用户名: 密码: 验证码:
大功率全光纤激光器及其关键器件技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大功率全光纤激光器由光纤、泵浦耦合器和光纤光栅等元件组成,具有结构紧凑、性能稳定、转化效率高和光束质量好等优点,在材料加工、激光打标、生物医学、自由空间通信和国防安全等领域有广泛应用。近几年的研究工作主要集中在提高泵浦耦合功率、减小增益光纤的光热损伤和非线性效应,和使用光束合成技术获得较高功率的激光输出方面。本论文主要从大功率全光纤激光器关键器件、大功率全光纤激光器和光纤激光阵列的光束合成三个方面进行了理论和实验方面的研究。
     首先,在国内首次实验MOPA结构全光纤激光器实现了1000W连续功率输出。实验解决了全光纤元件的熔接、高阶模抑制和热管理方面的难题。激光器的光-光效率为62%,中心波长为1081nm,波谱宽度为2nm。
     其次,提出腔模互注入相位锁定技术,并使用该技术成功实验两大功率全光纤激光器的相位锁定。激光器阵列获得稳定的干涉条纹,干涉条纹可见度达46%,相干合成功率407W,合成效率高达98%。
     对2×2全光纤激光器阵列的部分相干合束进行了实验研究,获得925W高功率部分相干合成输出。实验将全光纤激光器阵列分为两组,两组阵列元之间非相干,而组内两光纤激光器使用腔模互注入技术实现相位锁定。激光器阵列由全光纤元件组成,结构紧凑,性能稳定,在输出光束占空比为0.54时,获得BQ值约为1.95的高质量合成光束,实现泵浦光到激光部分相干输出57%的转换效率。
     此外,还对大功率全光纤激光器的关键器件,包括大模场光纤、大模光纤光栅和大功率泵浦耦合器进行了理论和实验研究。其中,增益引导-折射率反引导光纤是一种新型的大模场光纤。本文基于广义光纤模式耦合理论,对该光纤的耦合特性以及基于这种光纤的激光器增益特性进行了数值模拟和分析。研究结果表明,改变芯径-包层复折射率差实部的值,可改变光在增益引导-折射率反引导光纤和普通折射率引导光纤间的耦合方向。增益引导-折射率反引导光纤激光器在单模运行条件下,光纤长度和输出端腔镜反射率都应有对应的取值范围,一般取较大的光纤长度和较小的输出端腔镜反射率可使激光器获得较大的单模激光输出功率。
     将一种矩阵算法拓展并应用于数值求解多模耦合模微分方程,并使用该矩阵算法对大模场光纤光栅的光谱特性进行了理论研究。大模场多模光纤光栅因存在模式的自耦合和互耦合而使反射谱存在多个反射峰。当光栅周期存在啁啾时,反射峰会分裂,峰值反射率也会减小。使用高斯切趾函数可使啁啾光栅反射峰的分裂在一定程度上得到改善。
     在新的泵浦耦合技术方面,对一种同时包含传输芯和增益芯的复合结构光纤的泵浦耦合特性进行了理论分析,并对基于这种复合结构光纤的激光放大器的增益特性和温度分布进行了数值计算和分析。结果表明,复合结构光纤中泵浦光的耦合特性与泵浦光的模式、纤芯半径和纤芯距离等因素有关。与使用端面泵浦技术的光纤激光放大器相比,这种复合结构光纤放大器对泵浦光的吸收和激光转换相对平缓,光纤具有相对低的温度分布。基于这种复合结构光纤的新型泵浦技术为研制超大功率光纤激光(放大)器提供了一种新的途径。
Constructed with components such as fiber, pump combiners and fiber Bragggratings, high-power all-fiber lasers are of many unique advantages, such as small size,easy cooling, high efficiency, and outstanding beam quality, etc. These superioradvantages have made fiber lasers become very competitive in many applications inmaterial processing, marking, medicine, range finding, free space communication, andsecurity, etc. Recent years, research works on high-power all-fiber lasers are mainlyfocused on increasing pump power, suppressing the optical and thermal damage andnonlinear effects, and also, upgrading output power by use of combining technology. Inan attempt to construct a stable high-power all-fiber laser system with high outputpower and high beam quality, this dissertation present theoretical and experimentalstudy on high-power all-fiber lasers and their key components. The beam combining ofall-fiber laser array is also the main concerned work in this dissertation.
     Firstly, a MOPA all-fiber laser is experimentally studied and1000W output poweris obtained. In the experiment, tough tasks of splicing all-fiber components, suppressinghigh-order modes and thermal managing of laser system are tackled. The monolithicfiber laser has an optical-to-optical conversion efficiency of up to64%, and the centralwavelength is at1081nm with the spectral FWHM being2nm.
     Secondly, a novel mutual injection technique is proposed. By using the proposedtechnique, phase-locking and coherent combining of two high power all-fiber lasers arerealized and experimentally demonstrated. Steady interference strips with high visibilityof46%are observed. The coherent combined407W CW output power with apower-combining efficiency of up to98%is obtained.
     Moreover, partially coherent combining of a2×2all-fiber laser array isexperimentally studied, and up to925W high output power is obtained. The laser arrayconsists of two incoherent laser groups. Each group contains two all-fiber lasers which are phase-locked by using direct mode mutual injection method. The fiber laser array isconstructed by all-fiber components, thereby is monolithic and has stable performance.The efficiency of pump optical power converting to combined output power is up to57%. The beam-quality value BQ of the combined beam is1.95when the fill factor ofthe laser array is0.54.
     Finally, the key components of high-power all-fiber lasers, including LMA fibers,LMA fiber Bragg gratings, and high-power pump combiners, are studied experimentallyand theoretically. Based on general coupled-mode theory, numerical simulations areperformed to analyze the coupling characteristics of a new LMA gain-guided and indexanti-guided fiber (GG-IAG fiber) and the gain characteristics of the GG-IAG fiber laser.The results show that the coupling direction between the GG-IAG fiber and the generalindex guided fiber (IG fiber) can be changed by changing the real-valuedrefractive-index difference (real part of refractive-index difference between core andcladding, RVRID). To ensure the GG-IAG fiber laser in single-mode operation, the fiberlength and the reflectivity of the output mirror should be valued in their ranges. Thus,with a longer fiber and a smaller reflectivity of the output mirror, the laser obtains moresingle-mode output power.
