用户名: 密码: 验证码:
注射用心肌肽对幼鼠未成熟心肌的保护作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本次研究主要通过动物实验,探讨注射用心肌肽对幼大鼠未成熟心肌缺血再灌注损伤的保护作用及其机制。
     第一部分幼鼠离体心脏Langendorff灌流模型的建立及注射用心肌肽对幼鼠离体心脏的心功能影响
     目的:1建立稳定的幼大鼠离体心脏Langendorff灌流模型,2.观察注射用心肌肽对幼大鼠不同状态下的离体心脏心功能的影响。
     方法: 50只SD幼鼠,随机分为5组,每组10只,离体心脏用Langendorff灌流、灌流用K-H缓冲液,正常对照组:心脏稳定20min后,再持续灌注150min;正常+注射用心肌肽组:同正常对照组、但在灌流液中加入注射用心肌肽50 mg/L;缺血再灌注损伤模型组分3组:心脏稳定20min后,停跳液灌三次使心脏停搏(缺血)90min,再恢复正常灌流(再灌注)60min,建立心肌缺血再灌注损伤模型,对照组(Control):灌流用K-H缓冲液、停搏用ST.Thomas'II停搏液,注射用心肌肽用药两组(CMP1组:停搏液加入注射用心肌肽100 mg/L;CMP2组:灌流液加入注射用心肌肽50 mg/L及停搏液加入注射用心肌肽100 mg/L)。监测不同组离体灌流心脏心率(HR,min-1)、收缩力(△T,g)及最大收缩速度(+dT/dtmax,g.s-1)和最大舒张速度(-dT/dtmax,g.s-1)、冠脉流量(CF,ml.min-1)、复跳时间(s)反映心功能,
     结果:正常对照组离体心脏长时间灌流后心功能无明显变化,正常+注射用心肌肽组的心功能也无明显变化。停搏再灌流后,对照组心搏功能下降,冠脉流量减少,而两个用药组心搏功能仅轻微下降,冠脉流量减少较轻,且停跳液和灌流液中均加入注射用心肌肽的离体心脏的心功能更佳。
     结论:幼鼠离体心脏Langendorff灌流模型的性能稳定,可用于下一步的实验研究。注射用心肌肽对正常心脏心功能无明显影响。注射用心肌肽可改善缺血心脏再灌注后的冠脉流量,提高心功能,对幼鼠未成熟心肌缺血再灌注损伤可能具有保护作用。
     第二部分注射用心肌肽对幼鼠离体未成熟心肌缺血再灌注损伤保护作用及机制
     目的:探讨注射用心肌肽对幼鼠离体灌流的心脏缺血再灌注损伤有无保护作用及机制。
     方法: 30只SD幼鼠,随机分为3组,每组10只,离体心脏用Langendorff灌流、灌流用K-H缓冲液,停搏用ST.Thomas'II停跳液;心脏稳定20min后,停搏液停搏(缺血)90min,再恢复正常灌流(再灌注)60min,建立心肌缺血再灌注损伤模型,对照组(Control):灌流用K-H液、停搏用ST.Thomas'II停跳液,注射用心肌肽用药两组(CMP1组:停跳液加入注射用心肌肽100 mg/L;CMP2组:灌流液加入注射用心肌肽50 mg/L及停跳液加入注射用心肌肽100 mg/L)。监测离体灌流心脏的心功能、包括心率(HR,min-1)、收缩力(△T,g)及最大收缩速度(+dT/dtmax,g.s-1)和最大舒张速度(-dT/dtmax,g.s-1)、冠脉流量(CF,ml.min-1)、复搏时间(s),检测冠脉流出液中肌酸激酶同工酶(CK-MB)含量的变化,实验结束、取心尖部的心肌组织、光镜及透射电镜观察缺血再灌注损伤模型组中幼鼠心肌组织超微结构改变,生化检测心肌组织能量指标的变化,心肌组织超氧化物歧化酶(SOD)、丙二醛、NO的含量,检测心肌组织NOS、醛糖还原酶的活性,实时荧光定量PCR相对定量检测心肌组织iNOSmRNA、eNOSmRNA和Akr1b4 mRNA表达。
     结果:。停搏再灌流后,对照组心搏功能下降,冠脉流量减少;而两个用药组心搏功能仅轻微下降,冠脉流量减少较轻。电镜观察可见对照组心肌肌原纤维断裂,线粒体肿胀,而用药组心肌组织结构较完整,线粒体未见明显肿胀变性。再灌注后,对照组CK-MB增加。与对照组比较,两个用药组的CK-MB含量低,Na+-K+ ATP酶、Ca2+-Mg2+ ATP酶、心肌总ATP酶活性相对较高,SOD活性也增高,丙二醛、NO含量低,心肌组织NOS、醛糖还原酶的活性下降,iNOS、Akr1b4 mRNA表达下调,其中CMP2组改变更为明显(P<0.01或P<0.05)。此外eNOS mRNA表达在CMP2组有升高(P<0.05),而在CMP1组中变化无统计学意义。
     结论:注射用心肌肽可改善缺血心脏再灌注后的能量代谢,增加冠脉流量,提高心功能,对幼鼠未成熟心肌缺血再灌注损伤具有保护作用,其作用机制可能与抑制心肌细胞iNOS, Akr1b4 mRNA表达,减少NO生成,抑制醛糖还原酶的活性有关。停跳液和灌流液中均加入注射用心肌肽对未成熟心肌缺血再灌注损伤的保护作用效果更佳。
     第三部分注射用心肌肽预处理减轻大鼠未成熟心肌缺血-再灌注损伤
     目的:探讨注射用心肌肽预处理对幼鼠未成熟心肌缺血再灌注损伤的保护作用及其相应的作用机制。
     方法:30只SD幼鼠,随机分为3组,每组10只,通过结扎幼鼠冠状动脉左前降支建立缺血再灌注动物模型,分为假手术组、缺血再灌注组和注射用心肌肽组,全自动生化仪检测血清酶学LDH、CK-MB、Elisa法检测血清肌钙蛋白Tn-T,生化检测心肌组织匀浆MDA、SOD、TNOS、iNOS、eNOS含量变化,免疫组化法检测NOS2(iNOS)、NOS3(eNOS)含量变化,光学显微镜观察心肌梗死范围和透射电镜检测心肌组织结构改变,TUNEL法观察心肌凋亡细胞,免疫组化法检测活性Caspase-3蛋白表达水平以及应用实时荧光定量PCR分析心肌组织iNOS、eNOS、Caspas-3 mRNA表达变化。
