J]. J. Phys. Chem. B,1998,102(43):8360-8363.
    [110]Deng D W, Yu J S, Pan Y. Water-soluble CdSe and CdSe/CdS nanocrystals:A greener synthetic route [J]. J. Colloid Interface Sci.,2006,299(1):225-232.
    [111]王雷.共振锐利散射、荧光和紫外-可见吸收光谱研究染料分子在单-(6-巯基)-β-环糊精包被的CdTe量子点表面的吸附行为[D],硕士学位论文,西南大学,2010,15.
    [112]Yin S M, Zheng Y, Tien P. On-column purification and refolding of recombinant bovine prion protein:using its octarepeat sequences as a natural affinity tag [J]. Protein Expression Purif.,2003,32(1):104-109.
    [113]Hu P P, Chen L Q, Huang C Z, et al. Ultra-sensitive detection of prion protein with a long range resonance energy transfer strategy [J]. Chem. Commun.,2010,46(43):8285-8287.
    [114]肖赛金.基于配体的朊病毒蛋白分析新方法[D],博士学位论文,西南大学,2010,24.
    [115]Medintz I L, Clapp A R, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors[J]. Nat. Mater,2003,2(9):630-638.
    [116]Clapp A R, Medintz I L, Mauro J M, et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors[J]. J. Am. Chem. Soc.,2004,126(1): 301-310.
    [117]Goldman E R, Anderson G P, Mattoussi H, et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays [J]. Anal. Chem.,2002,74(4):841-847.
    [118]Dlllefeld H, Weller H, Eychmuller A. Particle-particle interactions in semiconductor nanocrystal assemblies [J]. Nano Lett.,2001,1(5):267-269.
    [119]Colvin V L, Kulinowski K M. Nanoparticles as catalysts for protein fibrillation [J]. Proc. Natl. Acad. Sci. U. S. A.,2007,104(21):8679-8680.
    [120]Miura T, Yamamiya C, Sasaki M, et al. Binding mode of Congo Red to Alzheimer's amyloid beta-peptide studied by UV Raman spectroscopy [J]. J. Raman Spectrosc.,2002,33(7): 530-535.
    [121]Prusiner S B. Molecular biology of prion diseases [J]. Science,1991,252(5012):1515-1522.
    [122]Prusiner S B. Prions [J]. Proc. Natl. Acad. Sci. U. S. A.,1998,95(23):13363-13383.
    [123]Pan K M, Baldwin M, Prusiner S B, et al. Conversion of a-helices into β-sheets features in the formation of the scrapie prion proteins [J]. Proc. Natl. Acad. Sci. U. S. A.,1993,90(23): 10962-10966.
    [124]Weissmann C. Molecular biology of transmissible spongiform encephalopathies [J]. FEBS Lett.,1996,389(1):3-11.
    [125]Tagliavini F, Prelli F, et al. Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro [J]. Proc. Natl. Acad. Sci. U. S. A.,1993,90(20):9678-9682.
    [126]Soto C, Saborio G P. Prions:disease propagation and disease therapy by conformational transmission [J]. Trends Mol. Med.,2001,7(3):109-114.
    [127]Reis S D, Forge V, Lascu I, et al. The HET-s prion protein of the filamentous fungus podospora anserine aggregates in vitro into amyloid-like fibrils [J]. J. Biol. Chem.,2002, 277(8):5703-5706.
    [128]Novitskaya V, Bocharova O V, Bronstein I, et al. Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons [J]. J. Biol. Chem.,2006,281(19): 13828-13836.
    [129]Yin S M, Yu S L, Li C Y, et al. Prion protein with insertion mutations have altered N-terminal conformation and increased ligand binding activity and are more susceptible to oxidative attack [J]. J. Biol. Chem.,2006,281(16):10698-10705.
    [130]Hsiao K, Baker H F, Crow T J, et al. Linkage of a prioin protein missense variant to Gerstmann-Straussler syndrome [J]. Nature,1989,338(6213):342-345.
    [131]Doh-ura K, Tateishi J. Sasaki H, et al. Pro→Leu change at position 102 of prion protein is the most common but not the sole mutation related to Gerstmann-Straussler syndrome [J]. Biochem. Biophys. Res. Commun.,1989,163(2):974-979.
    [132]Goldfarb L G, Brown P, Goldgaber D, et al. Indentical mutation in unrelated patients with Creutzfeldt-Jacob disease [J]. Lancet,1990,336(8708):174-175.
