用户名: 密码: 验证码:
室内LED可见光MIMO通信研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可见光LED具有电光转换效率高、节能、可靠、使用寿命长、高速调制特性好等特点,是公认的下一代绿色照明产品。室内可见光LED照明通信就是将LED照明技术和光通信技术相结合产生一种新技术。该技术是目前光无线通信的热点之一。本论文围绕室内可见光通信存在的相关问题开展了初步的研究工作。其中,在点对点通信、LED特性、通信的调制编码、MIMO信道模型、信道特性以及MIMO信道均衡方面做了深入细致的工作。
     首先,论文介绍了室内可见光LED点对点通信系统的组成。分析了LED光源特性,将LED划分为三类,给出了多个第三类LED室内最佳照明设计方案。根据LED特性提出了测量其调制带宽实验,用实验证明了大功率LED的带宽有限。分析了LED调制编码,并将单脉冲位置调制与多脉冲位置调制的可靠性和有效性进行了对比。介绍了室内点对点可见光通信系统组成,研究了接收器PIN的选择,前置放大电路设计。进行了对点对点通信系统的进行了设计和实验,研制出了两套不同传输速率的通信演示系统。一套采用单片机构成的低速系统;另一套装置采用FPGA/CPLD的高速系统。该系统改进前面系统的调制速率,提高了传输速率。两套通信系统都给出了相应的实验结果。最后,测量了LED通信距离与驱动电流关系、点对点信道衰落,并得出了相应的最小二乘拟合关系式。
     其次,分析了MIMO通信系统LED发射装置的布设方式,得出MIMO系统最佳的照明布局;建立了MIMO系统直射信道的模型;并在直射信道模型的基础上,将其修正,且将经系统的多次反射部分考虑进来,信道模型进一步完善。
     再次,首先对室内可见光LED MIMO信道特性进行了研究,特性包括信道脉冲响应、信道频率响应和信道的直流增益。并按照MIMO的接收器分布方式将它划分为:分散式布设和集中布设两种类型。提出了简化的光线追迹法,该方法沿用传统的光线追迹法,按照接收器接收的信号经过的反射次数来计算系统脉冲响应,根据脉冲响应分别求出频率响应和直流增益。给出了系统的仿真参数。并用简化的光线追迹法对分散式和集中式接收进行了仿真。论证了简化的光线追迹法优于传统的光线追迹法和统计模型法。最后对MIMO信道的容量,接收机的信噪比及误码率进行了研究。
     最后,为了减少码间串扰对MIMO系统的影响,提出了用自适应均衡技术来提高MIMO通信系统的可靠性。研究最常用的LMS和RLS两种算法性能,即影响算法收敛速度的相关因素,研究了经自适应均衡后系统的信噪比和误码率的分布规律。
The high power LED has the characteristics of higher electro-optical conversion efficiency, energy saving, more reliable, longer life, higher speed modulation, which is recognized as the next generation of green lighting products. The high power LED for indoor lighting technology combining with the optical communication technology produces a completely new technology which is referred as visible light communication (VLC). In recent years, the wireless communications technology using high power LED is one of the hot spots in optical wireless communication. This thesis focused on the existing indoor visible light communication issues to make preliminary research, and we finished some work that included two set of the point to point optical wireless communication protypes, the LED characteristics, the communications modulation and coding, the MIMO channel model, the MIMO channel characteristics, and the MIMO channel equalization.
     First, the thesis introduced the indoor high power LED point to point communication system components, the communication system was designed and experiment setups were also built. We analyzed the characteristics of luminous intensity of the LED, so the LEDs are divided into three categories according to their characteristics. We presented the optimum LED interior lighting design using a number of the third category LED. We also proposed an experiment to measure the modulation bandwidth, the experimental results showed that the bandwidth of the high-power LED is limited, which the high power LED only has 4.7-4.8MHz modulation bandwidth. We analyzed the LED modulation and coding, the pulse position modulation (PPM) and the multiple pulse position modulation (MPPM) were compared in their reliability and validity. We described the point to point visible light communication system that consists of the receiver PIN, pre-amplifier design. We developed two different sets of data rate communications demonstration system, one set of low-speed system using MCU and another set of devices using FPGA/CPLD. The latter improved the modulation rate and the transmission rate. The corresponding experimental results had been obtained by the experiments. We measured the relationship between drive current and distance, the communication channel fading using the least square fitting.
