用户名: 密码: 验证码:
水下拖曳升沉补偿液压系统及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下拖曳系统在海洋学研究、海底资源开发、海洋打捞救助以及水下目标探测等方面具有广泛的应用,一般由拖体、拖缆和收放拖曳装置组成。系统在海洋中拖曳作业时,拖船在海面的升沉运动引起拖体深度和拖缆张力的变化,并随着海况的恶化而加剧。较高海况下拖船的剧烈运动不仅影响拖体中传感器的正常工作,而且给拖体和拖缆的安全造成很大威胁。为保证水下拖曳系统在恶劣海况下能够正常进行拖曳作业,其必须具备升沉补偿功能。当前国内对拖曳升沉补偿的研究基本处于空白,因此论文对其进行的研究工作具有重要意义。
     针对以上问题,论文以一种重型拖曳系统作为研究对象,补偿拖船升沉运动对拖体深度的影响作为研究目标,通过理论分析、建模仿真和试验研究,掌握拖曳升沉补偿系统被控对象的基本特性,研究适合于拖曳升沉系统的液压系统和控制策略,为具有拖曳升沉补偿的水下拖曳系统的设计开发提供设计依据,具有重要的学术价值和工程应用前景。
     论文各章内容分述如下:
     第一章概述了水下拖曳系统,介绍了拖曳升沉补偿系统的工作原理和分类,回顾和综述了拖曳升沉补偿及其相关领域的研究现状,最后,提出了本论文的研究意义和主要研究内容。
     第二章设计了拖曳升沉补偿系统收放装置的液压系统,分别采用比例方向阀和电磁换向阀控制收放架的水平运动和变幅运动,开式容积调速回路控制拖缆绞车转动实现拖体的收放操作,提出了基于前馈补偿的恒张力同步收放控制策略。陆上和海上试验研究表明,设计的收放装置液压系统和提出的同步控制策略性能优异,取得了满意的效果。
     第三章分别提出了被动拖曳升沉补偿液压系统回路,基于进油、回油节流切换控制的单马达驱动主动拖曳升沉补偿液压系统回路和集成被动补偿、主动补偿的双马达驱动半主动拖曳升沉补偿液压系统回路,并结合拖缆、拖体的简化模型建立了液压系统数学模型,建立了主动拖曳升沉补偿液压系统的试验装置并进行了试验。建模分析表明,被动系统补偿能力有限;主动系统设计灵活,具有更好的补偿性能;半主动系统不仅设计灵活,补偿性能好,而且动力消耗小,安全可靠;试验研究表明,主动系统响应快,调速性能好。
     第四章建立了垂直面内拖曳升沉补偿系统被控对象——拖缆和拖体的水动力数学模型及其初始、边界条件,其中拖缆动力学模型基于Ablow&schechter模型,拖体采用水下运载体六自由度方程的简化形式模拟;应用摄动理论求解了数学模型在其平衡位置附近的近似解析解,运用有限差分法离散数学模型偏微分方程组,采用牛顿迭代法计算了拖缆上各计算节点的张力和拖体深度的变化;最后,利用数值计算结果对系统被控对象的输入输出参数化数学模型进行了分析。近似解析解分析和数值计算结果表明,拖曳升沉补偿系统较短的拖缆释放长度使拖缆张力变化不会与拖船升沉运动干扰信号产生共振,变化范围有限;输入输出参数化数学模型分析表明,拖体深度与拖船升沉运动位移、拖缆绞车收放运动位移之间的关系是一个随着拖船航速变化的时变非线性函数。
     第五章提出了拖曳升沉补偿控制系统总体方案,它具有内层位置伺服控制子系统和外层深度升沉补偿控制子系统双层结构,其中,内层子系统在时变拖缆张力扭矩干扰下实现对目标位移的快速、无静差跟踪;外层子系统确定拖缆绞车运动目标位移以补偿拖体深度变化。分别设计了采用内模控制策略的内层子系统控制器和基于紧格式线性化非参数模型自适应控制理论的外层子系统控制器,并分别对内层子系统、外层子系统和拖曳升沉补偿控制系统进行了仿真。仿真表明,内层位置伺服控制器抗干扰能力强,鲁棒性好,对系统模型要求低和参数整定方便;外层升沉补偿控制器设计简单,对具有时变非线性特性的控制对象具有较高的补偿精度;拖曳升沉补偿控制系统在各航速下都能够有效抑制拖船升沉运动对拖体深度的影响。
     第六章概述了论文的主要研究工作和成果,并对今后的研究工作和方向进行了展望。
An underwater towed system generally consists of towed body, cable, retraction and towing device. It is used extensively for ocean exploration. Examples include oceanography, ocean resource development, ocean salvage, underwater target detection and so on. When it is working in the ocean, heave motion of the towed ship on the rough sea leads to change of the towed body depth and the cable tension. Obviously, the situation will become more severe with higher sea state. Violent motion of the towed ship may not only disturb the ability of sensors installed in the towed body to perform a task, but also present a great threat to the safety of the towed body and the cable. In order to ensure that the underwater towed system is able to work in the bad sea condition, it must have heave compensation function. At present there is almost no study on this key technology of the underwater towed system in China, therefore the research on towed heave compensation is very significant.