     A matrix method is extended to solve the multimode coupling differentialequations, and thereby the spectral characteristics of the chirped Bragg gratings inlarge-mode-area fibers (LMA FBGs) are studied theoretically. Unlike those of Bragggratings in single mode optical fibers (SM FBGs), the reflection spectra of chirpedLMA FBGs contain self-coupling and co-coupling peaks of the existing modes. For thechirped LMA FBGs, the reflectivity decreases and the reflection peaks split. These splitscan be improved on some degree by Gaussian apodization function.
     By constructing the coupled mode equations, the mode-coupling characteristicsbetween the passive and active cores within a kind of composite structural fiber (CSF)are studied theoretically. And by use of steady-state rate equations and heat conductive equations, the gain characteristics and the temperature distribution of all-fiber laseramplifiers based on CSF are calculated and analyzed numerically. The results show thatthe mode-coupling characteristics depend on the coupled modes and the radius and theseparation of the two cores of the CSF. Compared with the end-pumped fiber laseramplifiers, the amplifiers based on CSF have a slow pump light absorption andconversion, and thus, have low temperature distribution. This kind of newcoupling-pump technology provides a new approach to design higher power fiber lasersand fiber amplifiers.
引文
1Yin S, Yan P, Gong M. End-pumped300W continuous-wave ytterbium-doped all-fiber laserwith master oscillator multi-stage power amplifiers configuration. Optics Express2008,16:17864-17869.
    2Gapontsev V P, Samartsev I E. High power fiber lasers. OSA/ASSL,1990,6:258-262.
    3Hu G, Shan C, Deng X, et al. Threshold characteristics of linear cavity Yb3+-doped double-cladfiber laser. Optics&Laser Technology,2004,37:3-7.
    4Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with1.36kWcontinuous-wave output power. Opt Exp,2004,12(25):6088-6092.
    5IPG Photonics. IPG Photonics successfully tests world’s first10kilowatt single-modeproduction laser. http://www.ipgphotonics.com/newsproduct.htm (June15,2009).
    6Platonov N S, Gapontsev D V, Gapontsev V P, et al.135W CW fiber laser with perfect singlemode output. IEEE Laser and Electro-Optics,2002,2:CPDC3-1-4.
    7刘国华.高功率光纤激光器的理论研究:学位论文.武汉:华中科技大学,2007.
    8宋志强.大功率光纤激光器技术及其应用.山东科学,2008,21(6):72-77.
    9Wang Y. Dynamics of Stimulated Raman Scattering in Double2Clad Fiber pulse Amplifiers.IEEE J Quantum electeonics,2005,41(6):779-788.
    10吴秀丽.激光加工的现状及发展趋势.光机电信息,2000,17(10):23-25.
    11李小磊.雷声公司“密集阵-激光武器系统”击落海上无人机. http://www.mod.gov.cn/wqzb/2010-07/22/content_4176115.htm (July222007).
    12Jackson S D, Lauto A. Diode-Pumped Fiber Lasers: A New Clinical Tools. Lasers in Surgeryand Medicine,2002,30:184-190.
    13Snitzer E. Proposed Fiber Cavities for optical masers. J Applied Physics,1961,32(1):36-39.
    14E Snitzer. Optical maser action in Nd3+in a Barium crown glass. Physical Review Letters,1961,7(12):444-446.
    15Burrus C A, Stone J. Nd3+doped SiO2lasers in end-pumped fiber geometry. Applied PhysicsLetters,1973,23(7):388-389.
    16Gapontsev D.6kW CW single mode ytterbium fiber laser in all-fiber format.21stSolid Stateand Diode Laser Technology Review,2008,258.
    17Marchiano M, Samson G, Biesenbach J, et al.激光二极管技术推动光纤激光器向高功率发展.激光与光电子学进展,2008,12:85-87.
    18Limpert J, Liem A, Zellmer H, et al.500W continuous wave fibre laser with excellent beamquality.Electron Lett,2003,39:645-647
    19Liu C H, Galvanauskas A, Ehlers B, et al.810-W single transverse mode Yb-doped fiber laser.OSA/ASSP,2004, postdeadline paper PD2.
    20Bonati G, Voelckel H, Gabler T,et al.1.53kW from a single Yb-doped photonic crystal fiberlaser. Photonics West: San Jose, Late Breaking Developments,2005, Session5709-2a.
    21Gapontsev V,Gapontsev D,Platonov N, et al.2kW CW ytterbium fiber laser with recorddiffraction-limited brightness. Conference on Lasers and Electro-Optics Europe,2005,508.
    22Fomin V, Mashkin A, Abramov M, et al.3kW Yb fibre lasers with a single-mode output. SympHigh-Power Fiber Lasers Appl Russia: St.Petersburg,2006.
    23Gapontsev V P. New milestones in the development of super high power fiber laser. PhotonicsWest, OE/LASE2006, CA:San Jose, Jan21-26,2006
    24Limpert J, Roser F, Klingebiel S, et al. The rising power of fiber lasers and amplifiers. IEEE JSel Top Quantum Electron,2007,13(3):537-545.
    25David N Payne. Fiber lasers the next generation. http://www.orc.soton.ac.uk/publications/35xx/3538,2006.
    26周朴.光纤激光相干合成技术:学位论文.长沙:国防科技大学,2009.
    27Jeong Y, et al. Ytterbium-doped large core fiber laser with1kW of continuous-wave outputpower. Electron.Letters,2004,40(8):470-471.
    28IPG Photonics. YLR-HP Series:1-50kW ytterbium fiber lasers. http://www.ipgphotonics.com/apps_mat_multi_YLR.htm.
    29IPG Photonics. NukW: Kilowatt laser amplifier platform. http://www.nufern.com/kilowatt-amp.php.
    30肖瑞,侯静,姜宗福,等.三路光纤放大器相干合成技术的实验研究.物理学报,2006,55(12):6464-6469.
