用户名: 密码: 验证码:
华北地区气溶胶理化特性、来源解析及实验室模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国经济的高速发展和城市化进程的加快,华北地区大气污染逐渐恶化,尤其是大气细颗粒物(PM2.5)污染导致灰霾事件频繁发生,严重影响了人们的生活和公共安全。因此对该地区区域性大气气溶胶特征的研究有利于了解高污染地区气溶胶形成机理,也为国家制定区域大气污染的控制策略提供理论依据。
     本研究分别在华北平原地区具有代表性的5个地面站点和华北地区最高峰的泰山顶峰(高山站点,1534m a.s.1)开展了长期和强化观测。采用了多种分析技术如离线/在线监测技术对主要的大气污染物种进行了测量,并利用多种统计方法及模型如气流轨迹分析、聚类分析等对实验数据进行处理,研究了我国华北高污染地区气溶胶水溶性离子及酸度的污染状况、时空变化、来源解析及相关的大气化学过程和长距离输送特征。另外为了研究更接近于真实大气环境下二次有机气溶胶(SOA)的生成机理,本研究针对灰霾发生时高湿度、高背景颗粒物浓度的特点,利用北卡罗莱纳大学的双室室外烟雾箱,设计并开展了不同相对湿度(RH)及背景气溶胶条件下甲苯/二甲苯-NOx-HCmix(11种non-SOA-forming hydrocarbon)体系SOA生成的模拟实验,研究RH和背景气溶胶对SOA生成的影响;并在此基础上建立并验证了新的基于参数“颗粒物水含量”(H20p)的甲苯/二甲苯体系SOA生成的精简机理模型。
     在华北平原分别选取了3个具有代表性的内陆城市站点(济南山大、淄博和枣庄)、1个郊区站点(济南苗圃)和1个沿海站点(青岛),进行了为期一年的长期观测(2006年1月-2007年2月)。研究表明华北地区大气PM2.5水溶性离子污染甚高于其它发达国家,也高于中国许多地区:总水溶性离子(TWSI)浓度为60.74+40.12μg/m3,约占PM2.5质量浓度的一半,其中二次离子包括SO42-、N03-和NH4+的浓度总和高达47.50μg/m3,占PM2.5浓度的38.7%;有机酸平均浓度为0.42μg/m3,约占PM2.5质量浓度的0.3%。各站点中枣庄的颗粒物污染最为严重,淄博和济南山大站点污染次之,青岛沿海站点和济南郊区苗圃站点污染相对较轻。通过气溶胶样品水溶液的pH值反推获得了各站点平均PM2.5的酸度为6.40±7.00nmol/m3,其中郊区站点(济南苗圃)气溶胶酸度明显高于其它城市站点,淄博和枣庄的颗粒物酸化程度相对较弱。酸度的季节变化分析发现青岛夏季酸度明显低于其它季节,而其它站点气溶胶酸度春季最低。利用后推气流轨迹对几个站点的气团来源进行解析,发现在源自南部和局地气团的影响下的气溶胶水溶性离子污染较严重,酸度也较强;另外在南部气团的影响下,PM2.5中的草酸盐含量较高。
     2007年春、夏两季在泰山高山站点的强化观测中,对PM2.5水溶性离子进行了在线监测,并对其它主要污染物(O3、SO2、NOy等)进行了同步测量。春、夏两季PM2.5总水溶性离子浓度分别为27.52和36.65μg/m3,表明华北地区高空存在严重的大气污染问题。夏季SO2的转化率(SOR)(57±27%)是春季的(24±16%)两倍多,说明夏季二次硫酸盐的大量生成。SO42-、NH4+和NO3-的日变化研究表明春、夏两季均在下午有一个宽峰,这与山谷风和边界层的发展有关。PM2.5的酸度研究表明春、夏两季分别有57.2%和81.3%的颗粒物样品属于酸性颗粒物,春季PM2.5强酸度(H+strong)和自由酸度(H+air)明显低于夏季;H+strong同SO42-、NO3-和NH4+具有相似的日变化趋势,H+air同RH及H2Op含量密切相关,且老化的气溶胶具有较强的气溶胶酸度。主因子分析(PCA)来源解析发现区域传输、云雾过程、沙尘事件及生物质燃烧是影响该地区气溶胶污染的主要因素。并通过后推气流轨迹对该区域气溶胶来源进行解析,发现泰山春季主要受到来自北/西北方向气团传输和西部陕西、河南气团传输的影响,当泰山受到低空区域传输和西北高湿度气团影响时细颗粒物污染较严重。泰山夏季主要受来自东/东北方向经海洋上空传输的气团和来自西南方向的低空短距离传输气团以及西北方向气团的影响,其中受到源自东/东北方向的气团及来自西南方向低空传输气团影响时PM2.5各水溶性离子污染较严重。
     根据在线离子浓度及其它污染物的观测数据,对泰山沙尘、生物质燃烧、云雾等各种典型事件的大气过程进行了研究。发现当沙尘与污染气团相混合,尤其在湿度较高的天气条件下,沙尘颗粒能够提供了较大的反应表面积,促进非均相反应的发生从而生成大量的二次离子;泰山6月份明显受到生物质燃烧的影响,期间K+和草酸盐浓度明显升高;云雾对泰山气溶胶的去除作用非常明显,各水溶性离子的去除效率同PM2.5的质量浓度反相关,同云雾水含量正相关;在对泰山夏季白天气溶胶酸度与二次有机碳(SOC)关系的研究中发现半数以上个例SOC的增长伴随着较高的酸度和H20p含量以及较弱的光化学氧化活性,说明高酸度和液相反应对SOC的生成有重要贡献,而对于低酸度SOC增长的个例研究发现气团光化学氧化活性强,对SOC的生成起主导作用。
     为了研究RH和背景气溶胶对SOA的生成的影响,本研究对四个体系SOA的生成进行了室外烟雾箱模拟:甲苯/邻/对二甲苯-NOx-HCmix以及甲苯-邻/对二甲苯-NOx-HCmix混合体系。研究发现(NH4)2SO4-甲苯-NOx-HCmix在低RH(6-10%)条件下生成的SOA明显低于潮湿环境(40-90%),表明种子气溶胶与高湿度条件同时存在时会有大量SOA生成,即颗粒物水含量(H2Op)可能是影响SOA生成的关键因素;将背景大气做为种子气溶胶,模拟真实大气环境下SOA的生成时,四个体系均发现了H2Op对SOA生成的促进作用,其中邻二甲苯的Odum产物模型曲线的模拟发现高湿度条件下的SOA产率明显高于中等湿度条件下;研究还发现对二甲苯的SOA产率比邻二甲苯以及甲苯-邻/对二甲苯的混合体系低。基于四个体系烟雾箱模拟的实验数据和以往的甲苯SOA生成机理模型,本研究引入了新的参数H2Op,建立了甲苯/二甲苯体系SOA生成的精简机理模型,并将模拟结果与观测结果相比较验证了该机理模型的可行性,为大尺度气溶胶质量模型的完善提供了宝贵的信息。
During the past several decades, rapid economic development and urbanization process have led to deterioration of air quality in central eastern China. The fine particle (PM2.5) pollution leads to frequent occurrence of regional haze, which has a negative impact on human health and public safety. Thus it is urgent and important to investigate the characteristics and formation mechanism of atmospheric aerosols in this heavily polluted area to supply basis for the air quality control measurements.
     In the present study, several intensive or long-term field campaigns were carried out at five representative ground sites and one mountain site (Mt.Tai,1534m a.s.l), which is the highest peak of central eastern China. Multiple pollutants were measured by off-line and online techniques. A large suite of air pollutants data were obtained and analyzed with the aid of many statistical tools and modeling techniques including a backward trajectory model and cluster analysis. Several characteristics of water soluble ions and acidity in PM2.5were investigated, including temporal and spatial variations, source analysis, chemical transformation and transport processes. Another major objective of this study is to investigate the formation of secondary organic aerosol (SOA) under near real ambient atmospheric conditions. Simulation experiments were designed and performed in the University of North Carolina (UNC)270m3dual outdoor smog chamber in order to determine the effects of relative humidity (RH) and seed aerosol on the SOA formation from tolunene/xylens in the presence of an eleven component mixture of non-SOA-forming dilute urban hydrocarbon (HCmix). Condensed SOA formation mechanisms was built and evaluated based on these experiments.