     Second, we analyzed the LED layout mode of the MIMO system, and we obtained the optimum lighting layout of the MIMO system for interior illumination. Not considering multiple reflections, the direct channel MIMO system model was established according to light transmission. Since this model which was only partially correct, so we did an amendment to take the diffuse also into account. The channel model has been further improved.
     Third, the high power LED MIMO indoor channel characteristics have been studied; these features included the channel impulse response, the channel frequency response and the channel dc gain. The impulse response and the frequency response of the MIMO receiver vary in accordance with their distribution. Therefore, the distribution of the receiver is divided into two categories:the decentralized layout and the centralized layout. We also proposed a simplified ray tracing method based on traditional ray tracing method, and gave out related parameters for simulation. Two types of distributions decentralized and centralized receiver were simulated using the simplified ray tracing method. We demonstrate a simplified ray tracing method is better than the traditional ray tracing methods and the statistical models. Finally, the capacity of MIMO channel, the receiver signal to noise ratio and bit error rate were also analyzed according to the communication theory.
     Finally, in order to reduce the ISI effect on the MIMO system, we proposed to use the adaptive equalization technology to improve the reliability of MIMO systems. We studied the most commonly of the LMS algorithm and the RLS algorithm and their performance, namely, the speed of convergence factors. The adaptive equalization system can enhance the signal to noise ratio and the bit error rate greatly.
引文
[1]谭家杰,邹常青.室内白光LED照明通信的现状与展望.衡阳师范学院学报,2011,32(03):39-44
    [2]Pang G, Ka-Lim Ho, Kwan T., et al. Visible light communication for audio systems. Consumer Electronics, IEEE Transactions on,1999,45(4):1112-1118
    [3]Grubor J., Randel S., Langer K. D., et al. Broadband Information Broadcasting Using LED-Based Interior Lighting. Lightwave Technology, Journal of,2008,26(24): 3883-3892
    [4]Elgala H., Mesleh R., Haas H. Indoor broadcasting via white LEDs and OFDM. Consumer Electronics, IEEE Transactions on,2009,55(3):1127-1134
    [5]Elgala H., Mesleh R., Haas H. An LED Model for Intensity-Modulated Optical Communication Systems. Photonics Technology Letters, IEEE,2010,22(11):835-837
    [6]Lubin Zeng, O'brien D., Hoa Minh, et al. High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting. Selected Areas in Communications, IEEE Journal on,2009,27(9):1654-1662
    [7]Hoa Le Minh, O'brien D., Faulkner G, et al.High-Speed Visible Light Communications Using Multiple-Resonant Equalization. Photonics Technology Letters, IEEE,2008, 20(14):1243-1245
    [8]Hoa Le Minh, O'brien D., Faulkner G. et al.100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED. Photonics Technology Letters, IEEE,2009,21(15):1063-1065
    [9]O'brien D. C., Faulkner G. E., Zyambo E. B., et al. Integrated transceivers for optical wireless communications. Selected Topics in Quantum Electronics, IEEE Journal of, 2005,11(1):173-183
    [10]刘宏展,吕晓旭,王发强等.白光LED照明的可见光通信的现状及发展.光通信技术,2009,(7):53-56
    [11]Pang G, Kwan T., Chi-Ho Chan, et al. LED traffic light as a communications device. Intelligent Transportation Systems,1999 Proceedings 1999 IEEE/IEEJ/JSAI International Conference on,1999.788-793
    [12]Pang G., Kwan T., Liu H., et al. Optical wireless based on high brightness visible LEDs. Industry Applications Conference,1999 Thirty-Fourth IAS Annual Meeting Conference Record of the 1999 IEEE,1999.1693-1699