    31何兵,楼祺洪,周军,等.激光与光电子学进展,2006,43(9):47-54.
    32Demoustier S, Bellanger C, Brignon A,et al. Coherent beam combining of1.5μm Er/Yb dopedfiber amplifiers. Fiber and Integrated Optics,2008,27:392-406.
    33Augst S J, Ranka J K, Fan T Y, et al. Beam combining of ytterbium fiber amplifiers. J Opt SocAm B,2007,24:1707-1715.
    34Fan T Y. Laser beam combining for high-power, High-radiance sources. IEEE Sel Top QuantumElectron,2005,11(2):567-577.
    35Xiao R, Hou J, Liu M, et al. Coherent combining technology of master oscillator poweramplifier fiber arrays. Optics Express,2008,16(3):2015-2022.
    36Lei B, Feng Y. Coherent combining of two fiber lasers in a Michelson-type coupled cavity.Optics Communications,2008,281:739-743.
    37Shirakawa A, Saitou T, Sekiguchi T, et al. Coherent addition of fiber lasers by use of a fibercoupler. Optics Express,2002,10(21):1167-1172.
    38Liu Y, Chen Y, Xu L, et al. Mutual injection-locking of two individual double-clad fiber lasers.IEEE J Electronics Letters,2009,45(8):399-400.
    39Lei B, Feng Y. Phase locking of an array of three fiber lasers by an all-fiber coupling loop.Optics Express,2007,15(25):17114-17119.
    40Chen Z L, Zhou P, Wang X L, et al. Synchronization and coherent addition of three pulsed fiberlasers by mutual injection and phase modulation. Optics&Laser Technology,2009,41:710-713.
    41Shay T M, Baker J T, Sanchez A D, et al. High power phase locking of a fiber amplifier array.Proc of SPIE,2009,7195:7195M.
    42Northrop Grumman. Scales new heights in electric alser power achieves100kilowatts from asolid-state laser. http://www.irconnect.com/noc/press/pages/news_released.html?d=161575(2009-03-18).
    43Marmo J. Injeyan H, Komine H, et al. Joint high power solid state laser program advancementsNorthrop Grumman. Proc of SPIE,2009,7195:719507-1-6.
    44周朴,王小林,马阎星,等.激光阵列部分相干合成的光束质量.光学学报,30(4):1066-1070.
    45Fan T Y, Sanchez A. Coherent (Phased Array) and Wavelength(Spectral) Beam CombiningCompared. Proc of SPIE,2005,5709:157-164.
    46Brown D C, Hoffman H J. Thermal stress and thermo-optic effects in high average powerdouble-clad silica fiber lasers. IEEE Quantum Electronics,2001,37(2):207-217.
    47Wang Y, Xu C Q, Po H. Thermal effects in kilowatt fiber lasers. IEEE Photon Technol Lett,2004,16(1):63-65.
    48Bielawski S, Derozier D, Glorieux P. Antiphase dynamics and polarization effects in theNd-doped fiber laser. Phys Rev (A),1992,48(5):2811-2822.
    49裴新,向望华,谭莉,等. Yb:Er共掺杂对掺铒光纤激光器中自脉冲行为的抑制作用.光学学报,2004,24(1):94-98.
    1Snitzer E, Po H, Hakimi F, et al. Double-clad offset core Nd fiber laser.1988OSA TechnicalDigest Series, Optical Fiber Sensors,1988, postdeadline paper PD5.
    2Russell P St J, Knight J C, Birks T A, et al. Recent progess in photonics crystal fibers.OFC2000,2000,3:98-100.
    3Siegman A E. Propagating modes in gain-guided optical fibers. J Opt Soc Am A,2003,20(8):1617-1628.
    4Wang P, Cooper L J, Sahu J K, Clarkson W A. Efficient single-mode operation of acladding-pumped ytterbium-doped helicl-core fiber laser. Optics Letters,2006,31(2):226-228.
    5Dong L, Peng X, Li J. Leakage channel optical fibers with large effective. J Opt Soc Am B,24(8):1689-1698.
    6Peng X, Dong L. Fundamental-mode operation in polarization-maintaining ytterbium-dopedfiber with an effective area of1400μm2. Optics Letters,2007,32(4):358-360.
    7宋志强.大功率光纤激光器技术及其应用.山东科学,2008,21(6):72-77
    8Po H, Snitzer E, Tummelini R, et al. Double clad high brightness Nd fiber laser pumped byGaAlAs phased array. Proc OFC, TX: Houston,1989, PD7.
    9Zenteno L, Bedo S, Luthy W, et al. The effective absorption coefficient in double-clad fibers.Opt Commun,1993,99(5):331-335.
    10Hardy A, Oron R. Signal amplification in strongly pumped fiber amplifiers. IEEE J QuantumElectron,1997,33(3):307-313.
    11Hardy A A, Oron R. Amplified spontaneous emission and Rayleigh back-scattering in stronglypumped fiber amplifiers. J Lightwave Technol,1998,16(10):1865-1873.
    12Liu A, Song J, Kamatani K, et al. Rectangular doubled-clad fiber laser with two-end-bundledpump. Electron Lett,1996,32(18):1673-1674.
    13Liu A, Ueda K. The absorption characteristics of circular, offset, and rect-angular double-cladfibers. Opt Commun,1996,132(5):511-518.
    14Doya V, Lengrand O, Mortessagne F. Optimized absorption in a chaotic double-clad fiberamplifier. Opt Lett,2001,26(12):872-874.
    15Kouznetsov D, Moloney J V. Efficiency of pump absorption in double-clad fiber amplifiers. JOpt Soc Am B,2002,19(6):1304-1309.
    16Zhou J, Lou Q H, Li T J, et al. A new inner cladding shape for high-power double-clad fiberlasers. Proc of SPIE,2002,4914:146-150.
    17Even P, Pureur D. High power double clad fiber lasers: a review. Proc of SPIE,2002,4638:1-12
    18孔令峰,楼祺洪,周军等.脉冲双包层光纤激光器.激光与光电子学进展,2003,40(5):28-32.