     Under the background of the above-mentioned, a heavy underwater towed system is selected as the object of study and compensating the influence of heave motion of the towed ship to the towed body depth is the research objective. Through theoretical analysis, modeling, simulation and experiments, the fundamental feature of the controlled object of the towed heave compensation system is understood and the hydraulic system and control strategies which are suitable for the towed heave compensation system are studied. All these works provide some design basis for developing the underwater towed system possessing heave compensation function. They have important academic value and a bright future for engineering application.
     The main contents of each chapter are summarized as following.
     In chapter 1, a general view of the underwater towed system is given at the beginning. Then the work principle and classification of the towed heave compensation system are introduced. Present study state of the towed heave compensation system as well as its related fields is overviewed. The research significance and main study contents of this dissertation are put forward at the end.
     In chapter 2, launch and recovery hydraulic system in which the crane is driven by proportional directional valve and electromagnetic directional valve to carry out horizontal and variable-amplitude motion respectively, and the winch is driven to implement retrieval and release of the towed body by open volumetric speed control is designed. Constant tension synchronous control strategy based on feed forward compensation is proposed. The results of land and sea experiments demonstrate that the designed hydraulic system and proposed synchronous control strategy both have good performance and achieve a satisfied effect.
     In chapter 3, a passive towed heave compensation hydraulic system, an active towed heave compensation hydraulic system driven by single motor and based on meter-in, meter-out switch control principle, and a semi-active towed heave compensation hydraulic system driven by double motors and having passive and active compensation units are designed. The mathematical models of these hydraulic systems are built with simplified model of the towed body and the cable. In addition, the experiment equipment of the active towed heave compensation hydraulic system is established. The mathematical model analysis shows that the passive system has limited capability, and the active system and the semi-active system are both flexible in design and has higher compensation performance. But compared with the active system, the semi-active version has lower power assumption, higher safety and reliability. Experiments of the active system show that it has good speed regulation performance and quick response.
     In chapter 4, dynamic model, boundary conditions and initial conditions of the towed heave compensation system are established in normal plane. The equations of the towed cable motion are based on Ablow and Schechter model and the simplified version of six degree-freedom ordinary differential equations are used in motion analysis of the towed body. By perturbation theory, dynamic model of the towed heave compensation system is solved approximately about equilibrium positions. The partial differential equations of the dynamic model are discreted by finite difference method and the transient values of each node in the cable are computed by Newton Iteration. At the end, the input and output parametric model of the towed heave compensation system is analyzed by using numerical calculation results. The analysis of the dynamic model shows that short length of the cable in the towed heave compensation results in that there is none sympathetic vibration between tension in the cable and heave motion of the towed ship, and tension change in the cable is small. The analysis of the input and output parametric model of the compensation system shows that the interrelationship of depth of the towed body, heave motion of the towed ship and retraction of the winch is a time-variable nonlinear function with speed change of the towed ship.
     In chapter 5, the general control scheme for the towed heave compensation system which is composed of an external depth heave compensation control subsystem and an inner position servo-control subsystem is proposed. The inner subsystem rapidly tracks the reference displacement without steady-state error under time-variable tension torque disturbance, while the external subsystem determines reference displacement of the winch to compensate depth change of the towed body. The inner controller designed by internal model control principle and the external controller designed by the nonparametric model adaptive control approach based on a dynamic linearization of tight format are introduced. Finally, the inner subsystem, the external subsystem and the towed heave compensation control system are respectively simulated. Simulation shows that the inner controller has strong robustness and good ability to resist disturbance, its demands for modeling precision are low, its parameter setting is convenient, and the external controller is simple in design and has high accuracy in case that the control object has time-variable nonlinear feature, and the towed heave compensation control system is able to effectively inhibit influence of heave motion of the towed ship on depth of the towed body at every speed of the towed ship.