    [13]Kitano S., Haruyama S., Nakagawa M. LED road illumination communications system. Vehicular Technology Conference,2003 VTC 2003-Fall 2003 IEEE 58th, 2003.3346-3350
    [14]Dominic O'brien, Hoa Le Minh, Lubin Zeng, et al. Indoor visible light communications: challenges and prospects. PROCSPIE,2008,7091:709109-709117
    [15]Wong Damon W. K., Chen George. Illumination design of a white-light-emitting diode wireless transmission system. OptEng,2007,46(8):085002
    [16]Lee Chung Ghiu, Park Chul Soo, Kim Jung-Hun, et al. Feasibility of optical wireless communication link using high-brightness illumination LEDs.Photonics in Multimedia. Strasbourg, France, SPIE,2006.61960-61969
    [17]Lee Chung Ghiu, Park Chul Soo, Kim Jung-Hun, et al. Experimental verification of optical wireless communication link using high-brightness illumination light-emitting diodes. Opt Eng,2007,46(12):1250051-1250057
    [18]Kim Jung-Hun, Lee Chung Ghiu, Park Chul Soo, et al.Visible light communication at 20 Mb/s using illumination LEDs. Optical Transmission, Switching, and Subsystems Ⅳ.Gwangju, South Korea, SPIE,2006.635340-635348
    [19]Komine T., Nakagawa M. Integrated system of white LED visible-light communication and power-line communication. Consumer Electronics, IEEE Transactions on,2003, 49(1):71-79
    [20]Komine T., Haruyama S., Nakagawa M. Performance evaluation of narrowband OFDM on integrated system of power line communication and visible light wireless communication. Wireless Pervasive Computing,2006 1st International Symposium on,2006.6-11
    [21]Komine T., Nakagawa M. Fundamental analysis for visible-light communication system using LED lights. Consumer Electronics, IEEE Transactions on,2004,50(1): 100-107
    [22]Komine T., Nakagawa M. A study of shadowing on indoor visible-light wireless communication utilizing plural white LED lightings. Wireless Communication Systems,2004 1st International Symposium on,2004.36-40
    [23]Komine T., Jun Hwan Lee, Haruyama S., et al. Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment. Wireless Communications, IEEE Transactions on,2009,8(6):2892-2900
    [24]丁德强,柯熙政.可见光通信及关键技术研究.半导体光电,2006,27(2):114-117
    [25]周洋,刘耀进,赵玉虎.LED可见光无线通信的现状和发展方向.淮阴工学院学报,2006,15(3):35-38
    [26]Na Zhu, Jiang Zhu, Qiduan Zhong. The transmission performance of MPPM modulation in indoor optical wireless communication based white LED. Procof SPIE, 2008,71362:71361-71371
    [27]Na Zhu, Qiduan Zhong, Jiang Zhu. Receiving method of maritime light wireless communication based on LED beacons. Proc of SPIE,2008,71350:71351-71359
    [28]仲启端,朱娜,朱江等.基于LED交通灯通信的分集接收方案.激光与光电子学进展,2008,45(10):51-55
    [29]江晓明.室内LED可见光无线通信系统物理层研究:[硕士学位论文].镇江:江苏大学,2008
    [30]张立,朱娜,张宁.室内LED光无线通信多径效应抑制.通信技术,2010,43(7):198-200
    [31]于志刚,陈长缨,赵俊.白光LED照明通信系统的分集接收技术.光通信技术,2008,(9):52-54
    [32]胡国永.基于LED的可见光无线通信关键技术研究:[硕士学位论文].广州:暨南大学,2007
    [33]于志刚.白光LED通信接收系统关键技术研究:[硕士学位论文].广州:暨南大学,2009
    [34]赵俊.基于白光LED阵列光源的可见光通信系统研究:[硕士学位论文].广州:暨南大学,2009
    [35]魏承功.基于白光LED的室内可见光通信系统研究:[硕士学位论文].长春:长春理工大学,2008
    [36]张华,宋正勋,刘冬彦等.基于自适应OFDM的可见光通信系统分析.长春理工大学学报,2010,33(1):70-73
    [37]王永波.室内可见光无线通信系统研究:[硕士学位论文].杭州:浙江大学,2008
    [38]曹家年,刘卓月.室内照明通信系统中的角度分集技术.哈尔滨工程大学学报,2009,30(11):1295-1300
    [39]杨珂,肖晗,解光军.白光LED驱动电路的研究进展.电子科技,2008,4(21):7-11
    [40]Gfeller F.R., Bapst U. Wireless In-House Data Communication via Diffuse Infrared Radiation. Proceedings of the IEEE,1979,67(11):1474-1486
    [41]Kahn J. M., Barry J. R. Wireless infrared communications. Proceedings of the IEEE, 1997,85(2):265-298
    [42]Barry J.R., Kahn J.M., Krause W.J., et al. Simulation of multipath impulse response for indoor wireless optical channels. IEEE Journal on Selected Areas in Communications,1993,11(3):367-379
