用户名: 密码: 验证码:
取样保偏光纤布拉格光栅的特性分析及应用设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤多波长滤波技术在诸如密集波分复用系统、可调谐多波长激光器、离散分布光纤传感等方面越来越发挥着至关重要的作用,因此探索和研究新型的高品质多波长滤波器已经成为科研热点。本文的研究目的为设计一种新型的多波长偏振滤波器,并根据其特性设计出切实可行的应用方案。
     取样光纤光栅具有多波长输出的特点,保偏光纤具有高双折射的特性,本文将二者巧妙的结合起来,设计出一种新型的光纤光栅——取样保偏光纤光栅;根据光纤耦合模理论和传输矩阵法,分析取样保偏光纤光栅的光谱特性;基于其独特的光谱特性,本文首次提出了取样保偏光纤光栅多波长输出的两种方案;并分析了如何将将取样保偏光纤光栅用作多波长偏振滤波的基本元件应用于偏振复用系统。
     第一部分简要总结了光纤通信系统的发展以及光纤光栅在光纤通信系统中的应用:同时介绍了光纤光栅的分类和制作光纤光栅的物理机制及光纤光栅的制作技术;最后概括了本论文的主要研究工作。
     第二部分系统地介绍了研究光纤布拉格光栅特性的耦合模理论。通过推导耦合模方程分析了光纤布拉格光栅在线性情况下的特性;此外还简要介绍了传输矩阵法。
     第三部分用传输矩阵法分析了啁啾光纤光栅的光谱特性,并逐一分析了各个设计参数对其光谱的影响;简要介绍了啁啾光纤光栅的色散补偿应用。
     第四部分用传输矩阵法分析了取样光纤布拉格光栅的光谱特性,并分析了取样光栅各个设计参数对其光谱的影响;简要介绍了取样光纤光栅的几种基本应用。
     第五部分首先引出了保偏光纤的基本概念,结合光纤光栅的基础理论,提出了取样保偏光纤光栅的概念,并利用传输矩阵法分析了其反射谱,相位,群速度时延及群速度色散;提出了两种利用取样保偏光纤光栅实现多波长偏振输出的方案,介绍了如何将取样保偏光纤光栅的应用于偏振复用系统。
All kinds of FBGs,due to their unique advantages such as compatibility, easy of use and low cost,have been designed and researched to perform filtering functions.Various sampled fiber Bragg gratings (sampled FBGs),due to their characteristic of multi-wavelength output, have attracted considerable research attention.
     In this paper,we propose a new type of sampled FBGs written in PMF. Due to the intrinsic stress-induced birefringence in PMF,the x- and ypolarization modes are split and each one has a different effective index. Different effective refractive indexes could lead to different Bragg central wavelength of gratings.In other words,the spectral response of the sampled FBGs written in PMF consists of two combs corresponding to orthogonal linear polarizations.The spectral interval between the combs could be changed by varying the fiber birefringence.To fully grasp the new type of gratings,reflection spectrum,phase,time delay and GVD are also analyzed,which could affect the gratings filtering capability.Due to great deal of side-lobe in the reflection spectrum of the gratings;the sampled FBGs in PMF not only have serious crosstalk of the sampled FBGs written in conventional SMF,but also have the crosstalk between the channels of two orthogonal linear polarizations. The reflection spectrum of sampled FBGs in PMF has to be optimized by apodization technology.It could increase Side Mode Suppression Ratio(SMSR).We also propose two kinds of multi-wavelength output schemes based on the novel gratings,which could be used as multi-wavelength polarization filter in the polarization division multiplex (PDM)system.
     Two kinds of multi-wavelength output schemes
     The sampled FBGs in PMF could be used as basic device of filter, which could realize increasing the number of channels.We propose two kinds of schemes of flat multi-wavelength output based on the sampled FBGs in PMF.