     结果:注射用心肌肽组LDH、CK-MB、Tn-T的浓度低于缺血再灌注组,MDA、TNOS、iNOS含量以及Caspase-3、iNOSmRNA表达水平较假手术组增高,但低于缺血再灌注组,SOD的活性高于缺血再灌注组(P<0.01或P<0.05),差异有统计学意义。缺血再灌注组心肌片状出血、炎性细胞浸润,心肌细胞严变性坏死,心肌细胞凋亡显著;而注射用心肌肽组心肌梗死范围小于缺血再灌注组,心肌细胞变性坏死程度较轻,血管结构正常,心肌凋亡细胞水平介于假手术组和缺血再灌注组之间。
     结论:注射用心肌肽预处理可以减轻幼鼠未成熟心肌缺血再灌注损伤、对未成熟心肌具有保护作用,其作用机制可能与减少氧自由基损伤及减少NO生成,抑制心肌细胞Caspase-3 mRNA和蛋白表达,从而减少细胞凋亡有关。
Part I: The establishment of Langendorff isolated heart perfusion model and the effect of Cardiomyopeptidin for injection on the cardiac function of the isolated hearts of young rats
     Objective: 1. This experiment was designed to establish a stable Langendorff isolated heart perfusion model in the hearts of young rats; 2. to investigate the effect of cardiomyopeptidin for injection on the cardiac function of the different states isolated hearts of young rats.
     Methods: 50 young healthy SD rats(aged 20±3 day and weighing 50-70g)were randomly divided into five groups, Normal control group (NC group ): the isolated heart were stable 20min, and then 150 min continuous perfusion ;Normal + cardiomyopeptidin group (NCMP group ): the same as normal control group, but K-H buffer solution were added with 50 mg/L cardiomyopeptidin for injection;Control group: the isolated rat hearts were perfused with K-H buffer and then arrested with cardioplegic solution; CMP1 group: the above ST.Thomas'II cardioplegic solution was added with 100 mg/L cardiomyopeptidin for injection; CMP2 group: the above K-H buffer and ST.Thomas'II cardioplegic solution were added with 50 mg/L and 100 mg/L cardiomyopeptidin for injection respectively. The isolated rat hearts were initially perfused with K-H buffer in 37℃Langendorff system for 20 min, following a procedure of perfusion with ST.Thomas'II cardioplegic solution at 4℃for 3min, and then arrest for 27min, with the Langendorff system kept in 32℃. This procedure was repeated three times. After arrested for 90min (undergone ischemia), the rat hearts were reperfused for 60min in normal temperature. The cardiac functional indexes were monitored, including heart rate, myocardial contractility and diastolic function, peak systolic and diastole myocardial velocities and coronary flow.