     The observation of PM2.5was carried out in three continental urban sites (SD, ZB and ZZ, short for Jinan Shanda, Zibo and Zaozhuang), one coastal site (QD, short for Qingdao) and one rural site (MP, short for Jinan Miaopu) during Jan.2006-Feb.2007. More serious aerosol pollution was observed at these sites comparing to other sites over the world. The average concentration of total water soluble ions (TWSI) was 60.74±40.12μg/m3, accounting for about half of the PM2.5mass concentration. SO42-, NO3-and NH4+, as major secondary ions with an average concentration of47.50μg/m3, accounted for38.7%of PM2.5mass concentration. The average concentration of total organic ions was0.42μg/m3, accounting for0.3%of the PM2.5mass concentration. The TWSI concentration at ZZ was the highest among these sites. ZB and SD sites showed lower TWSI concentrations than that at ZZ. The coastal site of QD and the rural site of MP presented a low level of TWSI. The acidity of PM2.5, calculated from the pH of water solution of aerosol samples, showed an average concentration of6.40±7.00nmol/m3, with higher values at the rural site (MP), but relatively lower values at the urban sites, especially in ZB and ZZ. The seasonal variation showed the lowest acidity was in spring at most of the sites except Qingdao, where the acidity was the lowest in summer. Back trajectories analysis demonstrates high level of ions and aerosol acidity was observed when the south or local air masses prevailed and high oxalic acid concentration was obtained in PM2.5when the air masses from south direction dominated.
     Near real-time measurements of PM2.5ionic compositions were performed at the summit of the highest mountain in the North China Plain in the spring and summer of2007. Concurrently, gas phase species such as O3, SO2and NOy were also measured. The average concentrations of TWSI were27.52and36.65μg/m3in the spring and summer, respectively, indicating serious aerosol pollution in the high altitude over central eastern China. Diurnal patterns of SO42-, NH4+and NO3-showed a broad peak in the afternoon in both campaigns, which is attributed to the upslope/downslope transport of air masses and the development of the planetary boundary layer (PBL). The average SO2oxidation ratio (SOR) in summer was57%, more than twice that in spring (24%). This result indicates strong summertime production of sulfate aerosols. Overall,57.2%and81.3%of the aerosol samples were acidic in spring and summer, respectively. Strong (H+strong) and aerosol acidities (H+air) in summer were higher than those in spring. The diurnal variation of H+strong was coincide with that for SO42-, NO3- and NH4+, while the variation of H+air was consistent with RH and H2Op. Principal component analysis (PCA) showed that transport of pollutants, cloud processing, and crustal source were the main factors affecting the variability of the measured ions (and other trace gases and aerosols) at Mt. Tai. Back trajectory analysis indicated the medium/long-range transport of air mass coming from north/northwest direction, regional transport of air masses from Shanxi and Henan Provinces dominated at Mt. Tai in spring. Serious fine particle pollution was observed when the air masses from Henan and Shanxi or from northwest with high humidity. In summer, Mt. Tai was influenced by the air masses from east/northeast direction which passed through the ocean, from west direction with low altitude and from northwest direction. High level of ions concentration was observed when the air masses were primarily from east/northeast or from south direction.
     The detailed process of specific events including dust storm, biomass burning and cloud scavenging events were analyzed based on continuous measurements of ions along with other pollutants concentrations. The study on dust event showed a complex mixed pollution of dust and urban air mass with high RH. In this situation, elevated secondary ions concentrations were observed, suggesting the large surface area supplied by dust particles and the particle water (H2OP) enhanced the heterogeneous reactions to produce secondary ions. The ionic composition of aerosol at Mt. Tai was influenced by serious biomass burning in June with high contributions of K+and oxalate. The study of fog and clouds scavenging cases demonstrates the scavenging rate was positively correlated with cloud water content but negatively correlated with PM2.5mass concentrations. The relationship between acidity and secondary organic aerosol formation during daytime in summer was also investigated in this study. Over half of the investigating days, the secondary organic carbon (SOC) increased with high acidity and high H2OP levels, but low photochemical activity, suggesting acidity might enhance the heterogeneous reactions or liquid phase reactions involved in the SOC formation. The cases of rising SOC with low acidity often accompanied with low H2Op but high photochemical activity, suggesting gas phase oxidation dominated the SOC formation.
     In order to investigate the effects of RH and seed aerosol on secondary organic aerosol (SOA) formation, four aromatic systems were simulated by using UNC outdoor smog chamber, including toluene/o-xylene/p-xylene-NOx-HCmix and mixture of toluene with o-xylene/p-xylene-NOx-HCmix system. Ammonium sulfate particles in the presence of an atmospheric hydrocarbon mixture and NOX in sunlight under a dry atmosphere (RH range:6to10%) showed reduced SO A formation when compared to similar gas phase conditions with lower ammonium sulfate and higher relative humidities (RH range:40to90%). This suggests high ammonium sulfate together with high RH was responsible for the enhanced SOA formation, indicating H2OP maybe the key factor influencing SOA formation. The experiments for the other systems also demonstrate that a particle water phase was highly related to SOA formation. The yield curves generated from a one-product Odum model suggested high SOA formation under wet condition. P-xylene had a lower SOA yield compared with o-xylene and the mixtures of toluene and xylenes. A new condensed aromatic kinetic chemical mechanism employing uptake of organics in H2OP as a key parameter was developed based on the experimental data. The model showed reasonable fits to the observed data. Such information would provide useful information for developing local and regional air quality model.
引文
[1]唐孝炎,张远航,邵敏.大气环境化学[M].北京:高等教育出版社,2006.
    [2]Brus D., Hyvarinen A. P., Viisanen Y., Kulmala M., Lihavainen H. Homogeneous nucleation of sulfuric acid and water mixture:experimental setup and first results[J]. Atmos. Chem. Phys.,2010 (6):2631-2641.
    [3]彭林,沈平.兰州市大气飘尘中正构烷烃的分布特征[J].沉积学报(增刊),1996(A00):192-197.
    [4]Houghton J., Ding Y., Griggs D., Noguer M., Van der Linden P., Dai X., Maskell K., Johnson C.:IPCC,2001:Climate Change 2001:The Scientific Basis, Cambridge, United Kingdom, New York, USA, Cambridge University Press,2001:9.
    [5]Engler C., Lihavainen H., Komppula M., KERMINEN V. M., Kulmala M., Viisanen Y. Continuous measurements of aerosol properties at the Baltic Sea[J]. Tellus B,2007 (4): 728-741.
    [6]Stott P. A., Tett S. F. B., Jones G. S., Allen M. R., Mitchell J. F. B., Jenkins G. J. External control of 20th century temperature by natural and anthropogenic forcings[J]. Science,2000 (5499):2133-2137.
    [7]Bellouin N., Boucher O., Haywood J., Reddy M. S. Global estimate of aerosol direct radiative forcing from satellite measurements[J]. Nature,2005 (7071):1138-1141.
    [8]Forster P., Ramaswamy V, Artaxo P., Berntsen T., Betts R., Fahey D., Haywood J., Lean J., Lowe D., Myhre G. Climate change 2007:The physical science basis[R]. Intergovernmental Panel on Climate Change:Fourth Assessment Report. New York, NY: IPCC,2007.
    [9]杨复沫,马永亮,贺克斌.细微大气颗粒物PM2.5及其研究概况[J].世界环境,2000(004):32-34.
    [10]Sisler J. F., Malm W. C. Characteristics of winter and summer aerosol mass and light extinction on the Colorado Plateau[J]. J. Air Waste Manage. Assoc.,1997 (3):317-330.
    [11]Yang L.-x., Wang D.-c., Cheng S.-h., Wang Z., Zhou Y., Zhou X.-h., Wang W.-x. Influence of meteorological conditions and particulate matter on visual range impairment in Jinan, China[J]. Sci. Total Environ.,2007 (1-3):164-173.
    [12]Pope C. A. I., Thun M. J., Namboodiri M. M., Dockery D. W., Evans J. S., Speizer F. E., Heath Jr C. W. Particulate air pollution as a predictor of mortality in a prospective study of US adults[J]. Am. J. Respir. Crit. Care. Med.,1995 (3):669.
    [13]Klemm R. J., Mason R. M., Heilig C. M., Neas L. M., Dockery D. W. Is daily mortality associated specifically with fine particles? Data reconstruction and replication of analyses[J]. J. Air Waste Manage. Assoc.,2000 (7):1215-1222.
    [14]董雪玲.大气可吸入颗粒物对环境和人体健康的危害[J].资源·产业.,2004(5):50-53.
    [15]肖晗,李子健,韩启德,张幼怡.大气污染颗粒物质与心血管疾病[J].中国病理生理杂志,2005(4):822-825.
    [16]Pope C. A. I., Burnett R. T., Thun M. J., Calle E. E., Krewski D., Ito K., Thurston G. D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution[J]. JAMA:the journal of the American Medical Association,2002 (9):1132.
    [17]Ramanathan V., Crutzen P., Lelieveld J., Mitra A., Althausen D., Anderson J., Andreae M., Cantrell W., Cass G., Chung C. Indian Ocean Experiment:An integrated analysis of the climate forcing and effects of the great Indo-Asian haze[J],2001.