    [43]Perez-Jimenez, R. Berges J., Betancor M.J. Statistical model for the impulse response on the infrared indoor diffuse channels. Electronics Letters,1997, 33(15):1298-1300
    [44]Lopez-Hermandez F.J., Betancor M.J. DUSTIN:algorithm for calculation of impulse response on IR wireless indoor channels. Electronics Letters,1997,33(21):1804-1806
    [45]Lopez-Hernandez F.J., Perez-Jimeniz R., Santamaria A. Monte Carlo calculation of impulse response on diffuse IR wirelessindoor channels. Electronics Letters,1998, 34(12):1260-1262
    [46]云文岳.室内可见光通信系统调制与解调技术研究:[硕士学位论文].长春:长春理工大学,2008
    [47]郁道银,谈恒英.工程光学.(第1版).北京:机械工业出版社,1999.62-65
    [48]Moreno Ivan, Sun Ching-Cherng, Ivanov Rumen. Far-field condition for light-emitting diode arrays. APPLIED OPTICS,2009,48(6):1190-1197
    [49]Sun Ching-Cherng, Chien Wei-Ting, Moreno Ivan, et al. Analysis of the far-field region of LEDs. Optics Express,2009,17(16):13918-13927
    [50]Philips Lumileds Lighting Company. Power light source LUXEON K2. Holland, 2011.4-14
    [51]Moreno Ivan. Design of LED spherical lamps for uniform far-field illumination Proc SPIE,2006,6046:60461-60467
    [52]Moreno Ivan, I Rumen, Tzonchev. Effects on illumination uniformity due to dilution on arrays of LEDs. ProcSPIE,2004.268-276
    [53]Ivan Moreno, Maximino Avendano-Alejo, Tzonchev Rumen I. Designing light-emitting diode arrays for uniform near-field irradiance. APPLIED OPTICS,2006, 45(10):2265-2272
    [54]Hoa Le Minh, O'brien D., Faulkner G., et al.80 Mbit/s Visible Light Communications using pre-equalized white LED. Optical Communication,2008 ECOC 2008 34th European Conference on,2008.1-2
    [55]Lubin Zeng, Hoa Le Minh, O'brien D., et al. Equalisation for high-speed Visible Light Communications using white-LEDs. Communication Systems, Networks and Digital Signal Processing,2008 CNSDSP 2008 6th International Symposium on,2008. 170-173
    [56]W. Harth, W. Huber, J. Heinen. Frequence Response of GaAlAs Ligh-Emitting Diodes. IEEE Transaction on ELECTRON DEVICE,1976,23(4):478-480
    [57]丁德强,柯熙政.大气激光通信PPM调制解调系统设计与仿真研究.光通信技术,2005,(1):50-51
    [58]秦岭,杜永兴,柯熙政等.大气激光通信中三脉冲的MPPM编译码系统的实现.半导体光电,2008,29(3):403-433
    [59]Da-Shan Shiu, Kahn J. M. Differential pulse-position modulation for power-efficient optical communication. Communications, IEEE Transactions on,1999,47(8):1201-1210
    [60]Wang Jingyuan, Xu Zhiyong, Hu Weisheng. Improved DPPM modulation for optical wireless communications. Optical Transmission, Switching, and Subsystems. Wuhan, China, SPIE,2004.483-490
    [61]Ghassemlooy Z. Investigation of the baseline wander effect on indoor optical wireless system employing digital pulse interval modulation [optical wireless communications]. Communications, IET,2008,2(1):53-60
    [62]Aldibbiat N. M., Ghassemlooy Z., Mclaughlin R. Dual header pulse interval modulation for dispersive indoor optical wireless communication systems. Circuits, Devices and Systems. IEE Proceedings,2002,149(3):187-192
    [63]张铁英,王红星,解传军.一种无线光通信中脉冲位置调制的符号同步方法.光学与光电技术,2008,45(5):60-64
    [64]张淼,邱昆,邱琪等.脉冲位置调制的字同步技术.电子科技大学学报,2000,29(4):381-383
    [65]徐荃,仵大奎,李思敏.基于AT89S52型单片机的红外无线PPM发射机设计.国外电子元件,2006,5:4-8
    [66]李天松,敖发良.一种PIC单片机实现的PPM调制器.桂林电子工业学院学报,2002,22(3):65-68
    [67]杜瑜,邹传云.红外无线PPM的调制解调电路设计.桂林电子工业学院学报,2000,20(3):5-10
    [68]朱乐君,张江鑫.基于FPGA的无线光通信PPM调制系统的设计.光通信技术,2006,(12):57-59
    [69]Azzam N., Aly M. H., Aboulseoud A. K. Bandwidth and power efficiency of various PPM schemes for indoor wireless optical communications. Radio Science Conference, 2009 NRSC 2009 National,2009.1-11