     Results: In NC group, after prolonged perfusion, the cardiac function of isolated hearts had been no significant change; cardiomyopeptidin for injection had been no significant effect on normal isolated hearts; Compared with the control group, the decreased degree of the cardiac function indexes and coronary flow in the groups treated with cardiomyopeptidin for injection were much less, Administration of cardiomyopeptidin in both K-H buffer and ST.Thomas'II cardioplegic solution is better than adding cardiomyopeptidin for injection in cardioplegic solution only.
     Conclusion: The Langendorff perfusion model of the rat’s isolated hearts was stable, can be used for next experiments. Cardiomyopeptidin for injection had no significant effect on the cardiac function of normal isolated hearts. Cardiomyopeptidin for injection may improve coronary flow and cardiac function after reperfusion, thus protected immature myocardial against ischemia-reperfusion injury in young rats.
     Part II: Protective effects and its mechanisms of Cardiomypeptidin for injection on the isolated hearts of young rats from ischemia-reperfusion injury
     Objective: This experiment was designed to investigate the effect of cardiomyopeptidin for injection on immature myocardium ischemia-reperfusion injury in the isolated hearts of young rats and its mechanism.
     Methods: 30 young healthy SD rats(aged 20±3 day and weighing 50-70g)were randomly divided into three groups, with 10 rats in each group. Control group: the isolated rat hearts were perfused with K-H buffer and then arrested with ST.Thomas'II cardioplegic solution; CMP1 group: the above ST.Thomas'II cardioplegic solution was added with 100 mg/L cardiomyopeptidin for injection; CMP2 group: the above K-H buffer and ST.Thomas'II cardioplegic solution were added with 50 mg/L and 100 mg/L cardiomyopeptidin for injection respectively. The isolated rat hearts were initially perfused with K-H buffer in 37℃Langendorff system for 20 min, following a procedure of perfusion with ST.Thomas'II cardioplegic solution at 4℃for 3min, and then arrest for 27min, with the Langendorff system kept in 32℃. This procedure was repeated three times. After arrested for 90min (undergone ischemia), the rat hearts were reperfused for 60min in normal temperature. The cardiac functional indexes was monitored, including heart rate, myocardial contractility and diastolic function, peak systolic and diastole myocardial velocities and coronary flow; myocardial structure was observed through optical microscopy and Transmission Electron Microscopy; the content of Na+-K+ ATPase, Ca2+-Mg2+ ATPase, total ATPase, superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide(NO), total nitric oxide synthase (TNOS), inducible nitric oxide synthase (iNOS) and aldosereductase were measured in myocardium tissue; the relative expression levels of iNOS mRNA, eNOS mRNA and Akr1b4 mRNA in myocardial tissue were detected by relative real-time fluorescence quantitative PCR.
     Results: Compared with the control group, the decreased degree of the cardiac function indexes and coronary flow in the groups treated with cardiomyopeptidin for injection were much less. Cardiac myofibrillar fragmentation and mitochondrial swelling were observed in the control group, while in the CMP groups, the myocardial structure was near-complete, and only mild mitochondria swelling and degeneration could be seen. There was a less decline in the contents of Na+-K+ ATPase, Ca2+-Mg2+ ATPase and Total ATPase in the treatment groups, and a increase in the activity of SOD (P<0.01 or P<0.05). The concentration of NO and MDA produced after ischemia-reperfusion injury were much less in two CMP groups; moreover, the activity of iNOS and aldosereductase were inhibited, the expression levels of iNOSmRNA and Akr1b4mRNA were significantly down-regulated in two CMP groups. These changes were more prominent in the CMP 2 group (P<0.01 or P<0.05). Besides, the eNOS mRNA levels in CMP2 group was up-regulated (P<0.05).
     Conclusion: Cardiomyopeptidin for injection may improve coronary blood flow and cardiac function, thus protect immature myocardial against ischemia-reperfusion injury in young rats. The mechanism may be associated with inhibited the expression of iNOS mRNA and Akr1b4 mRNA in cardiomyocytes, the inhibited activity of iNOS and aldosereductase, and the reduced NO production. Administration of cardiomyopeptidin for injection in both ST.Thomas'II cardioplegic solution and K-H buffer is better than adding cardiomyopeptidin for injection in cardioplegic solution only.