    [18]Ramanathan V., Ramana M. Atmospheric Brown Clouds:long-range transport and climate impacts[J]. EM-Air & Waste Management Association,2003:28-33.
    [19]吴兑,吴晓京,朱晓祥.雾与霾[M].北京:气象出版社,2009:2-4.
    [20]Kerr R. A. Climate change-Pollutant hazes extend their climate-changing reach[J]. Science, 2007 (5816):1217-1217.
    [21]Seinfeld J., Pandis S. Atmospheric chemistry and physics:From air pollution to climate change[M]. John Wiley, New York,2006.
    [22]Textor C., Schulz M., Guibert S., Kinne S., Balkanski Y., Bauer S., Berntsen T., Berglen T., Boucher O., Chin M., Dentener F., Diehl T., Feichter J., Fillmore D., Ginoux P., Gong S., Grini A., Hendricks J., Horowitz L., Huang P., Isaksen I. S. A., Iversen T., Kloster S., Koch D., Kirkevag A., Kristjansson J. E., Krol M., Lauer A., Lamarque J. F., Liu X., Montanaro V, Myhre G., Penner J. E., Pitari G., Reddy M. S., Seland O., Stier P., Takemura T., Tie X. The effect of harmonized emissions on aerosol properties in global models-an AeroCom experiment[J]. Atmos. Chem. Phys.,2007 (17):4489-4501.
    [23]Hueglin C., Gehrig R., Baltensperger U., Gysel M., Monn C., Vonmont H. Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland[J]. Atmos. Environ.,2005 (4):637-651.
    [24]Querol X., Perez N., Pey J., Alastuey A., Lopez J. M., Viana M. Partitioning of major and trace components in PM10-PM2.5-PM1 at an urban site in Southern Europe[J]. Atmos. Environ.,2008 (8):1677-1691.
    [25]Turpin B., Saxena P., Andrews E. Measuring and simulating particulate organics in the atmosphere:problems and prospects[J]. Atmos. Environ.,2000 (18):2983-3013.
    [26]Vasconcelos L., Macias E., White W. Aerosol composition as a function of haze and humidity levels in the southwestern U. S.[J]. Atmospheric environment (1994),1994 (22): 3679-3691.
    [27]Saxena P., Hildemann L., McMurry P., Seinfeld J. Organics alter hygroscopic behavior of atmospheric particles [J]. J Geophys Res-Atmos,1995 (D9):18755-18770.
    [28]Turpin B. J., Saxena P., Andrews E. Measuring and simulating particulate organics in the atmosphere:problems and prospects[J]. Atmos. Environ.,2000 (18):2983-3013.
    [29]Brooks S., DeMott P., Kreidenweis S. Water uptake by particles containing humic materials and mixtures of humic materials with ammonium sulfate[J]. Atmos. Environ.,2004 (13): 1859-1868.
    [30]Kanakidou M., Seinfeld J. H., Pandis S. N., Barnes I., Dentener F. J., Facchini M. C., Van Dingenen R., Ervens B., Nenes A., Nielsen C. J., Swietlicki E., Putaud J. P., Balkanski Y., Fuzzi S., Horth J., Moortgat G. K., Winterhalter R., Myhre C. E. L., Tsigaridis K., Vignati E., Stephanou E. G., Wilson J. Organic aerosol and global climate modelling:a review[J]. Atmos. Chem. Phys.,2005:1053-1123.
    [31]Ming Y., Ramaswamy V., Ginoux P. A., Horowitz L. H. Direct radiative forcing of anthropogenic organic aerosol[J]. J Geophys Res-Atmos,2005 (D20). doi: 10.1029/2004jd005573.
    [32]Lee S. H., Murphy D. M., Thomson D. S., Middlebrook A. M. Nitrate and oxidized organic ions in single particle mass spectra during the 1999 Atlanta Supersite Project[J]. J Geophys Res-Atmos,2003 (D7). doi:10.1029/2001jd001455.
    [33]Russell L. M., Maria S. F., Myneni S. C. B. Mapping organic coatings on atmospheric particles[J]. Geophys. Res. Lett.,2002 (16). doi:10.1029/2002g1014874.
    [34]Tervahattu H., Hartonen K., Kerminen V. M., Kupiainen K., Aarnio P., Koskentalo T., Tuck A. F., Vaida V. New evidence of an organic layer on marine aerosols[J]. J Geophys Res-Atmos,2002 (D7-8). doi:10.1029/2000jd000282.
    [35]Heald C. L., Henze D. K., Horowitz L. W., Feddema J., Lamarque J. F., Guenther A., Hess P. G., Vitt F., Seinfeld J. H., Goldstein A. H., Fung I. Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change[J]. J Geophys Res-Atmos,2008 (D5). doi:10.1029/2007jd009092.
    [36]Kanakidou M., Tsigaridis K. Secondary organic aerosol importance in the future atmosphere[J]. Atmos. Environ.,2007 (22):4682-4692.
    [37]Goldstein A. H., Galbally I. E. Known and unexplored organic constituents in the earth's atmosphere[J]. Environ. Sci. Technol.,2007 (5):1514-1521.
    [38]Hallquist M., Wenger J. C., Baltensperger U., Rudich Y, Simpson D., Claeys M., Dommen J., Donahue N. M., George C., Goldstein A. H., Hamilton J. F., Herrmann H., Hoffmann T., Iinuma Y, Jang M., Jenkin M. E., Jimenez J. L., Kiendler-Scharr A., Maenhaut W., McFiggans G., Mentel T. F., Monod A., Prevot A. S. H., Seinfeld J. H., Surratt J. D., Szmigielski R., Wildt J. The formation, properties and impact of secondary organic aerosol: current and emerging issues[J]. Atmos. Chem. Phys.,2009 (14):5155-5236.
    [39]Volkamer R., Jimenez J. L., San Martini F., Dzepina K., Zhang Q., Salcedo D., Molina L. T., Worsnop D. R., Molina M. J. Secondary organic aerosol formation from anthropogenic air pollution:Rapid and higher than expected[J]. Geophys. Res. Lett.,2006 (17):L17811.
    [40]Agency U. S. E. P. Air Quality Criteria for Particulate Matter; EPA 600/P-99/002aF-bF. Washington, DC,2004.
    [41]Chakrabarti B., Sioutas C., Singh M. Development of a near-continuous monitor for measurement of the sub-150 nm PM mass concentration[J]. Aerosol Sci. Technol.,2004: 239-252.
    [42]Meyer M. B., Patashnick H., Ambs J. L., Rupprecht E. Development of a sample equilibration system for the TEOM continuous PM monitor[J]. J. Air Waste Manage. Assoc., 2000(8):1345-1349.
    [43]Patashnick H., Rupprecht G., Ambs J. L., Meyer M. B. Development of a reference standard for particulate matter mass in ambient air[J]. Aerosol Sci. Technol.,2001 (1): 42-45.
    [44]Misra C., Geller M. D., Shah P., Sioutas C., Solomon P. A. Development and Evaluation of a Continuous Coarse (PM10-PM2.5) Particle Monitor[J]. J. Air Waste Manage. Assoc., 2001 (9):1309-1317.
    [45]McMurry P. H., Wang X., Park K., Ehara K. The relationship between mass and mobility for atmospheric particles:A new technique for measuring particle density[J]. Aerosol Sci. Technol.,2002 (2):227-238.
    [46]Geller M., Biswas S., Sioutas C. Determination of particle effective density in urban environments with a differential mobility analyzer and aerosol particle mass analyzer[J]. Aerosol Sci. Technol.,2006 (9):709-723.
    [47]Ristimaki J., Virtanen A., Marjamaki M., Rostedt A., Keskinen J. On-line measurement of size distribution and effective density of submicron aerosol particles[J]. J. Aerosol Sci., 2002(11):1541-1557.
    [48]Khlystov A., Stanier C., Pandis S. An Algorithm for Combining Electrical Mobility and Aerodynamic Size Distributions Data when Measuring Ambient Aerosol Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program[J]. Aerosol Sci. Technol.,2004 (S1):229-238.
    [49]Canagaratna M., Jayne J., Jimenez J., Allan J., Alfarra M., Zhang Q., Onasch T., Drewnick F., Coe H., Middlebrook A. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer [J]. Mass Spectrom. Rev.,2007 (2): 185-222.
    [50]Zhang Q., Canagaratna M. R., Jayne J. T., Worsnop D. R., Jimenez J. L. Time-and size-resolved chemical composition of submicron particles in Pittsburgh:Implications for aerosol sources and processes[J]. J. Geophys. Res,2005:D07S09.
    [51]Solomon P. A., Sioutas C. Continuous and semicontinuous monitoring techniques for particulate matter mass and chemical components:A synthesis of findings from EPA's particulate matter supersites program and related studies[J]. J. Air Waste Manage. Assoc., 2008(2):164-195.