    19Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics.1987,Phys Rev Lett,58(20):2059-2062.
    20John S. Strong localization of photons in certain disordered dielectric super lattices. Phys RevLett,1987,50(20):2486-2489.
    21Mortensen N A, Folkenberg J R, Nielsen M D, et al. Modal cut-off and the V-parameter inphotonic crystal fibers. Opt Lett,2003,28:1879-1881.
    22J. Limpert, et.al. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystalfiber amplifier. Opt Express,2004,12:1313-1319.
    23关铁山.光子晶体光纤损耗的模拟与分析:学位论文.燕山大学,2005.
    24Knight J C, Birks B A., Russell P St J, et al. All-silica single-mode optical fiber with photoniccrystal cladding. Opt Lett,1996,21:1547-1549.
    25Knight J C. Photonic crystal fibers. Nature,2003,424:847-851.
    26Knight J C, Broeng J, Birks T A, et al. Photonic band gap guidance in optical fibers. Science,1998,282:1476-1478.
    27Broeng J,Barkou S E,Sondergaard T, et al. Analysis of Air-guiding Photonic Crystal BandgapFibers. Optics Letters,2000,25(2):96-98.
    28Larsen T T, Bjarklev A, Hermann D S, et al. Optical devices based on liquid crystal photonicbandgap fibres. Opt Express,2003,11(1):2589-2596.
    29Zhang C S, Kai G Y, Wang Z, et al. Transformation of a transmission mechanism by filling theholes of normal silica-guiding microstructure fibers with nematic liquid crystal. Opt Lett,2005,30(18):2372-2374.
    30Zhang C S, Kai G Y, Wang Z, et al. Tunable highly birefringent photonic bandgap fibers. OptLett,2005,30(9):2703-2705.
    31Laegsgaard J. Modeling of a biased liquid-crystal capillary waveguide. J Opt Soc Am B,2006,23(9):1843-1851.
    32Zhang C S, Kai G Y, Wang Z, et al. Design of tunable bandgap guidance in high-index filledmicrostructure fibers. J Opt Soc Am B,2006,23(9):782-786.
    33Bouwmans G, Bigot L, Quiquempois Y, et al. Fabrication and characterization of an all-solid2D photonic bandgap fiber with a low-loss region (<20dB/km) around1550nm. Opt Express,2003,13(1):8452-8459
    34Birks T A, Luan F, Pearce G J, et al. Bend loss in all-solid bandgap fibres. Opt Express,2003,14(12):5688-5698
    35Stone J M, Pearce G J, Luan F, et al. An improved photonic bandgap fiber based on an array ofrings. Opt Express,2006,14(13):6291-6296.
    36Wang A, Pearce G J, Luan F, et al. All solid photonic bandgap fiber based on an array oforiented recta ngular high index rods. Opt Express,2006,14(22):1084-1085.
    37Yong X, Reginald K L, Amnon Y. Asymptotic analysis of Bragg fibers. Opt Lett,2000,25(24):1756-1758.
    38达宁,杨旅云,夏金安,等.光子晶体光纤的研究新进展.激光与光电子学进展,2005,42(8):6-12.
    39Monro T M, Richardson D J. Holey optical fibres: Fundamental Properties and DeviceApplications. Comptes Rendus Physique,2003(4):175-186
    40Nielsen M D, Folkenberg J R, et al. Bandwidth Comparison of Photonic Crystal fibers andConventional single-mode fibers. Opt Express,2004,12(3):430-435
    41Yan M, Shum P. Antiguiding in Microstructured Optical Fibers.Opt Express,2004,12(1):104-116.
    42Gates J C,Hillman C W J,Baggett J C, et al. Structure and Propagation of Modes of Large ModeArea Holey fibers. Opt Express,2004,12(5):847-852.
    43Saleh B E A, Teich M C. Fundamentals of photonics.2ed. New Jersey:John Wiley,2007.
    44Birks T A. Endlessly single-mode photonic crystal fiber. Opt Lett,1997,22(13):961-963.
    45Agrawal G P. Nonlinear fiber optics. San Diego: Academic Press,2001.
    46Ranka J K, Windeler RS, et al. Visible continuum generation in air-silica microstructure opticalfibers with anomalous dispersion at800nm. Opt Lett,2000,25(1):25-27.
    47Xu Y, Yariv A. Loss analysis of air-core photonic crystal fibers. Opt Lett,2003,28(1):1885-1887.
    48Saitoh K, Koshiba M. Leakage loss and group velocity dispersion in air-core photonic bandgapfibers. Opt Express,2003,11(14):3100-3109.
    49Saitoh K, Koshiba M. Confinement losses in air-guiding photonic bandgap fibers. IEEE PhotoTechnol Lett,2003,15(7):236-238.
    50Saitoh K, Mortensen N A, et al. Air-core photonic band-gap fibers: the impact of surface modes.Opt Express,2004,12(3):394-400.
    51Kim H K, Shin J, et al. Designing air-core photonic-bandgap fibers free of surface modes. IEEEJ Quantum Electronic,2004,40(5):551-556.
    52Digonnet M J F, Kim H K, et al. Simple geometric criterion to predict the existence of surfacemodes in air-core photonic-bandgap fibers. Opt Express,2004,12(9):1864-1872
    53Chen D R, Shen L F. Ultrahigh birefringent photonic crystal fiber with ultralow confinementloss. IEEE Photonics Technology Letters,2007,19(4):185-187.
    54Siegman A E. Gain-guided, index-antiguided fiber lasers. J Opt Soc Am B,2007,24(8):1677-1682.
    55王伟能,谭晓玲,田振,等.增益导引折射率反导引光纤激光特性的研究.激光技术,2009,33(5):503-505
    56Synder A W. Coupled-mode theory for optical fiber. J Opt Soc Am,1972,62(11):1267-1277
    57Gloge D. Weakly guiding fibers. Applied Optics,1971,10(10):2252-2258
    58Kunimasa S, Yukihiro T, Masanori K. Design of efficetively single-mode leakage channel fiberswith large mode area and low bending loss. IEICE Electronics Express,6(7):412-417.