     PartⅢCardiomypeptidin for injectionon preconditioning attenuates immature myocardial ischemia - reperfusion injury in young rats
     Objective: This experiment was designed to investigate the Cardioprotective of cardiomyopeptidin for injectionon the immature hearts of young rats from ischemia-reperfusion injury and its mechanism.
     Methods 30 young healthy SD rats(aged 20±3 day and weighing 50-70g)were randomly divided into three groups, with 10 rats in each group. Control group, sham-operated group and cardiomyopeptidin for injection group (CMP group). The serum Concentration of LDH, CK-MB were detected by CX7-type automatic biochemical analyzer, the serum Concentration of troponin Tn-T were detected by Elisa; the content of superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide(NO), total nitric oxide synthase (TNOS), inducible induse nitric oxide synthase (iNOS)and eNOS were measured in myocardium tissue; the expression level of NOS2 and NOS3 were detected by Immunohistochemical; the relative expression levels of iNOS, eNOS and Caspase-3mRNA in myocardial tissue were also detected by real-time fluorescence quantitative PCR; myocardial structure were observed through optical microscopy and Transmission Electron Microscopy; the expression level of active Caspase-3 protein was detected by Immunohistochemical; each groups Myocardial apoptosis was observed by TUNEL.
     Results: Compared with the control group, the concentration of LDH, CK-MB, Tn-T was much lesser in CMP group; Compared with the sham-operated group, the content of MDA, SOD, TNOS, and iNOS were increased and the expression levels of iNOS mRNA and Caspase-3 mRNA were significantly down-regulated in CMP groups, but less than the control group,(P<0.01 or P<0.05. Several pieces of myocardial hemorrhage and inflammatory cell infiltration were observed in the control group, severe degeneration and necrosis of myocardial cells could be seen, apoptotic myocardial cells were significant increased; while in the CMP group, myocardial infarct size was reduced, myocardial pathological injuries were mitigated, only mild degeneration and necrosis of myocardial cells could be seen, the vascular structure was near-complete, the number of apoptotic myocardial cells was less than the control group; In the sham operation group, the structure of myocardial tissue were basically normal, there was a small amount of myocardial cell apoptosis.
     Conclusion: Cardiomyopeptidin for injection preconditioning protected immature myocardium against ischemia-reperfusion injury in young rats. The mechanism may be associated with reduced Oxygen free radical (OFR) and NO production, and the inhibited expression of iNOS mRNA, Caspase-3mRNA and Caspase-3 protein in cardiomyocytes, thereby reduced apoptosis.
引文
1. Cuccurullo L, Accardo M, Agozzino L, et al. Ultrastructural pathology of pediatric myocardium in acute ischemia: bioptic study before and after treatment with cardioplegic solution[J]. Ultrastruct Pathol,2006,30(6):452-454.
    2.孔祥平,万华印,杨联萍,等。心肌肽素抗大鼠离体心脏缺血-再灌注损伤作用[J].中国药学杂志,2000,35(2):87-88.
    3.杨联萍,万华印,孔祥平,等。心肌肽素对大鼠心脏缺血-再灌注损伤的预防作用[J].中国中药杂志,2OOO,25(2):105-106.
    4.史青霞、张磊、汪炜健,等。心肌肽素在心脏手术中对心肌的保护作用的临床研究.中国循环杂志,2005,20:381-383.
    5.周玲善,阮鹏,李刚,等。心肌肽素在体外循环中对心肌保护的临床研究[J].中国体外循环杂志2005年第3卷第3期143-146.
    6. Karimi M, Wang LX, Hammel JM, et al. Neonatal vulnerability to ischemia and reperfusion:Cardioplegic arrest causes greater myocardial apoptosis in neonatallambs than in mature lambs[J]. J Thorac Cardiovasc Surg,2004,127(2):490-497.
    7. Williams WG, Rebeyka IM, Tibshirani IU, et al. Warminduction blood cardioplegia in the infant:A technique to avoid rapid cooling myocardial contracture[J]. J Thorsc Cardiovasc Surg,1990,100:896-901.