    [52]Chow J. C., Doraiswamy P., WATSON J. Advances in integrated and continuous measurements for particle mass and chemical composition[J]. J. Air Waste Manage. Assoc., 2008 (2):141-163.
    [53]Lee J., Hopke P., Holsen T., Polissar A., Lee D. W., Edgerton E., Ondov J., Allen G. Measurements of fine particle mass concentrations using continuous and integrated monitors in eastern US Cities[J]. Aerosol Sci. Technol.,2005 (3):261-275.
    [54]Jaques P. A., Ambs J. L., Grant W. L., Sioutas C. Field Evaluation of the Differential TEOM Monitor for Continuous PM2.5 Mass Concentrations Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program[J]. Aerosol Sci. Technol.,2004 (S1):49-59.
    [55]McMurry P. H. A review of atmospheric aerosol measurements[J]. Atmos. Environ.,2000 (12-14):1959-1999.
    [56]Armendariz A. J., Leith D. Concentration measurement and counting efficiency for the aerodynamic particle sizer 3320[J]. J. Aerosol Sci.,2002 (1):133-148.
    [57]Rees S. L., Robinson A. L., Khlystov A., Stanier C. O., Pandis S. N. Mass balance closure and the federal reference method for PM2.5 in Pittsburgh, Pennsylvania[J]. Atmos. Environ.,2004 (20):3305-3318.
    [58]Khlystov A., Stanier C. O., Takahama S., Pandis S. N. Water content of ambient aerosol during the Pittsburgh air quality study[J]. J Geophys Res-Atmos,2005 (D7). doi: 10.1029/2004jd004651.
    [59]Drewnick F., Schwab J. J., Hogrefe O., Peters S., Husain L., Diamond D., Weber R., Demerjian K. L. Intercomparison and evaluation of four semi-continuous PM2.5 sulfate instruments[J]. Atmos. Environ.,2003 (24):3335-3350.
    [60]Kidwell C. B., Ondov J. M. Elemental analysis of sub-hourly ambient aerosol collections[J]. Aerosol Sci. Technol.,2004 (3):205-218.
    [61]Hazenkamp-von Arx M. E., Gotschi T., Ackermann-Liebrich U., Bono R., Burney P., Cyrys J., Jarvis D., Lillienberg L., Luczynska C., Maldonado J. A. PM2.5 and NO2 assessment in 21 European study centres of ECRHS Ⅱ:annual means and seasonal differences* 1[J]. Atmos. Environ.,2004 (13):1943-1953.
    [62]Sillanpaa M., Hillamo R., Saarikoski S., Frey A., Pennanen A., Makkonen U., Spolnik Z., Van Grieken R., Branis M., Brunekreef B. Chemical composition and mass closure of particulate matter at six urban sites in Europe[J]. Atmos. Environ.,2006:212-223.
    [63]Putaud J. P., Raes F., Van Dingenen R., Bruggemann E., Facchini M. A European aerosol phenomenology--2:chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe[J]. Atmos. Environ.,2004 (16):2579-2595.
    [64]Lee D. S., Dollard G. J., Derwent R. G., Pepler S. Observations on gaseous and aerosols components of the atmosphere and their relationships[J]. Water Air Soil Pollut.,1999 (1-4): 175-202.
    [65]Deutsch F., Vankerkom J., Janssen L., Janssen S., Bencs L., Van Grieken R., Fierens F., Dumont G., Mensink C. Modelling concentrations of airborne primary and secondary PM10 and PM2.5 with the BelEUROS-model in Belgium[J]. Ecol. Model.,2008 (3-4): 230-239.
    [66]Huebert B. J., Bates T., Russell P. B., Shi G., Kim Y. J., Kawamura K., Carmichael G., Nakajima T. An overview of ACE-Asia:Strategies for quantifying the relationships between Asian aerosols and their climatic impacts[J]. J. Geophys. Res,2003 (D23):8633.
    [67]Kim Oanh N., Upadhyay N., Zhuang Y. H., Hao Z. P., Murthy D., Lestari P., Villarin J., Chengchua K., Co H., Dung N. Particulate air pollution in six Asian cities:Spatial and temporal distributions, and associated sources[J]. Atmos. Environ.,2006 (18):3367-3380.
    [68]Zhang Q., Jimenez J. L., Canagaratna M. R., Allan J. D., Coe H., Ulbrich I., Alfarra M. R., Takami A., Middlebrook A. M., Sun Y. L., Dzepina K., Dunlea E., Docherty K., DeCarlo P. F., Salcedo D., Onasch T., Jayne J. T., Miyoshi T., Shimono A., Hatakeyama S., Takegawa N., Kondo Y., Schneider J., Drewnick F., Borrmann S., Weimer S., Demerjian K., Williams P., Bower K., Bahreini R., Cottrell L., Griffin R. J., Rautiainen J., Sun J. Y, Zhang Y. M., Worsnop D. R. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes[J]. Geophys. Res. Lett., 2007 (13). doi:10.1029/2007g1029979.
    [69]Yang F., Tan J., Zhao Q., Du Z., He K., Ma Y., Duan F., Chen G. Characteristics of PM 2.5 speciation in representative megacities and across China[J]. Atmos. Chem. Phys,2011: 5207-5219.
    [70]Hatch C. D., Grassian V. H.10th Anniversary review: applications of analytical techniques in laboratory studies of the chemical and climatic impacts of mineral dust aerosol in the Earth's atmosphere[J]. J. Environ. Monit.,2008 (8):919-34.
    [71]Underwood G. M., Song C. H., Phadnis M., Carmichael G. R., Grassian V. H. Heterogeneous reactions of NO2 and HN03 on oxides and mineral dust:A combined laboratory and modeling study[J]. J Geophys Res-Atmos,2001 (D16):18055-18066.
    [72]王峰威,李红,柴发合,钱枫,王宗爽,邓利群.大气气溶胶酸度的研究进展[J].环境污染与防治,2010(1):67-72.
    [73]Keene W. C., Sander R., Pszenny A. A. P., Vogt R., Crutzen P. J., Galloway J. N. Aerosol pH in the marine boundary layer A review and model evaluation [J]. J. Aerosol Sci.,1998 (3):339-356.
    [74]Yao X. H., Ling T. Y, Fang M., Chan C. K. Comparison of thermodynamic predictions for in situ pH in PM2.5[J]. Atmos. Environ.,2006 (16):2835-2844.
    [75]Gao S., Keywood M., Ng N. L., Surratt J., Varutbangkul V., Bahreini R., Flagan R. C., Seinfeld J. H. Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and alpha-pinene[J]. J. Phys. Chem. A,2004 (46):10147-10164.
    [76]Jang M., Czoschke N., Lee S., Kamens R. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions[J]. Science,2002 (5594):814.
    [77]Lee H. S., Kang C.-M., Kang B.-W., Kim H.-K. Seasonal variations of acidic air pollutants in Seoul, South Korea[J]. Atmos. Environ.,1999 (19):3143-3152.
    [78]Shimohara T., Oishi O., Utsunomiya A., Mukai H., Hatakeyama S., Eun-Suk J., Uno I., Murano K. Characterization of atmospheric air pollutants at two sites in northern Kyushu, Japan-chemical form, and chemical reaction[J]. Atmos. Environ.,2001 (4):667-681.
    [79]Liu L., Burton R., Wilson W., Koutrakis P. Comparison of aerosol acidity in urban and semi-rural environments [J]. Atmos. Environ.,1996 (8):1237-1245.
    [80]Tanner R. L. Measuring the Strong Acid Content of Atmospheric Aerosol Particles[J]. ADVANCES IN CHEMISTRY SERIES,1993:229-229.
    [81]王玮,王英,苏红梅,潘志,岳欣,刘红杰,汤大钢.北京市沙尘暴天气大气气溶胶酸度和酸化缓冲能力[J].环境科学,2001(5):25-28.
    [82]Koutrakis P., Wolfson J. M., Spengler J. D. An improved method for measuring aerosol strong acidity:results from a nine-month study in St Louis, Missouri and Kingston, Tennessee[J]. Atmos. Environ. (1967),1988 (1):157-162.
    [83]Mozurkewich M. The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity and particle size[J]. Atmospheric Environment. Part A. General Topics,1993 (2):261-270.
    [84]Hazi Y., Heikkinen M., Cohen B. Size distribution of acidic sulfate ions in fine ambient particulate matter and assessment of source region effect[J]. Atmos. Environ.,2003 (38): 5403-5413.