    [133]Goldfarb L G, Haltia M, Brown P, et al. New mutation in scrapie amyloid precursor gene (at codon 178) in Finnish Creutzfeldt-Jacob kindred [J]. Lancet,1991,337(8738):425.
    [134]Prusiner S B. Prion diseases and the BSE Crisis [J]. Science,1997,278(5336):245-251.
    [135]Ishida S, Sugino M, Koizumi N, et al. Serial MRI in early Creutzfeldt-Jacob disease with a point mutation of prion protein at codon 180 [J]. Neuroradiology,1995,37:531-534.
    [136]Coleman B M, Nisbet R M, Han S, et al. Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence [J]. Biochem. Biophys. Res. Commun.,2009, 380(3):564-568.
    [137]Fujii F, Horiuchi M, Ueno M, et al. Detection of prion protein immune complex for bovine spongiform encephalopathy diagnosis using fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy [J]. Anal. Biochem.,2007,370(2):131-141.
    [138]Klohn P C, Stoltze L, Flechsig E, et al. A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions [J]. Proc. Natl. Acad. Sci. U. S. A.,2003,100(20): 11666-11671.
    [139]Yang W C, Schmerr M J, Bodemer W, et al. Capillary electrophoresis-based noncompetitive immunoassay for the prion protein using fluorescein-labeled protein A as a fluorescent probe [J]. Anal. Chem.,2005,77(14):4489-4494.
    [140]Xiao S J, Hu P P, Huang C Z, et al. Aptamer-mediated turn-on fluorescence assay for prion protein based on guanine quenched fluophor [J]. Talanta,2009,79(5):1283-1286.
    [141]Bieschke J, Giese A, Schulz-Schaeffer W, et al. Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets [J]. Proc. Natl. Acad. Sci. U. S. A.,2000,97(10):5468-5473.
    [142]Schmerr M J, Jenny A L, Bulgin M S, et al. Use of capillary electrophoresis and fluorescent labeled peptides to detect the abnormal prion protein in the blood of animals that are infected with a transmissible spongiform encephalopathy [J]. J. Chromatogr.,1999,853(1-2):207-214.
    [143]Bruchez M, Moronne M, Alivisatos A P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science,1998,281(5385):2013-2016.
    [144]Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science,1998,281(5385):2016-2018.
    [145]Tanke H J, Dirks R W, Raap T. FISH and immunocytochemistry:towards visualising single target molecules in living cells [J]. Curr. Opin. Biotechnol.,2005,16(1):49-54.
    [146]Chen F Q, Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells [J]. Nano Lett.,2004,4(10):1827-1832.
    [147]Voura E B, Jaiswal J K, Mattoussi H, et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy [J]. Nat. Med.,2004, 10(9):993-998.
    [148]Morgan N Y, English S, Chen W, et al. Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots [J]. Acad. Radiol.,2005,12(3):313-323.
    [149]Clapp A R, Medintz I L, Mauro J M, et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors [J]. J. Am. Chem. Soc.,2004,126(1): 301-310.
    [150]Ma H L, Wang C L, Liu H Z, et al. NHS mediated CdTe quantum dots/albumin conjugates and labeling C-Elegans [J]. Chem. Res. Chinese U.,2006,22(2):181-184.
    [151]Gao M Y, Kirstein S, Mohwald H, et al. Strongly photoluminescent CdTe nanocrystals proper surface modification [J]. J. Phys. Chem. B,1998,102(43):8360-8363.
    [152]Deng D W, Yu J S, Pan Y. Water-soluble CdSe and CdSe/CdS nanocrystals:A greener synthetic route [J]. J. Colloid Interface Sci.,2006,299(1):225-232.
    [153]Yin S M, Zheng Y, Tien P. On-column purification and refolding of recombinant bovine prion protein:using its octarepeat sequences as a natural affinity tag [J]. Protein Expression Purif.,2003,32(1):104-109.
    [154]D(?)llefeld H, Weller H, Eychmuller A. Particle-particle interactions in semiconductor nanocrystal assemblies [J]. Nano Lett.,2001,1(5):267-269.
    [155]Yu W W, Qu L H, Guo W Z, et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals [J]. Chem. Mater.,2003,15(14):2854-2860.
    [156]Walter E D, Stevens D J, Visconte M P, et al. The prion protein is a combined zinc and copper binding protein:Zn2+ alters the distribution of Cu2+ coordination modes [J]. J. Am. Chem. Soc., 2007,129(50):15440-15441.