     A.Expand bandwidth scheme
     For gratings written in Hi-Bi fiber,the frequency spacing could be up to several hundred GHz,and the Bragg central wavelength intervalΔλ_B could be up to several nm.The difference of refractive index between two polarizations is up to 10~(-3),which is useful for expanding bandwidth. When sampling rate SR is 0.23,refractive index differenceΔn_(eff)=0.0036,the flat bandwidth may be up to 8 nm,it is twice broader than the sampled FBGs written in conventional SMF.
     B.Narrow channel spacing scheme
     For the Low-Bi fiber,the frequency spacing could be tens of GHz,and the Bragg central wavelength intervalΔλ_B could be sub-nm.By adjusting the parameters of sampled FBGs in PMF the channel spacing is about 0.4 nm,which could meet the ITU-T grid.It means a new method to realize flat multi-wavelength output by narrowing the channel spacing is proposed.
     Application schemes
     Polarization interleaving or multiplexing have been used in the quest to increase the spectral efficiency of DWDM optical transmission systems. PDM system could achieve the purpose of data double output through transmitting two independently modulated and orthogonally polarized optical signals corresponding to the same frequency over a fiber.The sampled FBGs in PMF could be used to realize multi-wavelength polarization filtering function,so we design two kinds of application schemes of polarization filtering in PDM system.
     Conclusion
     The sampled FBGs in PMF are first proposed.The reflection spectrum of the sampled FBGs in PMF is analyzed by coupled mode equations. The gratings not only have the characteristic of conventional sampled FBGs,but also have the advantage of narrower channel spacing or broader bandwidth.Simulation results about the new type of sampled FBGs in PMF show that the new type of sampled FBGs could be used as a multi-wavelength polarization filter in PDM system.
引文
[1]Andreas Othonos,Kyriacos Kalli,"Fiber Bragg Gratings:Fundamentals and Applications in Telecommunications and Sensing,"(Artech House,Boston,London,1999)
    [2]C.R.Giles,"Lightwave application of fiber Bragg gratings," J.Lightwave Technol.,1997,vol.15(8),pp.1391-1404.
    [3]刘玉敏,俞重远,杨红波等,“长周期啁啾光纤光栅级联作为波分复用隔离滤波器的数值研究,”光子学报,2005,34(4),516-519。
    [4]满文庆,“多波长啁啾叠栅的矩阵分析,”光子学报,2006,35(6),873-876。
    [5]ZHAO Yan-chun,XU Xiao-feng,LI Yan,SHAO Zhuang et al.,"A novel method to realize multi-wavelength with phase-shifted FBG inscribed in PMF," Las.Phys.Lett,2005,vol.2(10),pp.493-497.
    [6]M.Ibsen,M.K.Durkin,M.J.Cole et al.,"Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation," IEEE Photo Tech Lett,1998,vol.10(6),pp.842-844.
    [7]吴强,余重秀,王葵如等,“啁啾sinc取样光纤光栅研究,”光子学报,2005,34(3),404-408。
    [8]肖永良,秦子雄,曾庆科等,“取样光纤布拉格光栅特性的研究,”光电工程,2005,32(4),53-55。
    [9]方志豪,朱秋萍,“光纤通信-原理、设备和网络应用,”武汉大学出版社,2004,1-5。
    [10]张煦,“OFC-2003关于光纤传输系统的报道,”光通信技术,2003,6,6-7
    [11]张宁,纪越峰,“光通信发展的关键技术,”现代通信,2004,2,5-8
    [12]J.L.Archambault,L.Reekie and P.S.J.Russell,"100%reflectivity bragg reflectors produced in optical fibers by single excimer laser pulses," Electron.Lett.,1993,vol.29,pp.453-455.
    [13]P.J.Lemaire,R.M.Atkins,V.Mizrahi,and W.A.Reed,"High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers," Electron.Lett.,1993,vol.29,pp.1191-1193.
    [14]K.O.HilI,Y.Fujii,D.C.Johnson,and B.S.Kawasaki,"Pho-tosensitivity in optical waveguides:application to reflection filter fabrication," Appl.Phys.Lett.1978,vol.32,pp.647.