    [85]Brook J. R., Wiebe A. H., Woodhouse S. A., Audette C. V., Dann T. F., Callaghan S, Piechowski M., Dabek-Zlotorzynska E., Dloughy J. F. Temporal and spatial relationships in fine particle strong acidity, sulphate, PM1O, and PM2.5 across multiple Canadian locations[J]. Atmos. Environ.,1997 (24):4223-4236.
    [86]Cadle S. H. Seasonal variations in nitric acid, nitrate, strong aerosol acidity, and ammonia in an urban area[J]. Atmos. Environ. (1967),1985 (1):181-188.
    [87]Tang I. N., Munkelwitz H. R. Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols[J]. Atmospheric Environment. Part A. General Topics,1993 (4):467-473.
    [88]Puxbaum H., Gregori M. Seasonal and annual deposition rates of sulphur, nitrogen and chloride species to an oak forest in north-eastern Austria (Wolkersdorf,240 m ASL)[J]. Atmos. Environ.,1998 (20):3557-3568.
    [89]Beine H. J., Allegrini I., Sparapani R., Ianniello A., Valentini F. Three years of springtime trace gas and particle measurements at Ny-Alesund, Svalbard[J]. Atmos. Environ.,2001 (21):3645-3658.
    [90]Pathak R. K., Yao X., Lau A. K. H., Chan C. K. Acidity and concentrations of ionic species of PM2.5 in Hong Kong[J]. Atmos. Environ.,2003 (8):1113-1124.
    [91]Pathak R. K., Louie P. K. K., Chan C. K. Characteristics of aerosol acidity in Hong Kong[J]. Atmos. Environ.,2004 (19):2965-2974.
    [92]Pathak R. K., Wu W. S., Wang T. Summertime PM2.5 ionic species in four major cities of China:nitrate formation in an ammonia-deficient atmosphere[J]. Atmos. Chem. Phys.,2009 (5):1711-1722.
    [93]Vecchi R., Valli G., Fermo P., D'Alessandro A., Piazzalunga A., Bernardoni V. Organic and inorganic sampling artefacts assessment[J]. Atmos. Environ.,2009 (10):1713-1720.
    [94]Zhang Q., Jimenez J. L., Worsnop D. R., Canagaratna M. A case study of urban particle acidity and its influence on secondary organic aerosol[J]. Environ. Sci. Technol.,2007 (9): 3213-3219.
    [95]Takahama S., Davidson C. I., Pandis S. N. Semicontinuous measurements of organic carbon and acidity during the Pittsburgh air quality study:Implications for acid-catalyzed organic aerosol formation[J]. Environ. Sci. Technol.,2006 (7):2191-2199.
    [96]Tanner R. L., Olszyna K. J., Edgerton E. S., Knipping E., Shaw S. L. Searching for evidence of acid-catalyzed enhancement of secondary organic aerosol formation using ambient aerosol data[J]. Atmos. Environ.,2009 (21):3440-3444.
    [97]Rengarajan R., Sudheer A. K., Sarin M. M. Aerosol acidity and secondary organic aerosol formation during wintertime over urban environment in western India[J]. Atmos. Environ., 2011(11):1940-1945.
    [98]Ren L., Wang W., Wang Q., Yang X., D. T. Comparison and trend study on acidity and acidic buffering capacity of particulate matter in China[J]. Atmos. Environ.,2011.
    [99]王帅杰,朱坦.大气颗粒物源解析技术研究进展[J].环境污染治理技术与设备,2002(8):8-12.
    [100]时冰冰.大学教室可吸入颗粒物(PM10)源解析及化学组分特性[D].制冷及低温工程,中南大学,2008.
    [101]Rudich Y., Donahue N. M., Mentel T. F. Aging of organic aerosol:Bridging the gap between laboratory and field studies[J]. Annu. Rev. Phys. Chem.,2007:321-352.
    [102]任凯锋,李建军,王文丽,张会强.光化学烟雾模拟实验系统[J].环境科学学报,2005(011):1431-1435.
    [103]杨俊林,高雪飞,田中群.物理化学学科前沿与展望[M].北京:科学出版社,2011:452-468.
    [104]武山,吕子峰,郝吉明,赵喆,李俊华.大气模拟烟雾箱系统的研究进展[J].环境科学学报,2007(4):529-536.
    [105]Kamens R. M., Zhang H. F., Chen E. H., Zhou Y, Parikh H. M., Wilson R. L., Galloway K. E., Rosen E. P. Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture:Water and particle seed effects[J]. Atmos. Environ.,2011 (13): 2324-2334.
    [106]Zhou Y., Zhang H., Parikh H. M., Chen E. H., Rattanavaraha W., Rosen E. P., Wang W., Kamens R. M. Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture:Water and particle seed effects (Ⅱ)[J]. Atmos. Environ.,2011 (23):3882-3890.
    [107]De Bruijne K., Ebersviller S., Sexton K., Lake S., Leith D., Goodman R., Jetters J., Walters G., Doyle-Eisele M., Woodside R. Design and testing of electrostatic aerosol in vitro exposure system (EAVES):An alternative exposure system for particles[J]. Inhalation Toxicol.,2009 (2):91-101.
    [108]Kleindienst T. E., Smith D. F., Li W., Edney E. O., Driscoll D. J., Speer R. E., Weathers W. S. Secondary organic aerosol formation from the oxidation of aromatic hydrocarbons in the presence of dry submicron ammonium sulfate aerosol[J]. Atmos. Environ.,1999 (22): 3669-3681.
    [109]Edney E. O., Driscoll D. J., Speer R. E., Weathers W. S., Kleindienst T. E., Li W., Smith D. F. Impact of aerosol liquid water on secondary organic aerosol yields of irradiated toluene/propylene/NOx/(NH4)2S04/air mixtures[J]. Atmos. Environ.,2000 (23): 3907-3919.
    [110]Cocker Ⅲ D. R., Mader B. T., Kalberer M., Flagan R. C., Seinfeld J. H. The effect of water on gas-particle partitioning of secondary organic aerosol:Ⅱ. m-xylene and 1,3,5-trimethylbenzene photooxidation systems[J]. Atmos. Environ.,2001 (35):6073-6085.
    [111]Kroll J. H., Chan A. W. H., Ng N. L., Flagan R. C., Seinfeld J. H. Reactions of semivolatile organics and their effects on secondary organic aerosol formation[J]. Environ. Sci. Technol., 2007 (10):3545-3550.
    [112]Lu Z. F., Hao J. M., Takekawa H., Hu L. H., Li J. H. Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NOx photooxidation system[J]. Atmospheric Environment,2009 (4):897-904.
    [113]Liggio J., Li S. M., McLaren R. Reactive uptake of glyoxal by particulate matter[J]. J. Geophys. Res.,2005:D10304.
    [114]Cao G., Jang M. An SOA Model for Toluene Oxidation in the Presence of Inorganic Aerosols[J]. Environ. Sci. Technol.,2010 (2):727-733.
    [115]Seinfeld J. H., Erdakos G. B., Asher W. E., Pankow J. F. Modeling the formation of secondary organic aerosol (SOA).2. The predicted effects of relative humidity on aerosol formation in the alpha-pinene-, beta-pinene-, sabinene-, Delta(3)-Carene-, and cyclohexene-ozone systems[J]. Environ. Sci. Technol.,2001 (9):1806-1817.
    [116]Volkamer R., Martini F. S., Molina L. T., Salcedo D., Jimenez J. L., Molina M. J. A missing sink for gas-phase glyoxal in Mexico City:Formation of secondary organic aerosol[J]. Geophys. Res. Lett.,2007:L19807.
    [117]Corrigan A. L., Hanley S. W., Haan D. O. Uptake of glyoxal by organic and inorganic aerosol[J]. Environ. Sci. Technol.,2008 (12):4428-4433.
    [118]Ervens B., Volkamer R. Glyoxal processing by aerosol multiphase chemistry:towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles[J]. Atmos. Chem. Phys.,2010 (17):8219-8244.
    [119]Volkamer R., Ziemann P. J., Molina M. J. Secondary Organic Aerosol Formation from Acetylene (C2H2):seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase[J]. Atmos. Chem. Phys.,2009 (6):1907-1928.
    [120]Donahue N. M., Robinson A. L., Pandis S. N. Atmospheric organic particulate matter:From smoke to secondary organic aerosol[J]. Atmos. Environ.,2009 (1):94-106.
    [121]Von Hessberg C., Von Hessberg P., Poschl U., Bilde M., Nielsen O. J., Moortgat G. K. Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of beta-pinene[J]. Atmos. Chem. Phys.,2009 (11):3583-3599.
    [122]Odum J. R., Hoffmann T., Bowman F., Collins D., Flagan R. C., Seinfeld J. H. Gas/Particle Partitioning and Secondary Organic Aerosol Yields[J]. Environ. Sci. Technol.,1996 (8): 2580-2585.