    8. Eggum R, Ueland T, Mollnes TE, Videm V, Aukrust P, Fiane AE, Lindberg HL. Effect of perfusion temperature on the inflammatory response during pediatric cardiac surgery. Ann Thorac Surg. 2008 Feb;85(2):611-617.
    9. Plessis AJ, Jonas RA, Wypij D, et al. Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 1997; 114: 991–1001.
    10.龙村。体外循环学[M]。北京:人民军医出版社,2004,476-479.
    11.文其祥。聚焦老年心脏手术体外循环的临床实践[J]。中国体外循环杂志, 2004, 2(2):66.
    12. Hearse JB,et al. Cur Prob Surg 1981,18: 485.
    13. Eilot R, Rosenkranz. Substrate Enhancement of Cardioplegic Solution: Experimental Studies and Clinical Evaluation[J]. Ann Thorac Surg. 1995,60:797-800.
    14. Sidney Chocron. Intermediate Lukewarm(20℃) Antegrade Intermitfent Blood CA339. Rdioplegia Compared with Cold and Warm Blood Cardioplegia[J]. J Thorac Cardiovasc Surg. 2000,119:610-616.
    1. Cuccurullo L, Accardo M, Agozzino L, et al. Ultrastructural pathology of pediatric myocardium in acute ischemia: bioptic study before and after treatment with cardioplegic solution[J]. Ultrastruct Pathol,2006,30(6):452-460.
    2. Xiong C,Rachel M,Hajime K,et al.Adolescent feline heart contains a population of small,proliferative ventricular Myocytes with immature physiological properties[J].Circ Res,2007,86(100):536-544
    3.李茹冰,梁强,心肌肽素对大鼠心脏缺血—再灌注损伤的治疗作用[J].中国病理生理杂志,2002,18(5):556-7
    4.张明辉,阮英茆,王清峙等,大鼠心肌缺血再灌注损伤与心肌肽素的保护作用[J].中国临床康复,2OO5,9(23):86-88
    5.刘长山,陈慧黎,查锡良,等.醛糖还原酶的分离纯化和性质分析[J].上海医科大学学报, 1996, 23(6): 428-430.
    6. Livak, K.J., and Schmittgen, T.D. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2–ΔΔCT Method. Methods 25:402–408.
    7.陈聪,吴伟. ATP停跳液对心肌保护作用的临床研究[J].国际医药卫生导报2006:12(4):66-67.
    8.朱妙章,袁文俊,吴博威等.心血管生理与临床[M].北京:高等教育出版社,2004,第一版:298-300.
    9. Raman J S. Metaboilc changes and myocardial injury during cardioplegia: a pilot study[J]. Ann Thorac Surg, 2001,72:1566-1571.
    10. Chiu RC, Bindon W.Why are newborn hearts vulnerable to global ischemia? The lactate hypothesis[J].Circulation. 1987 Nov;76(5 Pt 2):V146-9.
    11. Arslan A,Sezgin A,Gultekin B,et a1.Low-dose histidine tryptophan ketoglutarate solution for myocardial protection [J].Transplant Proc. 2005,37(9):3219-3222.
    12.谷天祥,张显清,谷春久,等.心肌缺血再灌注损伤亚细胞Ca2+反常与ATP酶泵功能抑制[J].中华心血管病杂志, 2001, 29(7): 420-423.
    13. NordlieMA,Wold LE, Simkhovich BZ, et al·Molecular aspects of ische-mic heartdisease: ischemia/reperfusion-induced genetic changes and po-tential applications of gene and RNA interference therapy[J]·J Cardio-vasc PharmacolTher, 2006, 11(1): 17-30·
    14王俊杰康桢杨天崙等.醛糖还原酶:心肌缺血损伤干预的新靶点[J].国际病理科学与临床杂志2007:27(3)-211-213
    15 Hwang YC, Sato S, Tsai JY, et al. Aldose reductase activation is a key component of myocardial response to ischemia1[J].FASEB J. 2002 16(2):243-5.
    16 Ramana K V, BhatnagarA, Srivastava S K. Inhibition of aldose reductase attenuates TNF-alpha-induced expression of adhesion molecules in endothelial cells[ J]. FASEB J, 2004, 18: 1209 -1218.
    17 Ramasamy R, Liu H, Oates P J, et al. Attenuation of ischemia induced increases in sodium and calcium by the aldose reductase inhibitor zopolrestat[ J]. Cardiovasc Res, 1999, 42 (1): 130 -139.
    18. Paradies G, Petrosillo G,Pistolese M, et al. Decrease in mitochondrial complex 1 activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res, 2004,94:53 5 9.