    59William S W, Xiang P, Joseph M M, Liang D. Breaking the limit of maximum effective area forrobust single-mode. Optics Letters,2005,30(21):2855-2857.
    60Chen H W, Sosnowsk T, Liu C H, et al. Chirally-coupled-core Yb-fiber laser delivering80-fspulses with diffraction-limited beam quality warranted by a high-dispersion mirror basedcompressor. Optics Express,18(24):24699-24705.
    61Swan M C, Liu C H, Guertin D, et al.33μm core effectively single-mode chirally-coupled-corefiber laser at1064nm. OFC/NFOEC, California:San Diego,2008, OWU: OWU2.
    1Hill KO, Fujii Y, Johnson DC, Kawasaki BS. Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication. Appl Phys Lett,1978,32:647-651.
    2Wang YM, Dai JC, Zhang MD, Sun XH. Theoretical and experimental study on multimodeoptical fiber grating. Opt Commun,2005,250:54-62.
    3Hill K O, Bilodeau F, Malo B, et al. Chirped in-fiber Bragg gratings for compensation ofoptical-fiber dispersion. Opt Lett,1994,19:1314-1316.
    4Erdogan T, Sipe J E. Tilted fiber phase gratings. J Opt Soc Am A,1996,13:296-313.
    5Zengerle R, Leminger O. Phase-shifted Bragg grating filters with improved transmissioncharacteristics. J Lightwave Technol,1995,13:2354-2358.
    6Eggleton B J, Krug P A, Poladian L, et al. Long periodic superstructure Bragg gratings inoptical fibers. Electron Lett,1994,30:1620-1622.
    7Wanser K H, Voss K F, Kersey A D. Novel fiber devices and sensors based on multimode fiberBragg gratings. Proc of SPIE,1994,2360:265-268.
    8Lim J, Yang Q P, Jones B E, et al. Strain and temperature sensors using multimode optical fiberBragg gratings and correlation signal processing. IEEE Trans Instrum Measur,2002,51:622-627.
    9Mizunami T, Djambova TV, Niiho T, Gupta S. Bragg Gratings in Multimode and Few-ModeOptical Fibers. J Lightwave Technol,2000,18:230-235.
    10李川,张以谟,赵永贵等.光纤光栅:原理、技术与传感应用.北京:科学出版社,2005.
    11石顺祥,刘继芳,孙艳玲.光的电磁理论-光波的传播与控制.西安:西安电子科技大学出版社,2006.
    12Erdogan T. Fiber grating spectra. J Lightwave Technol,1997,15:1277-1294.
    13Yamada M, Sakuda K. Analysis of almost-periodic distributed feedback slab waveguides via afundamental matrix approach. Applied Optics,1987,26(16):3474-3478.
    14韩群,吕可诚,李乙钢.改进的光纤光栅多层膜分析方法.光电子激光,2003,14(1):41-45.
    15Weller-Brophy L A, Hall D G. Analysis of waveguide gratings: Application of Rouard’s method.J Opt Soc Am B,1985,2(6):863-871.
    16Kogelnik H. Filter response of nonuniform almost-periodic structures. Bell System TechnicalJournal,1976,55:109-126.
    17Kogelnik H. Theory of optical waveguides in Guided-Wave Opto-Electronics.2ndEdition.Berlin: Germany. Springer-Verlag,1990,7-87.
    18Lu CG, Cui YP. Fiber Bragg grating spectra in multimode optical fibers. J Lightwave Technol,2006,24:598-604.
    19Patra KC, Singh R, Sharma EK, et al. Analysis of transmission characteristics of long periodgratings in tapered optical fibers. Appl Opt,2009,48:99-100.
    20Liu Y, Wei Li, Lit John WY. Transmission loss of phase-shifted fiber Bragg gratings in lossymaterials: a theoretical and experimental investigation. Appl Opt,2007,46:6770-6773.
    21Pastor D, Capmany J C, Ortega D, et al. Design of apodized linearly chirped fiber gratings fordispersion compensation. J Lightwave Technology,1996,14(11):2581-2588.
    22Parent A, Morin M, Lavigne P. Propagation of super-Gaussian field distributions. Opt QuantElectron,1992,24:1071-1079.
    23Anemogiannis E, Glytsis EN, Gaylord TK. Transmission characteristics of long-period fibergratings having arbitrary azimuthal/radial refractive index variations. J Lightwave Technol,2003,21:218-227.
    1Yin S P, Yan P, Gong M L. End-pumped300W continuous-wave ytterbium-doped all-fiberlaser with master oscillator multistage power amplifibers configuration. Optics Express,2008,16(22):17864-17869.
    2Digiovanni D J, Stentz A J. Tapered fiber bundles for coupling light and out ofcladding-pumped fiber devices. U.S. patent:5,864,644(Jan26,1999).
    3Gonthier F, Martineau L, Seguin F, et al. Optical coupler comprising multimode fibers andmethod of making the same. U.S. patent:7,046,875(May16,2006).
    4Grudinin A B, Payne D N, Turner P W, et al. Multi-fiber arrangements for high power fiberlasers and amplifiers. U.S. Patent:6826335B1(Nov30,2004).
    5Ou P,Yan P,Gong M, et al. Coupling efficiency of angle-polished method for side-pumpingtechnology.Opt Eng,2004,43(4):816-821.
    6Goldberg, et al. Optical fiber amplifiers and lasers and optical pumping devices therefor andmethods of fabricating same. U.S. Patent6731837(May4,2004).
    7ITF. Fiber coupled pumping concepts for double-clad fibers. http://www.itflabs.com/data/File/Tech/CleoEu-Gonthier.pdf.
    8赵楚军,陈光辉,慕伟,等.高功率光纤激光器抽运耦合技术研究进展.激光与光电子学进展,2007,44(3):35-43.
    9Kim J Ki, Hagemann C, Schreiber T, et al. Monolithic all-glass pump combiner scheme forhigh-power fiber laser systems. Optics Express,2010,18(12):13194-13203.