    [123]Takekawa H., Minoura H., Yamazaki S. Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons[J]. Atmos. Environ.,2003 (24): 3413-3424.
    [124]Zhang Q., Streets D. G., Carmichael G. R., He K. B., Huo H., Kannari A., Klimont Z., Park I. S., Reddy S., Fu J. S., Chen D., Duan L., Lei Y., Wang I. T., Yao Z. L. Asian emissions in 2006 for the NASA INTEX-B mission[J]. Atmos. Chem. Phys.,2009 (14):5131-5153.
    [125]Clarisse L., Clerbaux C., Dentener F., Hurtmans D., Coheur P. F. Global ammonia distribution derived from infrared satellite observations[J]. Nat Geosci,2009 (7):479-483.
    [126]Li W., Shao L. Mixing and water-soluble characteristics of particulate organic compounds in individual urban aerosol particles[J]. J. Geophys. Res.,2010 (D2):D02301.
    [127]Fujita E., Lu Z., Sheetz L., Harshfield G., Zielinska B. Determination of Mobile Source Emission Source Fraction Using Ambient Field Measurements[J]. Final Report prepared for the Coordination Research Council (CRC Project No. E-5), Atlanta, GA by the Desert Research Institute, Reno, NV. July,1997.
    [128]Hu D., Tolocka M., Li Q., Kamens R. M. A kinetic mechanism for predicting secondary organic aerosol formation from toluene oxidation in the presence of NOx and natural sunlight[J]. Atmos. Environ.,2007 (31):6478-6496.
    [129]Leungsakul S., Jaoui M., Kamens R. M. Kinetic Mechanism for Predicting Secondary Organic Aerosol Formation from the Reaction of d-Limonene with Ozone [J]. Environmental Science &Technology,2005 (24):9583-9594.
    [130]Li Q., Hu D., Leungsakul S., Kamens R. M. Large outdoor chamber experiments and computer simulations:(Ⅰ) Secondary organic aerosol formation from the oxidation of a mixture of d-limonene and α-pinene[J]. Atmos. Environ.,2007 (40):9341-9352.
    [131]Harris J., Dlugokencky E., Oltmans S., Tans P., Conway T., Novelli P., Thoning K., Kahl J. An interpretation of trace gas correlations during Barrow, Alaska, winter dark periods, 1986-1997[J]. J. Geophys. Res.,2000:17.
    [132]Wotawa G., Kroger H., Stohl A. Transport of ozone towards the Alps-results from trajectory analyses and photochemical model studies[J]. Atmos. Environ.,2000 (9):1367-1377.
    [133]Lam K., Wang T., Chan L., Wang T., Harris J. Flow patterns influencing the seasonal behavior of surface ozone and carbon monoxide at a coastal site near Hong Kong[J]. Atmos. Environ.,2001 (18):3121-3135.
    [134]Taylor A. D. Conformal map transformations for meteorological modelers[J]. Computers & Geosciences,1997 (1):63-75.
    [135]Draxler R. R. Trajectory optimization for balloon flight planning[J]. Weather and Forecasting,1996(1):114-114.
    [136]刘凤艳.因子分析方法在高压电缆质量控制中的应用[D].黑龙江大学,2008:5-6.
    [137]Clegg S. L., Brimblecombe P., Wexler A. S. Thermodynamic Model of the System H+-NH4+-Na+-SO42--NO3--Cl--H2O at 298.15 K[J]. The Journal of Physical Chemistry A,1998 (12):2155-2171.
    [138]Nenes A., Pandis S. N., Pilinis C. ISORROPIA:A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols[J]. Aquatic geochemistry,1998 (1): 123-152.
    [139]Meng Z., Seinfeld J. H., Saxena P., Kim Y. P. Atmospheric gas-aerosol equilibrium:Ⅳ. Thermodynamics of carbonates [J]. Aerosol Sci. Technol.,1995 (2):131-154.
    [140]Ansari A. S., Pandis S. N. Prediction of multicomponent inorganic atmospheric aerosol behavior[J]. Atmos. Environ.,1999 (5):745-757.
    [141]Pankow J. F. An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol[J]. Atmos. Environ.,1994 (2):189-193.
    [142]Elliott S., Blake D. R., Duce R. A., Lai C. A., McCreary I., McNair L. A., Rowland F. S., Russell A. G., Streit G. E., Turco R. P. Motorization of China implies changes in Pacific air chemistry and primary production[J]. Geophys. Res. Lett.,1997 (21):2671-2674.
    [143]Huang X. F., Hu M., He L, Y., Tang X, Y. Chemical characterization of water-soluble organic acids in PM2.5 in Beijing, China[J]. Atmos. Environ.,2005 (16):2819-2827.
    [144]Wang Y., Zhuang G., Zhang X., Huang K., Xu C., Tang A., Chen J., An Z. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai[J]. Atmos. Environ.,2006 (16):2935-2952.
    [145]Wang Y, Zhuang G. S., Tang A. H., Yuan H., Sun Y. L., Chen S. A., Zheng A. H. The ion chemistry and the source of PM2.5 aerosol in Beijing[J]. Atmos. Environ.,2005 (21): 3771-3784.
    [146]Hagler G. S., Bergin M. H., Salmon L. G., Yu J. Z., Wan E. C. H., Zheng M., Zeng L. M., Kiang C. S., Zhang Y. H., Lau A. K. H., Schauer J. J. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China[J]. Atmos. Environ.,2006 (20):3802-3815.
    [147]Fang G. C., Chang C. N., Wu Y. S., Wang N. P., Wang V, Fu P. P. C., Yang D. G., Chen S. C. Comparison of particulate mass, chemical species for urban, suburban and rural areas in central Taiwan, Taichung[J]. Chemosphere,2000 (9):1349-1359.
    [148]Yu J. Z., Huang X. F., Xu J. H., Hu M. When aerosol sulfate goes up, so does oxalate: Implication for the formation mechanisms of oxalate[J]. Environ. Sci. Technol.,2005 (1): 128-133.
    [149]Hu M., He L. Y., Zhang Y. H., Wang M., Kim Y. P., Moon K. C. Seasonal variation of ionic species in fine particles at Qingdao, China[J]. Atmos. Environ.,2002 (38):5853-5859.
    [150]Shen Z. X., Cao J. J., Arimoto R., Han Z. W., Zhang R. J., Han Y. M., Liu S. X., Okuda T., Nakao S., Tanaka S. Ionic composition of TSP and PM(2.5) during dust storms and air pollution episodes at Xi'an, China[J]. Atmos. Environ.,2009 (18):2911-2918.
    [151]Xu J., Bergin M. H., Yu X., Liu G., Zhao J., Carrico C. M., Baumann K. Measurement of aerosol chemical, physical and radiative properties in the Yangtze delta region of China[J]. Atmos. Environ.,2002 (2):161-173.
    [152]Louie P. K. K., Watson J. G., Chow J. C., Chen A., Sin D. W. M., Lau A. K. H. Seasonal characteristics and regional transport of PM2.5 in Hong Kong[J]. Atmos. Environ.,2005 (9): 1695-1710.
    [153]Kim H. S., Jong-Bae H., Philip K. H., Holsen T. M., Yi S. M. Characteristics of the major chemical constituents Of PM2.5 and smog events in Seoul, Korea in 2003 and 2004[J]. Atmos. Environ.,2007 (32):6762-6770.
    [154]Qin Y. J., Kim E., Hopke P. K. The concentrations and sources of PM2.5 in metropolitan New York city[J]. Atmos. Environ.,2006:S312-S332.
    [155]Querol X., Alastuey A., Moreno T., Viana M. M., Castillo S., Pey J., Rodriguez S., Artinano B., Salvador P., Sanchez M., Dos Santos S. G., Garraleta M. D. H., Fernandez-Patier R., Moreno-Grau S., Negral L., Minguillon M. C., Monfort E., Sanz M. J., Palomo-Marin R., Pinilla-Gil E., Cuevas E., de la Rosa J., de la Campa A. S. Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999-2005[J]. Atmos. Environ.,2008 (17):3964-3979.
    [156]Lonati G., Giugliano M., Butelli P., Romele L., Tardivo R. Major chemical components of PM2.5 in Milan (Italy)[J]. Atmos. Environ.,2005 (10):1925-1934.
    [157]Jacob D., Wofsy S. Photochemistry of biogenic emissions over the Amazon forest[J]. J. Geophys. Res.,1988 (D2):1477-1486.
    [158]Mugica V., Vega E., Chow J., Reyes E., Sanchez G., Arriaga J., Egami R., Watson J. Speciated non-methane organic compounds emissions from food cooking in Mexico[J]. Atmos. Environ.,2001 (10):1729-1734.
    [159]王玮,王文兴.中国气溶胶酸度缓冲能力研究及与日本的比较.1992年大气污染控制政策与策略国际座谈会.重庆,1992:347-356.