    19. Castedo E, Segovia J, Escudero C,et al. Ischemia reperfusion injury duringexperimental heart transplantation: evaluation of trimetazidineps cytoprotective effect[J]. Rev Esp Cordial, 2005, 58 (8): 941 9 50.
    20. Sauerl HH, Allenl SJ, Laine GA. impact of Crystalloid HTK and St.Thomas’Cardioplegia on Myocardial Fluid Balance and Postcardioplegic Stunning[J].Cardiovasc Engin,2003,8(1): 58-65.
    21.孔祥平,万华印,李茹冰,等.心肌肽素抗心律失常作用及对钙和钾离子通道的影响[J].中国病理生理杂志,2000,16(2):139-143.
    22.李茹冰,付泳航,万华印,等.心肌肽素抗培养心肌细胞阿霉素损伤作用[J].中国病理生理杂志2003,19(6):818-820
    23.李茹冰,付泳航,蒋月宏,等.心肌肽素对大鼠心脏缺血-再灌注损伤的治疗作用[J].中国病理生理杂志,2002,18(5):556—557
    24.邱立成,石海燕,王奇,等.心肌肽素在复杂先心病根治术中对心肌保护作用的临床研究[J].中国医药导报2008年2月第5卷第4期11-13
    25.殷猛,曹鼎方,苏肇伉等.外源性磷酸肌酸对未成熟心肌的保护作用[J].中华胸心外科临床杂志,2002,9:172-174.
    26. Subodh Verma, Paul WM, Richard D, et al. Fundamentals of Reperfusion Injury for the Clinical Cardiologist[J]. Circulation,2002,105:2332-2336.
    27. Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part II[J]. Circulation, 2001,104:3158–3167.
    28. Wilson DP, Sutherland C and Walsh MP. Ca2+ Activation of Smooth Muscle Contraction[J]. J.Biol.Chem,2002,277(3):2286-2192.
    29. Ignarro LJ, Napoli C, Loscalzo J. Nitric oxide donors and cardiovascular agents modulation the bioactivity of nitric oxide:an overview[J]. Circ Res,2002,90:21-28.
    30 MIYAZAWA M, SUZUKI H, MASAOKA T, et al. Suppressed apoptosis in the inflamed gastric mucosa of Helicobacter pylori-colonized iNOS- knockout mice [J]. Free Radic Biol Med,2003, 34(12): 1621- 1630.
    31 Manukhina EB, Mashina SY, Smirin BV, et,al. Role of nitric oxide in adaptation to hypoxia and adaptive defense [J].Physiol Res,2000,49:89-97.
    32. Stoschitzky K, Koshucharova G, Zweiker R, et a1.Differing beta-blocking efects of carvedilol and metoprolol[J].Heart Fall,2001,3(3):343-349.
    33. Burwell LS, Brookes PS, Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia-reperfusion injury.Antioxid Redox Signal.2008;10:579-599. Thermal Cycler Protocol
    34. Akhtar S, Barash PG.. Perioperative use of beta-blockers: past,present,and future[J].1nt Anesthesiol Clin,2002,40(2):133-157.
    35. Cao F, Cao E, Yue T L, et al. Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion:the roles of P13-kinase,Akt,and endothelial nitric oxide synthase phosophorylation[J]. Circulation,2002, 105:1497-1502.
    36 Moro MA, Almeida A, Bloanos JP, et al Mitochondrial respiratory chain and free radical generation in stroke [J].Free Radic Biol Med,2005,39:1291-1304.
    37 Boli R. Cardioprotective function of inducible nitric synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research [J].J Mol Cell Cardiol,2001,133:1987-1918.
    38. Heusch G, Post H, Michel MC, Kelm M, Schulz R. Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res.2000;87:146-152
    39 Schulz R, Kelm M, Heusch G, nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res.2004;61:402-413
    40. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury[J]. J Pathol, 2000,190:255-266.
    1.Goldhaber JI, Weiss JN. Oxygen free radicals and cardiac reperfusion abnormalities[J].Hypertension,1992:20:118-127.
    2.Xiong C,Rachel M,Hajime K,et al. Adolescent feline heart contains a population of small,proliferative ventricular Myocytes with immature physiological properties[J].Circ Res,2007,86(100):536-544
    3.李茹冰,梁强.心肌肽素对大鼠心脏缺血—再灌注损伤的治疗作用[J].中国病理生理杂志,2002,18(5):556-7
    4.张明辉,阮英茆,王清峙等.大鼠心肌缺血再灌注损伤与心肌肽素的保护作用[J].中国临床康复,2OO5,9(23):86-88
    5. Livak, K.J., and Schmittgen, T.D. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2–ΔΔCT Method. Methods 25:402–408.