    [70]Hyuncheol Park, Barry J. R. Modulation analysis for wireless infrared communications. Communications,1995 ICC '95 Seattle,'Gateway to Globalization',1995 IEEE International Conference on,1995,1182:1182-1186
    [71]Sugiyama H., Nosu K. MPPM:a method for improving the band-utilization efficiency in optical PPM. Lightwave Technology, Journal of,1989,7(3):465-472
    [72]秦岭,柯熙政.一种二脉冲的MPPM编码映射方法研究.西安理工大学学报,2007,23(3):269-272
    [73]Park H., Barry J. R. Performance of multiple pulse position modulation on multipath channels. Optoelectronics, IEE Proceedings,1996,143(6):360-364
    [74]张阿林.高功率LED恒流源串联驱动器.电源技术应用,2007,10(8):35-37
    [75]胡涛,司汉英.光电探测器前置放大电路设计与研究.光电技术应用,2010,25(1): 52-55
    [76]刘彬,张秋婵.光电检测前置放大电路设计.燕山大学学报,2003,27(3):193-196
    [77]叶嘉雄,常大定,陈汝钧.光电系统与信号处理.北京:科技出版社,1997.285-290
    [78]Perez-Vega Constantino. A simple and efficient model for indoor path-loss prediction. Measurement Science and Technology,1997,8(10):1166
    [79]OSRAM Opto Semiconductors. Golden Dragon LW W5SG, German,2011.2-8
    [80]O'brien D. Multi-input multi-output (MIMO) indoor optical wireless communications. Signals, Systems and Computers,2009 Conference Record of the Forty-Third Asilomar Conference on,2009.1636-1639
    [81]O'brien Dominic C., Quasem Shabnam, Zikic Sasha, et al. Multiple input multiple output systems for optical wireless:challenges and possibilities. Free-Space Laser Communications Ⅵ.San Diego, CA, USA, SPIE,2006,6304:630416-630417
    [82]邱绍峰,任薇,李季碧.光多输入多输出技术研究进展.光通信技术,2010,6:46-48
    [83]Lubin Zeng, O'brien D., Le-Minh H., et al. Improvement of Date Rate by using Equalization in an Indoor Visible Light Communication System. Circuits and Systems for Communications,2008 ICCSC 2008 4th IEEE International Conference on,2008.678-682
    [84]Zhang Haitao, Gong Mali, Wang Dongsheng, et al. SMC based on Phong's model. Optical Engineering,2005,44(2):020506-020502
    [85]Sivabalan A., John J. Modeling and simulation of indoor optical wireless channels:a review. TENCON 2003 Conference on Convergent Technologies for Asia-Pacific Region,2003,1083:1082-1085
    [86]Carruthers J.B., Kannan P. Iterative site-base modeling for wireless infrared channel. IEEE Transactions on Antennas and Propagation,2002,50(5):759-765
    [87]Gonzalez O., Rodriguez S., Perez-Jimenez R., et al. Error analysis of the simulated impulse response on indoor wireless optical channels using a Monte Carlo-based ray-tracing algorithm. Communications, IEEE Transactions on,2005,53(1):124-130
    [88]Rodriguez Perez Silvestre, Perez Jimenez Rafael, Lopez Hernandez Francisco J., et al. Reflection model for calculation of the impulse response on IR-wireless indoor channels using ray-tracing algorithm. Microwave and Optical Technology Letters, 2002,32(4):296-300
    [89]Lopez-Hernandez J., Perez-Jimenez R., Santamaria A. Modified Monte Carlo scheme for high-efficiency simulation of the impulse response on diffuse IR. Wireless indoor channels Electronics Letters,1998,34(19):1819-1820
    [90]Carruthers J.B., Kahn J.M. Modeling of nondirected wireless infrared channels. IEEE Transactions on Communications,1997,45(10):1260-1268
    [91]Akgul F.O., Pahlavan K.A. New Ray Optical Statistical Model for Multipath Characteristics Pertinent to Indoor Geolocation. Wireless Communications and Networking Conference,2009 WCNC 2009 IEEE,2009.1-6
    [92]Carruthers Jeffrey B., Carroll Sarah M. Statistical impulse response models for indoor optical wireless channels. International Journal of Communication Systems,2005, 18(3 SPEC.ISS.):267-284
    [93]Smitha K., Sivabalan Arumugam, John Joseph. Estimation of channel impulse response using modified ceiling bounce model in non-directed indoor optical wireless systems. Wireless Personal Communications,2008,45(1):1-10