    [160]Zhang W. J., Wang W., Chen J. H., Liu H. J., Dai T. Y., Yang X. Y., Zhang F., Lin J., Wang Z. F. Pollution situation and possible markers of different sources in the Ordos Region, Inner Mongolia, China[J]. Sci. Total Environ.,2010 (3):624-635.
    [161]王玮,汤大钢,刘红杰,王鸣宇,杜渐.中国华北地区冬季大气污染物航空测量(II)[J].环境科学研究,2000(1):10-13.
    [162]吴学英,郑丽艳.凤凰山大气气溶胶酸度与酸化缓冲能力的分析[J].辽宁城乡环境科技,2000(6):41-44.
    [163]Wang Y., Zhuang G. S., Sun Y., An Z. S. Water-soluble part of the aerosol in the dust storm season-evidence of the mixing between mineral and pollution aerosols[J]. Atmos. Environ., 2005 (37):7020-7029.
    [164]Teinila K., Hillamo R., Kerminen V. M., Beine H. J. Chemistry and modal parameters of major ionic aerosol components during the NICE campaigns at two altitudes[J]. Atmos. Environ.,2004 (10):1481-1490.
    [165]Lee T., Yu X.-Y., Kreidenweis S. M., Malm W. C., Collett J. L. Semi-continuous measurement of PM2.5 ionic composition at several rural locations in the United States[J]. Atmos. Environ.,2008 (27):6655-6669.
    [166]Takeuchi M., Okochi H., Igawa M. Characteristics of water-soluble components of atmospheric aerosols in Yokohama and Mt. Oyama, Japan from 1990 to 2001[J]. Atmos. Environ.,2004 (28):4701-4708.
    [167]Osada K., Kido M., Nishita C., Matsunaga K., Iwasaka Y., Nagatani M., Nakada H. Changes in ionic constituents of free tropospheric aerosol particles obtained at Mt. Norikura (2770 m a.s.l.), central Japan, during the Shurin period in 2000[J]. Atmos. Environ.,2002 (35):5469-5477.
    [168]Kido M., Osada K., Matsunaga K., Iwasaka Y. Diurnal variation of ionic aerosol species and water-soluble gas concentrations at a high-elevation site in the Japanese Alps[J]. J. Geophys. Res.,2001 (D15):17335-17345.
    [169]Tsuboi K., Hosomi T., Dokiya Y., Tsutsumi Y, Yanagisawa K., Tanaka S. Chemical species in aerosol, gases and precipitation at summit of Mt. Fuji[J]. J. Aerosol Res. (in Japanese). 1996:226-234.
    [170]Yang D., Yu X., Fang X., Wu F., Li X. A study of aerosol at regional background stations and baseline station[J]. Quarterly Journal of Applied Meteorology (in Chinese),1996 (4): 396-405.
    [171]Ho K. F., Lee S. C., Cao J. J., Chow J. C., Watson J. G., Chan C. K. Seasonal variations and mass closure analysis of particulate matter in Hong Kong[J]. Sci. Total Environ.,2006 (1-3): 276-287.
    [172]Wang T., Poon C. N., Kwok Y H., Li Y. S. Characterizing the temporal variability and emission patterns of pollution plumes in the Pearl River Delta of China[J]. Atmos. Environ., 2003 (25):3539-3550.
    [173]Murray G. L. D., Kimball K., Bruce Hill L., Allen G. A., Wolfson J. M., Pszenny A., Seidel T., Doddridge B. G., Boris A. A comparison of fine particle and aerosol strong acidity at the interface zone (1540 m) and within (452 m) the planetary boundary layer of the Great Gulf and Presidential-Dry River Class Ⅰ Wildernesses on the Presidential Range, New Hampshire USA[J]. Atmos. Environ.,2009 (22-23):3605-3613.
    [174]Ziemba L. D., Fischer E., Griffin R. J., Talbot R. W. Aerosol acidity in rural New England: Temporal trends and source region analysis[J]. J. Geophys. Res.,2007. doi: 10.1029/2006jd007605.
    [175]Shimohara T., Oishi O., Utsunomiya A., Mukai H., Hatakeyama S., Eun-Suk J., Uno I., Murano K. Characterization of atmospheric air pollutants at two sites in northern Kyushu, Japan-chemical form, and chemical reaction[J]. Atmos. Environ.,2001 (4):667-681.
    [176]Galloway J. N., Dentener F. J., Capone D. G., Boyer E. W., Howarth R. W., Seitzinger S. P., Asner G. P., Cleveland C., Green P., Holland E. Nitrogen cycles:past, present, and future[J]. Biogeochemistry,2004 (2):153-226.
    [177]Meng Z., Lin W., Jiang X., Yan P., Wang Y., Zhang Y, Jia X., Yu X. Characteristics of atmospheric ammonia over Beijing, China[J]. Atmos. Chem. Phys,2011:6139-6151.
    [178]Wang Z., Wang T., Gao R., Xue L. K., Guo J., Zhou Y., Nie W., Wang X. F., Xu P. J., Gao J. A., Zhou X. H., Wang W. X., Zhang Q. Z. Source and variation of carbonaceous aerosols at Mount Tai, North China:Results from a semi-continuous instrument[J]. Atmos. Environ., 2011(9):1655-1667.
    [179]Ren Y, Ding A. J., Wang T., Shen X. H., Guo J., Zhang J. M., Wang Y, Xu P. J., Wang X. F., Gao J., Collett J. L. Measurement of gas-phase total peroxides at the summit of Mount Tai in China[J]. Atmos. Environ.,2009 (9):1702-1711.
    [180]Mao H., Talbot R. O3 and CO in New England:Temporal variations and relationships [J]. J. Geophys. Res,2004:1304.
    [181]Kleinman L. I., Springston S. R., Daum P. H., Lee Y N., Nunnermacker L. J., Senum G. I., Wang J., Weinstein-Lloyd J., Alexander M. L., Hubbe J., Ortega J., Canagaratna M. R., Jayne J. The time evolution of aerosol composition over the Mexico City plateau[J]. Atmos. Chem. Phys.,2008 (6):1559-1575.
    [182]Spencer M. T., Holecek J. C., Corrigan C. E., Ramanathan V., Prather K. A. Size-resolved chemical composition of aerosol particles during a monsoonal transition period over the Indian Ocean[J]. J. Geophys. Res.,2008 (D16). doi:10.1029/2007JD008657.
    [183]Jordan C. E., Dibb J. E., Anderson B. E., Fuelberg H. E. Uptake of nitrate and sulfate on dust aerosols during TRACE-P[J]. J Geophys Res-Atmos,2003 (D21):1-10.
    [184]Wang T., Cheung T. F., Li Y S., Yu X. M., Blake D. R. Emission characteristics of CO, NOx, SO2 and indications of biomass burning observed at a rural site in eastern China[J]. J. Geophys. Res.,2002 (D12). doi:10.1029/2001jd000724.
    [185]Ding A. J., Wang T., Thouret V., Cammas J. P., Nedelec P. Tropospheric ozone climatology over Beijing:analysis of aircraft data from the MOZAIC program[J]. Atmos. Chem. Phys., 2008(1):1-13.
    [186]Suthawaree J., Kato S., Okuzawa K., Kanaya Y., Pochanart P., Akimoto H., Wang Z., Kajii Y. Measurements of volatile organic compounds in the middle of Central East China during Mount Tai Experiment 2006 (MTX2006):observation of regional background and impact of biomass burning[J]. Atmos. Chem. Phys.,2010 (3):1269-1285.
    [187]Narukawa M., Kawamura K., Takeuchi N., Nakajima T. Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires[J]. Geophys. Res. Lett.,1999 (20):3101-3104.
    [188]Yamasoe M. A., Artaxo P., Miguel A. H., Allen A. G. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin:water-soluble species and trace elements[J]. Atmos. Environ.,2000 (10):1641-1653.
    [189]Li J., Posfai M., Hobbs P. V., Buseck P. R. Individual aerosol particles from biomass burning in southern Africa:2, Compositions and aging of inorganic particles[J]. J. Geophys. Res.,2003 (D13). doi:10.1029/2002jd002310.
    [190]Hallberg A., Ogren J., Noone K., Heintzenberg J., Berner A., Solly I., Kruisz C., Reischl G., Fuzzi S., Facchini M. Phase partitioning for different aerosol species in fog[J]. Tellus Ser. B, 1992 (5):545-555.
    [191]Hallberg A., Ogren J., Noone K., Okada K., Heintzenberg J., Svenningsson I. The influence of aerosol particle composition on cloud droplet formation[J]. J. Atmos. Chem.,1994 (1): 153-171.