    6. Wilson DP, Sutherland C and Walsh MP. Ca2+ Activation of Smooth Muscle Contraction[J]. J.Biol.Chem,2002,277(3):2286-2192.
    7.Chiu RC, Bindon W. Why are newborn hearts vulnerable to global ischemia? The lactate hypothesis[J].Circulation. 1987 Nov;76(5 Pt 2):V146-9.
    8. Mildh LH, Pettil? V, Sairanen HI. Cardiac troponin T levels for risk stratification in pediatric open heart surgery [J]. Ann Thorac Surg.2006,82(5):1643-8
    9. Paradies G, Petrosillo G,Pistolese M, et al. Decrease in mitochondrial complex
    1 activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res, 2004,94:53-59.
    10.李茹冰,梁强.心肌肽素对大鼠心脏缺血—再灌注损伤的治疗作用[J].中国病理生理杂志,2002,18(5):556-7
    11.杨联平,万华印,孔祥平等.心肌肽素对大鼠心脏缺血再灌注损伤的预防作用[J].中国中药杂志,2000,25:105-107
    12. Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme[J].Proc Natl Acad Sci U S A. 1990 Jan;87(2):682-5.
    13.Schmidt HH, Pollock JS, Nakane M, et al.Ca2+/calmodulin-regulated nitric oxide synthases. [J].Cell Calcium. 1992 Jun-Jul;13(6-7):427-34. Review.
    14. Salter M, Knowles RG, Moncada S .Widespread tissue distribution, species distribution and changes in activity of Ca2+-dependent and Ca2+-independent nitric oxide synthases[J].FEBS Lett. 1991 Oct 7;291(1):145-9.
    15. Hecker M, Walsh DT, Vane JR.On the substrate specificity of nitric oxide synthase[J].FEBS Lett. 1991 Dec 9;294(3):221-4.
    16. Jones SP, Greer JJ, Kakkar AK, Ware PD, Turnage RH, Hicks M, van Haperen R, de Crom R, Kawashima S, Yokoyama M, Lefer DJ. Endothelial nitric oxide synthase overexpression attenuates myocardial reperfusion injury. Am J Physiol Heart Circ Physiol. 2004; 286: H276–H282.
    17. Ignarro LJ, Napoli C, Loscalzo J. Nitric oxide donors and cardiovascular agents modulation the bioactivity of nitric oxide:an overview[J]. CircRes,2002,90:21-28.
    18. Manukhina EB, Mashina SY, Smirin BV, et,al. Role of nitric oxide in adaptation to hypoxia and adaptive defense [J].Physiol Res,2000,49:89-97.
    19. Moens AL, Champion HC, Claeys MJ, et al.High-dose folic acid pretreatment blunts cardiac dysfunction during ischemia coupled to maintenance of high-energy phosphates and reduces postreperfusion injury. [J].Circulation. 2008 Apr 8;117(14):1810-9. Epub 2008 Mar 24.
    20. Gunduz D, Kasseckert SA, Hartel FV, Aslam M, Abdallah Y, Schafer M, Piper HM, Noll T, Schafer C. Accumulation of extracellular ATP protects against acute reperfusion injury in rat heart endothelial cells. Cardiovasc Res. 2006; 71: 764–773.
    21. Moro MA, Almeida A, Bloanos JP, et al Mitochondrial respiratory chain and free radical generation in stroke [J].Free Radic Biol Med,2005,39:1291-1304.
    22.Manukhina EB, Downey HF, Mallet RT. Role of nitric oxide in cardiovascular adaptation to intermittent hypoxia [J]. Exp Biol Med,2006,231:343-365.
    23. Shami PJ, Sauls DL, Weinberg JB. Schedule and concentration-dependent induction of apoptosis in leukemia cells by nitric oxide [J]. Leukemia1998,12:1461-1466.
    24. Akhtar S, Barash PG.. Perioperative use of beta-blockers: past, present, and future[J].1nt Anesthesiol Clin,2002,40(2):133-157.
    25. Boli R. Cardioprotective function of inducible nitric synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research [J].J Mol Cell Cardiol,2001,133:1987-1918.