    [15]G.Meltz,W.W.Morey,and W.H.Glen,"Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt.Lett.1989,vol.14,pp.823.
    [16]K.O.Hill,B.Malo,F.Bilodeau,D.C.Johnson,and J.Albert,"Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl.Phys.Lett.1993,vol.62,pp.1035-1037.
    [17]K.O.Hill,B.Malo,K.A.Vineberg,F.Bilodeau,D.C.Johnson,and I.Skinner,"Efficient mode conversion in telecommunication fiber using externally written gratings," Electron.Lett.1990,vol.26,pp.1270-1272.
    [18]M.Yamada,K.Sakuda,"Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrtic approach,"Appl.Opt.,1987,vol.26(16),pp.3474-3478.
    [19]Ke,Hong,Peng,Jihu M.,Fan,Chongcheng,"Analysis of long-period fiber grating with fast-varying parameters and its Optimization by Genetic Algorithm," APOC,2001.Proc.of SPIE vol.4579,pp.274-281.
    [20]F.Ouellette,"Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides," Opt.Lett.,1987,vol.12(10),pp.847-849.
    [21]F.Ouellette,"All-fiber filter for efficient dispersion compensation,"Opt.Lett.,1991,vol.16(5),pp.303-305.
    [22]S.Thibault,J.Lauzon,J.Francois et al.,"Numerical analysis of the.optical length and profike of a linearly chirped fiber Bragg grating for dispersion compensation," Opt.Lett.,1995,vol.20(6),pp.647-649.
    [23]林宁,张晓光,刘秀敏等,“光纤光栅的耦合系数对其色散补偿性能的影响,"光子学报,2000,29(6),527-531。
    [24]B.J.Eggleton,P.A.Krug,L.Poladian et al.,"Experimental demonstration of compression of dispersed optical pulses by reflection from Bragg grating," Opt.Lett.,1994,vol.19(12),pp.877-879.
    [25]秦子雄,杜卫冲,曾庆科等,“线性啁啾光纤光栅的光学切趾包络函数、最佳包络和最佳长度的数值研究,”中国激光,2000,A27(1), 37-41。
    [26]叶志清,邹道文,“线性啁啾Bragg光栅的实验研究,”光子学报,2002,31(1),71-73。
    [27]D.Garth,R.E.Epworth,W S.Lee,"Adjustable dispersion equalizer for 10 and 20 Gb/s over distance up to 160 km," Electron.Lett.,1994,vol.30(2),pp.2159-2160.
    [28]J.A.Fells,S.E.Kanellopoulos,P.J.Bennett,et al.,"Twin fiber grating tunable dispersion compensator," IEEE Photon.Technol.Lett.,2001,vol.13(9),pp.984-986.
    [29]K.M.Feng,J.X.Cai,V.Grubsky,et al.,"Dynamic dispersion compensation in 10-Gb/s optical system using a novel voltage tuned nonlinearly chirped fiber Bragg grating," IEEE Photon.Technol.Lett.,1999,vol.11(3),pp.373-375.
    [30]S.Lee,R.Khosravani,J.Peng,et al.,"Adjustable compensation of polarization mode dispersion using a high-birefringence nonlinearly chirped fiber Bragg grating," IEEE Photon.Technol.Lett.,1999,vol.11(10),pp.1277-1279.
    [31]T.Inui,T.Komukai,M.Nakazawa,"A wavelength-tunable dispersion equalizer using a nonlinearly chirped fiber Bragg grating pair mounted on multilayer piezoelectric transducers," IEEE Photon.Technol.Lett.,2000,vol.12(12),pp.1668-1670.
    [32]J.L.Yang,Y.Q.Liu,"Wideband tunable linear-cavity fiber laser source using strain-induced chirped fiber Bragg grating," Optics &Laser Technology,2004,vol.36(12),pp.561-565.