    [94]Moon Sang-Chul, Kim Ji-Do, Pan Jae-Kyung. Transmission characteristics due to multipath dispersion of indoor wireless optical communication. TENCON 2006 2006 IEEE Region 10 Conference,2006.1-4
    [95]Zhang Minglun, Zhang Yangan, Yuan Xueguang, et al. Mathematic models for a ray tracing method and its applications in wireless optical communications. Opt Express, 2010,18(17):18431-18437
    [96]Lopez-Hernandez Francisco J., Perez-Jimenez Rafael, Santamaria Asuncion. Ray-tracing algorithms for fast calculation of the channel impulse response on diffuse IR wireless indoor channels. Optical Engineering,2000,39(10):2775-2780
    [97]Perez Silvestre Rodriguez, Jimenez Rafael Perez, Hernandez Oswaldo B. Gonzalez, et al. Concentrator and lens models for calculating the impulse response on IR-wireless indoor channels using a ray-tracing algorithm. Microwave and Optical Technology Letters,2003,36(4):262-267
    [98]Pohl V., Jungnickel V., Von Helmolt C. A channel model for wireless infrared communication. Personal, Indoor and Mobile Radio Communications,2000 PIMRC 2000 The 11th IEEE International Symposium on,2000,291:297-303
    [99]Alqudah Y.A., Kavehrad M. MIMO characterization of indoor wireless optical link using a diffuse transmission configuration Communications. IEEE Transactions on 2003,51(9):1554-1560
    [100]Carruthers J. B., Carroll S. M., Kannan P. Propagation modelling for indoor optical wireless communications using fast multi-receiver channel estimation. Optoelectronics, IEE Proceedings,2003,150(5):473-481
    [101]Wikipedia. Ray tracing (physics). America,2010.1-2
    [102]Kahn J. M., Krause W. J., Carruthers J. B. Experimental characterization of non-directed indoor infrared channels. Communications, IEEE Transactions on,1995, 43(234):1613-1623
    [103]樊昌信,曹丽娜.通信原理.(第6版).北京:国防工业出版社,2010.78-79
    [104]Ha Duyen Trung, Benjapolakul W., Araki K. A Study on the Channel Capacity of Multiple-Input Multiple-Output Wireless System. Wireless and Optical Communications Networks,2007 WOCN'07IFIP International Conference on,2007.1-6
    [105]Goldsmith A., Jafar S. A., Jindal N., et al. Capacity limits of MIMO channels. Selected Areas in Communications, IEEE Journal on,2003,21(5):684-702
    [106]I.E.Teletar. Capacity of multi-antenna Gaussian channels. European TransTelecommun, 1999,10(6):585-595
    [107]Djahani P., Kahn J. M. Analysis of infrared wireless links employing multibeam transmitters and imaging diversity receivers. Communications, IEEE Transactions on, 2000,48(12):2077-2088
    [108]Widrow Bernard, D.Stearns Samuel. Adaptive Signal Processing. New York:Prentice-Hall, Inc,1985.21-27
    [109]史鹊,张旭东.基于自适应滤波算法的FIR MIMO系统均衡.清华大学学报(自然科学版),2004,44(10):30-36
    [110]Komine T., Jun Hwan Lee, Haruyama S., et al. Adaptive Equalization for Indoor Visible-Light Wireless Communication Systems. Communications,2005 Asia-Pacific Conference on,2005.294-298
    [111]Tominaga T., Muta O., Akaiwa Y. A Least Mean Square Based Algorithm to Determine Transmit and Receive Weights for Eigenbeam MIMO Systems.Vehicular Technology Conference,2008 VTC Spring 2008 IEEE,2008.782-786
    [112]Morgan D. R. An Adaptive RLS MIMO Equalizer Algorithm for HSDPA. Signals, Systems and Computers,2006 ACSSC '06 Fortieth Asilomar Conference on,2006. 1016-1021
    [113]Shao X., Yuan J., Shao Y. Error performance analysis of linear zero forcing and MMSE precoders for MIMO broadcast channels. Communications, IET,2007,1(5): 1067-1074
    [114]Vandendorpe L., Van De Wiel O. MIMO DFE equalization for multitone DS/SS systems over multipath channels. Selected Areas in Communications, IEEE Journal on,1996,14(3):502-511

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700