    [157]Li J, He X W, Wu Y L, et al. Determination of lysozyme at the nanogram level by a resonance light-scattering technique with functionalized CdTe nanoparticles [J]. Anal. Sci.,2007,23(3): 331-335.
    [158]Cao M, Cao C, Liu M G, et al. Selective fluorometry of cytochrome c using glutathione-capped CdTe quantum dots in weakly basic medium [J]. Microchim. Acta,2009, 165:341-346.
    [159]Vanik D L, Surewicz W K. Disease-associated F198S mutation increase the propensity of the recombinant prion protein for conformational conversion to scrapie-like form [J]. J. Biol. Chem.,2002,277(50):49065-49070.
    [160]Wu W H, Sun X, Yu Y P, et al. TiO2 nanoparticles promote β-amyloid fibrillation in vitro [J]. Biochem. Biophys. Res. Commun.,2008,373(2):315-318.
    [161]Linse S, Xue W F, Lynch I, et al. Nucleation of protein fibrillation by nanoparticles [J]. Proc. Natl. Acad. Sci. U. S. A.,2007,104(21):8691-8696.
    [162]Johnson C J, Dujardin E, Davis S A, et al. Growth and form of gold nanorods prepared by seed-mediated surfactant-directed synthesis [J]. Mater. Chem.,2002,12(6):1765-1770.
    [163]Wu X Y, Liu H J, Liu J Q, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J]. Nat. Biotechnol.,2003,21(1):41-46.
    [164]Han B Y, Yuan J P, Wang E K. Sensitive and selective sensor for biothiols in the cell based on the recovered fluorescence of the CdTe quantum dots-Hg(Ⅱ) systerm [J]. Anal. Chem.,2009, 81(13):5569-5573.
    [165]Algar W R, Massey M, Krull U J. The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics [J]. TrAC, Trends Anal. Chem.,2009, 28(3):292-306.
    [166]Wang X, Li Y D. Monodisperse nanocrystals:general synthesis, assembly, and their applications [J]. Chem. Commun.,2007,28:2901-2910.
    [167]Yavuz C T, Mayo J T, Yu W W, et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals [J]. Science,2006,314(5801):964-967.
    [168]Sweeney S F, Woehrle G H, Hutchison J E. Rapid purification and size separation of gold nanoparticles via diafiltration [J]. J. Am. Chem. Soc.,2006,128(10):3190-3197.
    [169]Hanauer M, Pierrat S, Zins I, et al. Separation of nanoparticles by gel electrophoresis according to size and shape [J]. Nano Lett.,2007,7(9):2881-2885.
    [170]Tu X M, Zheng M. A DNA-based approach to the carbon nanotube sorting problem [J]. Nano Res.,2008,1(3):185-194.
    [171]Lu X J, Wintrode P L, Surewicz W K. Beta-Sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange [J]. Proc. Natl. Acad. Sci. U. S. A.,2007, 104(5):1510-1515.
    [172]Gao M Y, Kirstein S, Mohwald H, et al. Strongly photoluminescent CdTe nanocrystals proper surface modification [J]. J. Phys. Chem. B,1998,102(43):8360-8363.
    [173]Deng D W, Yu J S, Pan Y. Water-soluble CdSe and CdSe/CdS nanocrystals:A greener synthetic route [J]. J. Colloid Interface Sci.,2006,299(1):225-232.
    [174]Yu W W, Qu L H, Guo W Z, et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals [J]. Chem. Mater.,2003,15(14):2854-2860.
    [175]Yin S M, Zheng Y, Tien P. On-column purification and refolding of recombinant bovine prion protein:using its octarepeat sequences as a natural affinity tag [J]. Protein Expression Purif.,2003,32(1):104-109.
    [176]Hu P P, Chen L Q, Huang C Z, et al. Ultra-sensitive detection of prion protein with a long range resonance energy transfer strategy [J]. Chem. Commun.,2010,46(43):8285-8287.
    [177]Zhang L Y, Zheng H Z, Long Y J, et al. CdTe quantum dots as a highly selective probe for prion protein detection:Colorimetric qualitative, semi-quantitative and quantitative detection [J]. Talanta,2011,83(5):1716-1720.
    [178]Linse S, Xue W F, Lynch I, et al. Nucleation of protein fibrillation by nanoparticles [J]. Proc. Natl. Acad. Sci. U. S. A.,2007,104(21):8691-8696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700