     All achievements of the dissertation are summarized and the further research work is put forward in chapter 6.
引文
[1]张淼淼,俞丽虹.周边国家海洋战略动向.嘹望新闻周刊,2006.9.6
    [2]B.И,Eгopoв.水下拖曳系统.北京:海洋出版社,1989:1-13
    [3]Pfeiffer Timothy F.Towed,undulating CTD.Proceedings of 1996 MTS/IEEE Oceans Conference,1996:137-140
    [4]张兆英,王抗美.拖曳式CTD测量技术研究.海洋技术,2004,23(4):18-21
    [5]任炜,李晖,李永奇,等.UCTD系统及其关键技术介绍.海洋技术,2008,27(1):8-10,18
    [6]Laura Pa,Goeller Je.On the dynamic behavior of a cable system in a recovery operation.Journal of the Acoustical Society of America,1971,49(3):615-621
    [7]黄锡昌,虞聪达,苗振清.中国远洋捕捞手册.上海:上海科学技术文献出版社,2003:374-400
    [8]刘孟庵.拖曳线列阵声呐技术发展综述.声学与电子工程,2006,3:1-5
    [9]Scott Richard.UK accepts Sonar 2087 into service five months early.Jane's Navy International,2006,3:27-28
    [10]易杏甫,曹海林,顾海东.用于海洋多参数剖面测量的拖曳系统.舰船科学技术,2004,26(4):34-37
    [11]Brian Beasley,Cooper Best,Derek Davis.Design of flying eye remotely operated vehicle for deep water surveillance.Ocean Conference Record(IEEE),2000:2075-2099
    [12]Nakamula M.,Kajiwara H.,Koterayama W.Development of an ROV operated both as towed and self-propulsive vehicle.Ocean Engineering,2000,28:1-43
    [13]侯颙,张汉泉.深海底世界观测的重要手段-深拖系统.海洋技术,1996,15(1):9-14
    [14]易杏甫,王岩峰,王成,等.海洋监测拖曳系统中拖缆导流套设计.海洋工程,2005,23(4):116-120
    [15]Murayama Yoshiaki,Tsuchiya Katsura,Morii Atsuo.Development of titanium alloy wire-armored electromechanical deepsea cable.Proceedings of Oceans,1991:150-160
    [16]Beachy Kent.Design and prototype summary of launch and retrieval concepts for unmanned seaborne surface vehicles.Proceedings of AUVSI's Unmanned Systems North America,2004:2067-2081
    [17]刘相春.A形架式潜水器收放系统设计研究.船舶,2007,5:52-57
    [18]Triantafyllou,Michael S.,Franz S.Hover.Maneuvering and Control of Marine Vehicles,MIT Press,2003:64-73
    [19]李积德.船舶耐波性.哈尔滨:哈尔滨船舶工程学院出版社.1992:1-4
    [20]Blizzard Bill,Luke Mike.Eliminating heave induced difficulties in critical multilateral casing exit operations.Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference,APDT,1998:659-668
    [21]连琏,顾云冠.海况对水下运载器吊放回收的影响.The Ocean Engineering,1996,2:1-8
    [22]中国大洋协会.国外科学调查船及船舶设备考察团报告(摘要).http://www.comra.org/yjdt/wai/hd0102.htm
    [23]Brockett Ted,Petters Richard.Launch and recovery for two-body tow systems:sea MARC Ⅱ side-scan sonar towfish proved that deployment system works in sea state 5with just two operators.Sea Technoiogy,1985,26(7):10-13
    [24]Koterayama W,Yamaguchi S,Nakamura M,et al.A numerical study fore design of depth,pitch and roll control system of a towed vehicle.Proceedings of the fourth international offshore and polar engineering conference,1994,2:337-344
    [25]吴家鸣,熊小辉.基于模糊神经网络理论对水下拖曳体进行深度轨迹控制.海洋技术,2006,25(2):1-6
    [26]夏达英,王振先,朱儒弟,等.用于海洋探测的多参数拖曳荧光计系统.海洋工程,1999,17(1):98-105
    [27]James E.Adamson.Efficient heave motion compensation for cable-suspended systems.Underwater intervention,2003,1:1-7
    [28]Hanson Kenneth,Hanson Lee,Bentley Mark,et al.Marine heave compensating device and winch drive.US:B66D001/48A,2002
    [29]Mitchell M.R.,Dessureault J.G.A constant tension winch:design and test of a simple passive system.Ocean Engineering,1992,19(5):489-496
    [30]Liu F.C.,Asher R.C.At sea evaluation of ship motion compensation hoisting devices.Offshore Technoiogy Conference,Houston,Texas,1983:363-378
    [31]Kidera E.H.A motion compensated launch/recovery crane.Ocean Engineering,1983,10(4):295-300