    10DiGiovanni DJ, et al. Tapered fiber bundles for coupling light into and out of cladding-pumpedfiber devices. US Patent58646444,(Jan26,1999).
    11Fidric, et al. Optical couplers for multimode fibers. US Patent,6434302B1(Aug13,2002).
    12Ou P, Yan P, Gong M L, et al. Multi-coupler side-pumped Yb-doped double-clad fiber laser.Chinese Opt Lett,2004,2(5):285-287
    13刘国华.高功率光纤激光器的理论研究:学位论文.武汉:华中科技大学博士论文,2007.
    14Gapontsev, et al. Coupling arrangement between a multi-mode light source and an optical fiberthrough an intermediate optical fiber length. US Patent5999673(Dec.7,1999).
    15Grudinin, et al. Multi-fiber arrangement for high power fiber lasers and amplifiers. USPatent:7221822B2,2007.
    16Ghatak A, Thyagaraian K. An introduction to fiber optics. Cambridge: Cambridge UniversityPress,1998.
    17Siegman A E. Propagating modes in gain-guided optical fibers. J Opt Soc Am A,2003,20:1617-1628.
    18Wang X R, Xiong C D, Luo J Y. Coupling coefficients evaluation of a directional coupler usinggain guided and index antiguided fibers. Opt Commun,2009,282(3):382-386.
    19Chen X, Li W, Yang C, et al. High-power fiber laser combination technology. FrontOptoelectron China,2009,2(3):264-268.
    1Yin S P, Yan P, Gong M L. End-pumped300W continuous-wave ytterbium-doped all-fiberlaser with master oscillator multistage power amplifibers configuration. Optics Express,2008,16(22):17864-17869.
    2Gapontsev V P, Samartsev. High-power fiber laser. OSA Proceedings on Advanced Solid-StateLasers,1990,6:258-262.
    3Hu G J, Shan C Y, Deng X Y, et al. Threshold characteristics of linear cavity Yb3+-dopeddouble-clad fiber laser. Optics&Laser Technology,2004,37:3-7.
    4Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with1.36kWcontinuous-wave output power. Optics Express,2004,12:6088-6092.
    5Po H, Cao J D, Lalibene B M, et a1. High power Neodymium-doped single transverse modefiber laser. Electron Lett,1993,29(17):1500-1501.
    6Zellmer H, Plamann K, Huber G, et a1. Visible double-clad up-conversion fiber laser. ElectronLett,1998,34(6):565-567.
    7Cundif S T, Collins B, Knox W H. Polarization locking in an isotropic mode locked solitonEr/Yb fiber laser. Opt Express,1997,1(1):12-20.
    8Pashotal R, Nillson J. Ytterbium-doped fiber amplifier. IEEE J Quantum Electron,1997,33(7):1049-1056
    9Dringlebotn J T, Reekie L. Highly-efficient low-moise grating-feedback Er3+/Yb3+co-dopedfiber laser. Electronics Letters,1994,30(12):972-973.
    10周炳琨.激光原理.第四版.长沙:国防工业出版社,2004.
    11Hardy A, Oron R. Signal amplification in strongly pumped fiber amplifiers. IEEE J QuantElectron,33(3):307-313.
    12Henry C. Theory of spontaneous emission noise and its application to lasers and opticalamplifiers. IEEE J Lightwave Technol,1986,4(3):288-297.
    13Kelson I, Hardy A A. Strongly pumped fiber lasers. IEEE J Quantum Electron,1998,34(9):1570-1577.
    14Xiao LM, Yan P, Gong M L, et al. An approximate analytic solution of strongly pumpedYb-doped double-clad fiber lasers without neglecting the scattering loss. OpticsCommunications,2004,230:401-410.
    15Brown D C, Hoffman H J. Thermal, stress, and thermo-optic effects in high average powerdouble-clad silica fiber lasers. IEEE J Quantum Electron,2001,37(2):207-217.
    16Kelson I, Hardy A. Optimization of strongly pumped fiber lasers. J Lightwave Technol,1999,17(5):891-896.
    17Innocenzi M E, Yura H T, Fincher C L, Thermal modeling of continuous-wave end-pumpedsolid-state lasers. Appl Phys Lett,1990,56:1831-1833.
    18Koplow J P, Goldberg L, Moeller R P, et al. Single-mode operation of a coiled multimode fiberamplifier. Opt Lett,2000,25(7):442-444.
    19Sakai J, Kimura T. Bending loss of propagation modes in arbitrary-index profile optical fibers.Appl Opt,1978,17(10):1499-1506.
    20王凤蕊,李明中,林宏奂,等.掺镱多模双包层光纤激光器弯曲选模研究.激光技术,2007,31(6):607-609.
    21李立波,楼祺洪,周军等.弯曲直径对多模光纤激光器输出性能的影响.中国激光,2007,34(3):323-326.
    22Marcuse D. Curvature loss foumula for optical fibers. J Opt Soc Am,1976,66(3):216-220.
    23Alvarez-Chavez J A, Grudinin A B, J Nilsson, et al. Mode selection in high power claddingpumped fibre lasers with tapered section. Conference on Laser and Electro-Optics, MD:Baltimore,1999,1999:247-248.
    24李立波,楼祺洪,周军,等.大模场面积光纤激光器接锥法模式选择.中国激光,2007,34(12):1625-1628.
    25Jeong H, Choi S, Oh K. Continuous wave single transverse mode laser oscillation in aNd-doped large core double clad fiber cavity with concatenated adiabatic tapers. Opt Commun,2002,213(123):33-37.
    26Jeong H, Oh K, Seo H S, et al, Enhancement of butt-coupling pump efficiency in a newNd-doped large core double clad fiber laser cavity adiabatically tapered at both ends.Conference on Laser and Electro-Optics, MD: Baltimore,2001,2001:320-321.
    27sudesh V, Mccomb T, et al. Diode-pumped200μm diameter core, gain-guided, index-antiguidedsingle mode fiber laser. Appl Phys B,2008,90(21-25):369-372.
    28Hageman W B, Chen Y, Bass M, et al. Diode Side Pumping of a Gain Guided, IndexAnti-Guided Large Mode Area Neodymium Fiber Laser. Advanced Solid-State Photonics(ASSP), California: San Diego,2010, ASSP Poster Session I (AMB).