    [192]Gieray R., Wieser P., Engelhardt T., Swietlicki E., Hansson H., Mentes B., Orsini D., Martinsson B., Svenningsson B. Phase partitioning of aerosol constituents in cloud based on single-particle and bulk analysis[J]. Atmos. Environ.,1997 (16):2491-2502.
    [193]Wang Z., Wang T., Guo J., Gao R., Xue L., Zhang J., Zhou Y., Zhou X., Zhang Q., Wang W. Formation of secondary organic carbon and cloud impact on carbonaceous aerosols at Mount Tai, North China[J]. Atmos. Environ.,2011. doi:10.1016/j.atmosenv.2011.08.019.
    [194]Blando J. D., Turpin B. J. Secondary organic aerosol formation in cloud and fog droplets:a literature evaluation of plausibility [J]. Atmos. Environ.,2000 (10):1623-1632.
    [195]Cooper O., Moody J., Parrish D., Trainer M., Holloway J., Hiibler G., Fehsenfeld F., Stohl A. Trace gas composition of midlatitude cyclones over the western North Atlantic Ocean:A seasonal comparison of O3 and CO[J]. J. Geophys. Res.,2002 (D7):4057.
    [196]Wang Y., Wai K. M., Gao J., Liu X., Wang T., Wang W. The impacts of anthropogenic emissions on the precipitation chemistry at an elevated site in North-eastern China[J]. Atmos. Environ.,2008 (13):2959-2970.
    [197]王振亚,郝立庆,张为俊.二次有机气溶胶形成的化学过程[J].化学进展,2005(4):732-739.
    [198]De Gouw J., Middlebrook A., Warneke C., Goldan P., Kuster W., Roberts J., Fehsenfeld F., Worsnop D., Canagaratna M., Pszenny A. Budget of organic carbon in a polluted atmosphere:Results from the New England Air Quality Study in 2002[J]. J. Geophys. Res., 2005:D16305.
    [199]Heald C., Jacob D., Park R., Russell L., Huebert B., Seinfeld J., Liao H., Weber R. A large organic aerosol source in the free troposphere missing from current models[J]. Geophys. Res. Lett.,2005 (18):L18809.
    [200]Volkamer R., Jimenez J., San Martini F., Dzepina K., Zhang Q., Salcedo D., Molina L., Worsnop D., Molina M. Secondary organic aerosol formation from anthropogenic air pollution:Rapid and higher than expected[J]. Geophys. Res. Lett.,2006:L17811.
    [201]Appel K. W., Bhave P. V, Gilliland A. B., Sarwar G., Roselle S. J. Evaluation of the community multiscale air quality (CMAQ) model version 4.5:Sensitivities impacting model performance; Part Ⅱ-particulate matter[J]. Atmos. Environ.,2008 (24):6057-6066.
    [202]Robinson A. L., Donahue N. M., Shrivastava M. K., Weitkamp E. A., Sage A. M., Grieshop A. P., Lane T. E., Pierce J. R., Pandis S. N. Rethinking organic aerosols:Semivolatile emissions and photochemical aging[J]. Science,2007 (5816):1259-1262.
    [203]武山,郝吉明,吕子峰,赵品,李俊华.硫酸按气溶胶对甲苯-NOx-空气体系光化学反应的影响[J].环境科学,2007(6):1183-1187.
    [204]Kulmala M. How particles nucleate and grow[J]. Science,2003 (5647):1000-1001.
    [205]Griffin R. J., Cocker D. R., Flagan R. C., Seinfeld J. H. Organic aerosol formation from the oxidation of biogenic hydrocarbons[J]. J Geophys Res-Atmos,1999 (D3):3555-3567.
    [206]Gery M. W., Whitten G. Z., Killus J. P., Dodge M. C. A photochemical kinetics mechanism for urban and regional scale computer modeling[J]. J. Geophys. Res.,1989 (D10): 12925-12956.
    [207]Yarwood G., Rao S., Yocke M., Whitten G. Z. Updates to the Carbon Bond Mechanism: (CB05) Final Report to the US EPA, Deborah Leucken project officer.2005.
    [208]Calvert J. G., Atkinson R., Becker K. H., Kamens R. M., Seinfeld J. H., Wallington T. J., Yarwood G. The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons[M]. Oxford University Press, Inc., New York:2002.
    [209]Odum J. R., Jungkamp T. P. W., Griffin R. J., Forstner H. J. L., Flagan R. C., Seinfeld J. H. Aromatics, Reformulated Gasoline, and Atmospheric Organic Aerosol Formation[J]. Environ. Sci. Technol.,1997 (7):1890-1897.
    [210]Volkamer R., Platt U., Wirtz K. Primary and secondary glyoxal formation from aromatics: Experimental evidence for the bicycloalkyl-radical pathway from benzene, toluene, and p-xylene[J]. J. Phys. Chem. A,2001 (33):7865-7874.
    [211]Atkinson R., Arey J. Atmospheric degradation of volatile organic compounds[J]. Chem. Rev.,2003 (12):4605-4638.
    [212]Bloss C., Wagner V., Jenkin M. E., Volkamer R., Bloss W. J., Lee J. D., Heard D. E., Wirtz K., Martin-Reviejo M., Rea G., Wenger J. C., Pilling M. J. Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons [J]. Atmos. Chem. Phys.,2005:641-664.
    [213]Suh I., Zhang R., Molina L., MOLINA M. Oxidation mechanism of aromatic peroxy and bicyclic radicals from OH-toluene reactions[J]. J. Am. Chem. Soc.,2003 (41): 12655-12665.
    [214]Vartiainen M., McDow S. R., Kamens R. M. Water uptake by aerosol particles from automobile exhaust and wood smoke[J]. Chemosphere,1994 (Journal Article):1661-1669.
    [215]Vartiainen M., McDow S. R., Kamens R. M. Water uptake by sunlight and ozone exposed diesel exhaust particles [J]. Chemosphere,1996 (7):1319-1325.
    [216]Chan C. K., Flagan R. C., Seinfeld J. H. Water activities of NH4NO3/(NH4)2SO4 solutions[J]. Atmospheric Environment.Part A.General Topics,1992 (9):1661-1673.
    [217]Volkamer R., Ziemann P. J., Molina M. J. Secondary Organic Aerosol Formation from Acetylene (C2H2):seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase[J]. Atmos. Chem. Phys.,2009 (6):1907-1928.
    [218]Loeffler K. W., Koehler C. A., Paul N. M., De Haan D. O. Oligomer formation in evaporating aqueous glyoxal and methyl glyoxal solutions[J]. Environ. Sci. Technol.,2006 (20):6318-6323.
    [219]Corrigan A. L., Hanley S. W., De Haan D. O. Uptake of Glyoxal by Organic and Inorganic Aerosol[J]. Environ. Sci. Technol.,2008 (12):4428-4433.
    [220]Galloway M. M., Chhabra P. S., Chan A. W. H., Surratt J. D., Flagan R. C., Seinfeld J. H., Keutsch F. N. Glyoxal uptake on ammonium sulphate seed aerosol:reaction products and reversibility of uptake under dark and irradiated conditions[J]. Atmos. Chem. Phys.,2009 (10):3331-3345.
    [221]Kroll J. H., Ng N. L., Murphy S. M., Varutbangkul V., Flagan R. C., Seinfeld J. H. Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds[J]. J Geophys Res-Atmos,2005 (D23). doi:10.1029/2005jd006004.
    [222]Ng N. L., Kroll J. H., Chan A. W. H., Chhabra P. S., Flagan R. C., Seinfeld J. H. Secondary organic aerosol formation from m-xylene, toluene, and benzene[J]. Atmos. Chem. Phys., 2007:3909-3922.
    [223]Song C., Na K., Warren B., Malloy Q., Cocker D. R. Secondary organic aerosol formation from the photooxidation of p- and o-xylene[J]. Environ. Sci. Technol.,2007 (21): 7403-7408.
    [224]Izumi K., Fukuyama T. Photochemical aerosol formation from aromatic hydrocarbons in the presence of NOx[J]. Atmospheric Environment. Part A. General Topics,1990 (6): 1433-1441.
    [225]Sheehan P. E., Bowman F. M. Estimated effects of temperature on secondary organic aerosol concentrations[J]. Environ. Sci. Technol.,2001 (11):2129-2135.
    [226]黄明强,赵文武,郝立庆,顾学军,王振亚,方黎,张为俊.气溶胶飞行时间质谱仪分析间-二甲苯光氧化颗粒相产物[J].过程工程学报,2006:133-137.
    [227]Huang M. Q., Zhang W. J., Hao L. Q., Wang Z. Y., Zhao W. W., Gu X. J., Fang L. Low-molecular weight and oligomeric components in secondary organic aerosol from the photooxidation of p-xylene[J]. Journal of the Chinese Chemical Society,2008 (2):456-463.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700