    [32]廖谟圣.海洋开发机器与液压技术.北京:海洋出版社,1988:200-221
    [33]Jeffrey D.Haney,Dean.W.Carey,Q.Zane Rhodes.Low power/high performance active heave compensation.Sea Technology,2006,6:23-31
    [34]肖海兵.深海采矿装置智能升沉补偿系统的研究.广州:广东工业大学,2004
    [35]S.K Srivastava,C.Ganapathy.Experimental investigations on loop maneuver of underwater towed cable-array system.Ocean Engneering,1998,25(1):85-102
    [36]Michael J.Purcell,Ned C.Forrester.Bobbing crane heave compensation for the deep towed fiber optic survey system.Society of Naval Architects and Marine Engineers New England Section Fiftieth Anniversary Proceedings,1994:1-16
    [37]康天增.水下声纳被动拖曳缓冲系统-液压蓄能器的应用.机电设备,1995,3:14-18
    [38]赵曾厚.声纳拖曳装置主动伺服控制系统的设计.机电设备,1996,2:24-27,32
    [39]Tammi Kari M.J.Identification and active feedback-feedforward control of rotor.International Journal of Acoustics and Vibrations,2007,12(1):7-14
    [40]邵昱,张海昆.拖曳装置数字式绞车控制仪的研制.船舶工程,1997,3:38-41
    [41]F.R.Driscoil,M.Nahon.Comparison between ship-mounted and cage-mounted passive heave compensation systems.Oceans Conference Record(IEEE),1998:1449-1454
    [42]F.R.Driscoll,B.Buckham,M.Nahon.Numerical optimization of a cage-mounted passive heave compensation system.Oceans Conference Record(IEEE),2000:1121-1127
    [43]白鹿,张彦廷,张作龙,等.钻柱液压升沉补偿系统参数计算及比较分析.石油矿场机械,2009,38(3):10-13
    [44]Leland R Robichaux,Jan T Hatleskog.Semi-active heave compensation system for marine vessels:United States:005209302A,1993
    [45]徐小军,何平,徐循,等.基于DSP的主动式波浪补偿起重机控制系统设计.国防科技大学学报,2008,30(1):110-114
    [46]带自动波浪补偿的吊放装置.机电设备,2000,6:43-43
    [47]Goodfellow David.Heave compensation & transducer stabilization for dredging applications.World dredging & marine construction,1985,21(5):39-41
    [48]余建星,李红涛.高架索海上补给装置在小型船舶补给上的应用.海洋技术,24(2):59-62
    [49]吴家鸣,叶家玮,李宁.拖曳式多参数剖面测量系统水动力与控制性能研究述评.海洋工程,2004:22(1):111-120
    [50]Cannon T.C.,Genin J.Dynamic behavior of a materially damped flexible towed cable.Aeronautical Quarterly,1972,23:109-120
    [51]Leonard J.W.,Recher W.W.Nonlinear dynamics of cables with low initial tension.Journal of the Engineering Mechanics Division,ASCE,1972,98(EM2):293-309
    [52]朱克强,李道根,李维扬.海洋缆体系统的统一凝集参数时域分析法.海洋工程,2002,20(2):100-104
    [53]Walton T.S.,Polachech H.Calculation of transient motion of submerged cables.Mathematics of Computation,1960,14:27-46
    [54]Ablow C M,Schechter S.Numerical simulation of undersea cable dynamics.Ocean Engineering,1983,10(6):443-457
    [55]Milinazzo F.,Wilkie M.,Latchman SA.An efficient aigorithmfor simulating the dynamics of towed cable systems.Ocean Engineering,1987,14(6):513-526
    [56]李力波.海下缆索系统运动的动力学模拟.中国造船,1989,4:33-44
    [57]张璐怡,朱继懋.深海拖曳系统运动响应的理论研究.海洋学报,1997,19(2):99-106
    [58]Yilmaz Turkyilmaz,Olav Egeland.Active depth control of towed cable in 2D.Proceeding of 40th IEEE Conference on Decision and Control,2001:952-957
    [59]邓德衡,黄国樑,楼连根.拖曳线列阵阵形与姿态数值计算.海洋工程,1999,17(1):17-26
    [60]王延辉,李晓平.水下弹性缆索动力学分析.海洋工程,2005,23(3):55-59
    [61]李晓平,王树新,何曼丽.海洋缆索的动力学仿真研究.海洋技术,2005,24(1):52-57
    [62]Gertler M.,Hagen GL.Standard equations of motion for submarine simulation.Technical Report DTMB 2510,David Taylor Research Center,Washington D.C.,1967
    [63]Abkowitz M.A.Stability and motion control of ocean vehicles.MIT Press,1969:32-50
    [64]施生达.潜艇操纵性.北京:国防工业出版社,1995:220-229
    [65]J.W.Dalmaijer,M.R.L.Kuijpers.Heave cgmpensation system for deep water installation.IHC Gusto Engineering B.V.and Rexroth Hydraudyne B.V.