    [33]H.Chorard,Y.Painchaud,A.Mailloux,et al.,"Group delay ripple of cascaded Bragg grating gain flattening filters," IEEE Photon.Technol.Lett.,2002,vol.14(8),pp.1130-1132.
    [34]Y.Okabe,R.Tsuji,N.Takeda,"Application of chirped fiber Bragg grating sensors for identification of crack locations in composites,"Compos.,PartAAppl.sci.manuf.,2004,vol.35,pp.59-65.
    [35]Juichi Noda,"Polarization maintaining fibers and their applications," J.Lightwave Tech.,1986,LT-4(8),pp.1071-1075.
    [36]Pak L Chu,"Analytical method for calculation of stresses and maintaining optical fiber," J.Lightwave Tech.,1984,LT-2,pp.650-654.
    [37]陈伟,李诗愈,成煜,陆大方,“保偏光纤技术进展及发展趋势,”光通信研究,2003,第6期,54-57。
    [38]M.Douay,T.Feng,P.Bemage,P.Niay,E.Delevaque,and T.Georges,"Birefringence effect of optical fiber laser with intracore fiber Bragg grating," IEEE Photon.Technol.Lett.,1992,vol.4,pp.844-846.
    [39]D.Pureur,M.Douay,P.Bernage,et al.,"Single-Polarization fiber lasers using Bragg gratings in Hi-Bi fibers," J.Lightwave.Technol.,1995,vol.13,pp.350-355.
    [40]W.H.Loh,J.P.de Sandro,G.J.Cowle,et al.,"40 GHz optical-millimetre wave generation with a dual polarization distributed feedback fibre Laser," Electron.Lett.,1997,vol.33,pp.594-595.
    [41]ENNSER K,"Optimization of apodized linearly chirped fiber gratings for optical communications," J Quantum Electronics,1998,vol.34,pp.770-778.
    [42]高晓峰,相里斌,“傅里叶退卷积光谱噪音特性分析,”光子学报,2006,35(11),1713-1716。
    [43]Paul M.Hill,Robert Olshansky,and W.K.Burns,"Optical polarization division multiplexing at 4 Gb/s," IEEE Photon.Technol.Lett.,1992,vol.4,pp.500-502.
    [44]S.Hinz,D.Sandel,R.Noé,and F.West,"Optical NRZ 2×10Gbit/s polarization division multiplex transmission with endless polarization control driven by correlation signals," Electron.Lett.,2000,vol.36,pp.1402-1403.
    [45]K.Sekine,S.Sasaki and N Kikuchi,"10 Gbit/s four-channel wavelength- and polarization-division multiplexing transmission over 340km with 0.5 nm channel spacing," Electronics Letters,1995,vol.31(1),pp.49-50.
    [46]Gnauck,A.H.Charlet,G Tran,P.Winzer,P.J.Doerr,C.R.Centanni,"25.6-Tb/s WDM Transmission of Polarization-Multiplexed RZ-DQPSK Signals," IEEE J.Lightwave Technol.,2008,vol.26(1),pp.79-84.
    [47]Noe,R.Hinz,S.Sandel,D.Wust,F,"Crosstalk detection schemes for polarization division multiplex transmission," IEEE J.Lightwave Technol.,2001,vol,19(10),pp.1469-1475.
    [48]T.Tokle,M.Serbay,J.B.Jensen,Y.Geng,W.Rosenkranz,P. Jeppesen,"Investigation of Multilevel Phase and Amplitude Modulation Formats in Combination With Polarization Multiplexing up to 240 Gb/s," IEEE Photonics Technology Letters,2006,vol.18(20),pp.2090-2092.
    [49]T.Miyazaki,"Linewidth-tolerant QPSK homodyne transmission using a polarization-multiplexed pilot carrier," IEEE Photonics Technology Letters,2006 vol.18(2),pp.388-390.
    [50]S.G.Evangelides et al.,"Polarization multiplexing with solitons,"IEEE J.Lightwave Technol.,1992,vol.10,pp.28-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700