    29Hageman W. The development of scalable pump techniques for GG-IAG fiber lasers andpassive athermalization techniques for solid state lasers. Orlando: University of Central Florida,2010.
    30Hageman W, Chen Y, Wang X R, et al. Scalable side-pumped, gain-guided index-antiguidedfiber laser. J Opt Soc Am B,2010,27(12):2451-2459.
    31Siegman A E. Gain-guided, index-antiguided fiber lasers. J Opt Soc Am B,2007,24(8):1677-1682.
    32Chen Y, McComb T, Sudesh V, et al. Very large-core, single-mode, gain-guided,index-antiguided fiber laser. Optics Letters,2007,32(17):2505-2507.
    1Sprangle P, Penano J, Hafizi B, et al. Incoherent combining of high-power fibers lasers forlong-range directed energy applica tions. D irected Energy,2007,2:273-284.
    2Sprangle P, Ting A, Penano J, et al. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications. IEEE J Quantum Electronics,2009,45(2):138-148.
    3Bochove E J. Theory of spectral beam combining of fiber lasers. IEEE J Quantum Electronics,2002,38(5):432-445.
    4Cook C C, Fan T Y. Spectral beam combining of Yb-doped fiber lasers in an external cavity.OSA Trends in Optics and Photon ics,1999,26:163-166.
    5Fan T Y. Laser beam combining for high-power, high-radiance sources. IEEE J QuantumElectronics,2005,11(3):567-577.
    6Wirth C, Schmidt O, Tsybin I, et al.2kW incoherent eeam combining of four narrow-linewidthphotonic cry stal fiber amplifiers. Opt Exp,2009,17(3):1178-1183.
    7Igor V Ciapurin, Leonid B Glebov, Larissa N Glebova, et al. Incoherent beam combining of100W Yb-fiber laser beams by PTR Bragg grating. Proc of SPIE,2003,4974:209-219.
    8Ciapurin I V, Glebov L B, Smirnov V I. Spectral combining of high-power fiber laser beamsusing Bragg grating in PTR glass. Proc of SPIE,2004,5335:116-123.
    9Sevian A, Andrusyak O, Ciapurin O, et al. Efficient Power Scaling of Laser Radiation BySpectral Beam Combining. Opt Lett,2008,33(4):384-386.
    10Andrusyak O, Smirnov V I, Venus G, et al. Applications of volume Bragg gratings for spectralcontrol and beam combining of high power fiber Lasers. Proc of SPIE,2009,7195:71951Q.
    11Eugene H. Optics. Fourth edition. Beijing: Higher Education Press,2005.
    12赵凯华,钟锡华.光学.北京:北京大学出版社,1984.
    13潘笃武,贾玉润,陈善华.光学.上海:复旦大学出版社,1997.
    14Heflinger D G, Heflinger L O. Dynamic optical phase state detector. US, Patent,6147755, Nov.2000.
    15Heflinger D G, Heflinger L O. Dynamic optical micrometer. US, Patent,6243168B1, June.2001.
    16Brosnan S J, Heflinger D G, Heflinger L O. Heterodyne wavefront sensor. US, Patent,6229616B1, May2001.
    17Brosnan S J, Heflinger D G, Heflinger L O. High average power fiber laser system withhigh-speed, parallel wavefront sensor. US. Patent,6366356B1, Apr.2002.
    18Anderegg J, Brosnan S, Cheung E, et al. Coherently coupled high power fiber arrays. Proc ofSPIE,2006,6102:61020U.
    19Shay T M, Benham V. A novel technique for phase locking optical fiber arrays. Proc of SPIE,
    2004,5550:313-319.
    20Shay T M, Benham V, Baker J T, et al. First experimental demonst ration of self-synchronousphase locking of an optical array. Opt Express,2006,14(25):12015-12021.
    21Shay T M. Theory of elect ronically phased coherent beam combination without a referencebeam. Opt Express,2006,14(25):12188-12195.
    22Shay T M, Baker J T, Sanchez A D, et al. High power phase locking of a fiber amplifier array.Proc of SPIE,2009,7195:71951M.
    23Liu L, Loizos D N, Vorontsov M A, et al. Coherent combining of multiple beams withmulti-dithering technique:100kHz closed-loop compensation demonstration. Proc of SPIE,2007,6708:67080D-1~67080K-9.
    24Bourdon P, Jolivet V, bennai B, et al. Coherent beam combining of fiber amplifier arrays andapplication to laser beam propagation through turbulent atmosphere. Proc of SPIE,2008,6873:687316.
    25Bourdon P, Jolivet V, et al. Theoretical analysis and quantitative measurements of fiberamplifier coherent combining on a remote surface through turbulence. Proc of SPIE,2009,7195:719527.
    26Jolivet V, Bourdon P, Bennai B, et al. Beam shaping of single-mode and multimode fiberamplifiers array for propagation through atmosphere turbulence. IEEE J Sel Top QuantumElectron,2009,15(2):257-268.
    27Minden M. Coherent coupling of a fiber amplifier array. Thirteenth Annual Solid State andDiode Laser Technology Review (SDL TR).2000.
    28肖瑞.主振荡功率放大器方案光纤激光相干合成技术:学位论文.长沙:国防科学技术大学,2007.
    29Lou Q, Zhou J, He B, et al. Fiber lasers and their coherent beam combination, Optics PhotonicsNews,2008,19(5):46-51.
    30Limpert J, Roser F, Klingebiel S, et al.The rising power of fiber lasers and amplifiers. IEEE JSel Top Quantum Electron,2007,13(3):537-545.
    31Huo Y P. Cheo, King G. Fundamental mode operation of a19-core phase-locked Yb-doped fiberamplifier.Opt Express,2004,12,6230-6239.
    32Cheo P K, King G G, Huo Y. Recent advances in high-power and highenergy multicore fiberlasers. Proc of SPIE,2004,5335:106-115.