    [66]杨文林,张竺英,张艾群.水下机器人主动升沉补偿系统研究.海洋工程,2007,25(3):68-72
    [67]Umesh A.Korde.Active heave compensation on drill-ships in irregular waves.Ocean Engneering,1998,25(7):541-561
    [68]K.D.Do,J.Pan.Nonlinear control of an active heave compensation system.Ocean Engineering,2008,35:558-571
    [69]刘绍兴,周海涛,杨清璞.船用液压起重机加装波浪补偿装置的研究.机电装备,1999,5:21-25
    [70]孙虹,杨清璞.电液比例控制在波浪补偿起重机中的应用.液压与气动,2001,7:18-19
    [71]彭江丰.液压折臂式起重机的波浪补偿装置设计.船舶,2000,3:39-41
    [72]王振琅.耙吸式挖泥船疏浚系统设计概述.船舶,1999,6:31-38
    [73]GungRong Chen,MingChung Fang.Hydrodynamic interactions between two ships advancing in waves.Ocean Engineering,2001,28:1053-1078
    [74]余建星,顾鹏.海上干货补给技术.海洋技术,2005,24(3):105-110
    [75]廖谟圣.液压技术在海洋开发机器上的应用前景.海洋技术,1995,14(4):96-100
    [76]K.Sharp,D.Cronin,D.Small,et al.A cocoon-based shipboard launch and recovery system for large autonomous underwater vehicles.MTS,0-933957-28-9:550-554
    [77]Kidera E.H.IV.Motion-compensated launch/recovery cranc for towing of oceanographic instruments.American Society of Mechanical Engineers(Paper),1981
    [78]王庆丰,顾临怡,袁卫军.负载自动适应的液压减张力卷取系统研究.机床与液压,2000,5:40-42
    [79]路甬祥,胡大纮.电液比例控制技术.北京:机械工业出版社,1988:223-224
    [80]路甬祥.液压气动技术手册.北京:机械工业出版社,2002
    [81]战兴群,张炎华,赵克定.二次调节系统中液压蓄能器数学模型的研究.中国机械工程,2001,12(增刊):45-46
    [82]施阳,严卫生,李俊,等.Matlab语言精要及动态仿真工具Simulink.西安:西北工业大学出版社,1997:35-83
    [83]朱军,黄若波,胡忠平.拖曳系统对舰船操纵性影响计算.船海工程,2002,2:5-10.