    33Huo Y, Cheo P K. Thermomechanical properties of high-power and high-energy Yb-dopedsilica fiber lasers. IEEE Photo Tech Lett,2004,16(3):759-761.
    34Michaille L, Shepherd T J, Bennett C R, et al. Phase locking of multicore photonic crystalfibres. Proc of SPIE,2004,5335:170-179.
    35Michaille L, Bennett C R, Taylor D M, et al. Phase locking and supermode selection inmulticore photonic crystal fiber lasers with a large doped area.Opt Lett,2005,30:1668-1670.
    36Michaille L, Bennett C R, Taylor D M, et al. Multi-core photonic crystal fibers for high powerlasers and amplifiers.Proc of SPIE,2006,6102:61020W-1-9.
    37Cheo P K, Liu A, King G G. A high-brightness laser beam from phase-lockedmulticoreYb-doped fiber laser array. Photonics Tech Lett,2001,13(5):439-441.
    38Huo Y, Cheo P K. Analysis of transverse mode competition and selection in multicore fiberlasers. J Opt Soc Am B,2005,22:2345-2349.
    39Shirakawa A, Saitou T, Sekiguchi T. Coherent addition of fiber lasers by use of a fiber coupler.Opt Express,2002,10(21):11671172.
    40Shirakawa A, Matsuo K, Ueda K. Power summation and bandwidth narrowing in coherentlycoupled fiber laser array. IEEE Conference on Lasers and Electro-Optics,2004,2:3.
    41Shirakawa A, Matsuo K, Ueda K, et al. Fiber laser coherent array for power scaling ofsingle-mode fiber laser. Proc of SPIE,2004,5662:482-487.
    42Shirakawa A, Matsuo K, Ueda K, et al. Fiber laser coherent array for power scaling, bandwidthnarrowing, and coherent beam direction control. Proc of SPIE,2005,5709:165-174.
    43Wang B, Mies E, Minden M, et al. All-fiber50W coherently combined passive laser array.Optics Letters,2009,34(7):863-865.
    44Chen Z, Hou J, Zhou P, et al. Mutual injection locking and coherent combining of twoindividual fiber lasers.IEEE J Quantum Electron,2008,44(6):515-519.
    45Zhou P, Wang X, Chen Z, et al. Coherent combining of two pulsed fibre lasers in phasemodulated mutually coupled fibre laser array. Electron Lett,2008,44(21):1238-1239.
    46Zhou P, Chen Z, Xu X, et al. Modeling self-organized coherent fiber laser array (invitedpaper).Proc of SPIE,2007,6823:68230G-1-10.
    47Kouznetsov D, Bisson J, Shirakawa A, et al. Limits of coherent addition of lasers:simpleestimate. Opt Rev,2005,12(6):445-447.
    48Rothenberg J E. Passive coherent phasing of fiber laser arrays.Proc of SPIE,2008,6873:687315.
    49Corcoran C J. Compact phase-locked laser array.5th Annual Directed Energy Symp, Monterrey,CA: Directed Energy Professional Society, Nov.2002.
    50Corcoran C J, Durville F. Experimental demonstration of a phase-locked laser array using aself-Fourier cavity. Appl Phys Lett,2005,86(20):2011181-2011183.
    51Corcoran C J, Durville F. Passive Phasing in a Coherent Laser Array.IEEE J QuantumElectronics,2008,15(2):294-300.
    52Liu L P,Zhou Y, Kong F T, et al. Phase locking in a fiber laser array with varying path lengths.Appl Phys Lett,2004,85(21):4837-4829.
    53He B, Lou Q, Wang W, et al. Experimental demonstration of phase locking of atwo-dimensional fiber laser array using a self-imaging resonator. Appl Phys Lett,2008,92(25):251115-251117.
    54Li J, Duan K, Wang Y, et al. High-power coherent ceam combining of two photonic crystalfiber lasers. IEEE Photo Tech Lett,2008,20(11):888-890.
    55Morel J, Woodtli A, Dandliker R. Coherent coupling of an array of Nd3+-doped single-modefiber lasers by use of an intracavity phase grating. Opt Lett,1993,18(18):1520-1522.
    56Lhermite J, Desfarges-Berthelemot A, Kermene V, et al. Passive phase locking of an array offour fiber amplifiers by an all-optical feedback loop.Opt Lett,2007,32(13):1842-1844.
    57Thomas A M, Loftus T H, Alison M, et al. Four-Channel, High Power, Passively Phase LockedFiber Array. Advanced Solid-State Photonics (ASSP), Japan: Nara,2008.
    58Shakir S A, Culver B, Nelson B, et al. System response in passively phased fiber amplifierarrays.Proc of SPIE,2008,7070:70700O1-9.
    59Shakir S A, Culver B, Nelson B, et al. Power scaling of passively phased fiber amplifierarrays.Proc of SPIE,2008,7070:70700N1-6.
    60Bochove E J, Shakir S A. Analysis of a spatial-filtering passive fiber laser beam combiningsystem. IEEE J Sel Top Quantum Electron,2009,15:320-327.
    61周朴,王小林,马阎星,等.激光阵列部分相干合成的光束质量.光学学报,2010,30(4):1066-1070.
    62Siegman A E. New development in laser resonator. Proc of SPIE,1990,2:1224.
    63吕百达.激光光学.第三版.北京:高等教育出版社,2003.
    64刘泽金,周朴,许晓军.高能激光光束质量通用评价标准的探讨.中国激光,2009,36(4):773-778.
    65Chen Z L, Zhou P, Wang X L, et al. Synchronization and coherent addition of three pulsd fiberlasers by mutual injection and phase modulation. Optics&Laser Technology,2009,41:710-713.
    66Lei B, Feng Y. Phase locking of an array of three fiber lasers by an all-fiber coupling loop.Optics Express,15(25):17114-17119.
    67Auroux S, Kermene V, Desfarges-Berthelemot A, et al. Coherence properties of two fiber laserscoupled by mutual injection. Optics Express,2009,17(20):17694-17699.
    68Wang B S, Mies E, Minden M, et al. All-fiber50W coherently combined passive laser array.Optics Letters,3009,34(7):863-865.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700