    [84]顾振福,霍国正,康炳坤,等.关于变深声纳(VDS)拖缆拖体系统漂移的研究.海洋工程,1997,15(2):87-95
    [85]杨怀平,孙家广.基于海浪谱的波浪模拟.系统仿真学报,2002,14(9):1175-1178
    [86]Hover Franz S,Grosenbaugh Mark A,Triantafyllou Michael S.Calculation of dynamic motions and tensions in towed underwater cables.IEEE Journal of Ocean Engneering,1994,19(3):449-457
    [87]李有法.数值计算方法.北京:高等教育出榜社,1996:20-24
    [88]马杰,田金文,彭复员.海浪的数值模拟及其仿真.华中理工大学学报,2000,28(4):62-65
    [89]Wen Shengchang.The equilibrium range of sind wave frequency spectrum.Acta Oceanologica Sinica,1990,9(1):1-14
    [90]精锐创作组.Matlab6.0科学运算完整解决方案.北京:人民邮电出版社,2001:88-128
    [91]Kevin A'Hearn,Robert Coppolino.A system identification method for simplify dynamics equations of motion for remotely operated vehicles and towed systems.IEEE,2000:525-530
    [92]Franz S.Hover,Dana R.Yoerger.Identificaiton of low-order dynamics model for deeply towed underwater vehicle systems.International Journal of Offshore and Polar Engineering,1992,2(1):
    [93]吴坚,赵英凯,黄玉清.计算机控制系统.武汉:武汉理工大学出版社,2001:201-202
    [94]Karagiannis Dimitrios,Astolfi Alessandro,Ortega Romeo.A nonlinear tracking controller for voltage-fed induction motors with uncertain load torque.IEEE Transactions on Control Systems Technology,2009,17(3):608-619
    [95]Cheng Yi,De Moor Bart L.R.Robustness analysis and control system design for a hydraulic servo system.IEEE Transactions on Control Systems Technology,1994,2(3):183-197
    [96]张友旺,钟向明,黄元峰.电液位置伺服系统的自适应模糊神经网络控制.中国机械工程,2004,15(8):681-684,749
    [97]Shamsuzzoha M.,Lee Moonyong.Design of advanced PID controller for enhanced disturbance rejection of second-order processes with time delay.AIChE Journal,2008, 54(6):1526-1536
    [98]白锐,柴天佑.碱赤泥浆流量的非线性智能PID控制.控制理论与应用,2008,25(4):783-786
    [99]Saeki Masami.Fixed structure PID controller design for standard H∞ control problem.Automatica,2006,42(1):93-100
    [100]王德进.H_2和H_∞优化控制理论.黑龙江:哈尔滨工业大学出版社,2001:86-152
    [101]Qiuping Hu,Rangaiah Gade Pandu.Adaptive internal model control of nonlinear processes.Chemical Engineering Science,1999,54(9):1205-1220
    [102]陈庆伟,郭毓,胡维礼.一种具有高阶无静差特性的内模控制器.兵工学报,2001,22(2):210-213
    [103]LEE T.H.,LOW T.S.,AI-Mamun A.,et al.Internal model control(IMC) approach for designing disk drive servo-controller.IEEE Transaction on Industrial Electronics,1995,42(3):248-256
    [104]舒迪前.预测控制系统及其应用.北京:机械工业出版社,1996:7-28
    [105]Wang Qingguo,Bi Qiang,Zhang Yong.Partial internal model control.IEEE Transaction on Industrial Electronics,2001,48(5):976-982.
    [106]梅华,孙建平,李鹏.内模控制系统的鲁棒机理分析.电力情报,2001,3:46-48,51
    [107]Narendra K S,Parthasarathy K.Identification and control of dynamic systems using neural networks.IEEE Transaction on neural networks,1990,1(1):4-27
    [108]陶永华,尹怡欣,葛芦生.新型PID控制及其应用.北京:机械工业出版社,1998:27-68
    [109]Su Y.X.,Sun Dong,Duan B.Y.Design of an enhanced nonlinear PID controller.Mechatronics,2005,15(8):1005-1024
    [110]侯忠生.非参数模型及其自适应控制理论.北京:科学出版社,1999:117-121
    [111]Lee JeongWoo,Oh JunHo.Time delay control of nonlinear systems with neural network modeling.Mechatronics,1997,7(7):613-640
    [112]韩志刚.无模型控制方法在化肥生产中的应用.控制理论与应用,2004,21(6):858-863
    [113]曹荣敏,侯忠生.直线电机的非参数模型直接预测自适应控制.控制理论与应用,2008,25(3):587-590
    [114]F.L.L(u|¨),J.F.Wang,C.J.Fan,et al.A model-free adaptive control of welding pool dynamics during arc welding.2008 IEEE International Conference on Cybernetics and Intelligent Systems,2008:591-595
    [115]侯忠生,韩志刚.非线性系统鲁棒无模型学习自适应控制.控制与决策,1995,10(2):137-142
    [116]HOU Zhongsheng.The model-free learning adaptive control of a class of nonlinear discrete-time systems.Control Theory & Application,1998,15(6):893-899

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700