    26. Uchiyama T, Otani H, Okada T, et al. Nitric oxide induces caspase-dependent apotosis and necrosis in neonatal rat cardiomyocytes [J].J Mol Cell Cardiol, 2002,34:1049-1061.
    27. Pchejetski D, Kunduzova O, Dayon A, et a1.Oxidative stress dependent sphingosine kinase 1 inhibition mediates monoamine oxidase A associated cardiac cell apoptosis. Circ Res, 2007, 100:41-49.
    28. Chandler JM, Cohen GM, MacFarlane M. Different subcellular distribution of caspase-3 and caspase-7 following Fas induced apoptosis in mouse liver. J BiolChem,1998,273: 10815-10818.
    29. Uchiyama T, Otani H , Okada T, et al. Nitric oxide induces caspase dependent apoptosis and necrosis in neonatal rat cardiomyocytes. J Mol Cell Cardiol, 2002, 34:1049-1061.
    30. Pchejetski D, Kunduzova O, Dayon A, et a1.Oxidative stress dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A associated cardiac cell apoptosis. Circ Res, 2007, 100:41-49.
    31. Yang JC, Cortopassi GA. Induction of the mitochondrial permeability transition causes release of the apoptogenic factor cytochrome c. Free Radic Biol Med,1998,24:624-631.
    32.王心如主编,毒理学基础第五版,2007,93,
    33. Zhivotovsky B. Caspases:the enzymes of death[J]. Essays Biochem,2003,39:25 - 40.
    34. Kawatani M,Imoto M. Deletion of the BH1 domain of Bcl-2 accelerates apoptosis by acting in a dominant negative fashion[J].J Biol Chem,2003,285:55-63
    35. DonoValn M, Conter TG. Control of mitocchondrial integrity by Bcl-2 family members and caspase-independent cell death[J]. Biochim Biophys Acts,2004,1644:133-147
    36 Scarabelli TM, Knight R, Stephanou A, et al. Clinical implications of apoptosis in ischemic myocardium [J]. Curr Probl Cardiol. 2006 31(3):181-264.
    37 SdznerM,RudigerHA, SdznerN.Transgenicmice over expressing human are resistant to hepatic ischemia and reperfusion[J].J Hepato,l 2002, 36(2): 218-225.
    38 GAO F, GAO E, YUE T L, et al. Nitric oxide mediates the anti-apoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphory lation [J].Circulation, 2002, 105(12):1497-150
    [1] Julia P, Kofsky ER, Buckberg GD, et al. Studies of myocardial protection inthe immature heart: enhanced tolerance of immature versus adult myocardium to global ischemia with reference to metabolic differences [J].J Thorac Cardiovasc Surg,1990,100:879-887.
    [2] Durandy Y.Pediatric myocardial protection [J].Curr Opin Cardiol, 2008, 23(2): 85-90.
    [3] Kaneko M,Matsumoto Y,Hayashi H,et al.Oxygen free radicals and calcium homeostasis in the heart [J]. Mol Cell Biochem,1994,135:99-105.
    [4] Lipschultz SE, Rifai N, Sallan SE, et al. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury [J].Circulation, 1997, 96:2641-2648.
    [5] Manukhina EB, Mashina SY, Smirin BV, et,al. Role of nitric oxide in adaptation to hypoxia and adaptive defense [J].Physiol Res,2000,49:89-97.
    [6] Shami PJ, Sauls DL, Weinberg JB. Schedule and concentration-dependent induction of apoptosis in leukemia cells by nitric oxide [J]. Leukemia1998,12:1461-1466.
    [7] Moro MA, Almeida A, Bloanos JP, et al Mitochondrial respiratory chain and free radical generation in stroke [J].Free Radic Biol Med,2005,39:1291-1304.
    [8]Manukhina EB, Downey HF, Mallet RT. Role of nitric oxide in cardiovascular adaptation to intermittent hypoxia [J]. Exp Biol Med,2006,231:343-365.
    [9] Boli R. Cardioprotective function of inducible nitric synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research [J].J Mol Cell Cardiol,2001,133:1987-1918.
    [10] Uchiyama T, Otani H, Okada T, et al. Nitric oxide induces caspase-dependent apotosis and necrosis in neonatal rat cardiomyocytes [J].J Mol Cell Cardiol, 2002,34:1049-1061.
    [11]Flǒgel U, Decking UKM, Gǒdecke A,et al.Contribution of NO to ischemia-reperfusion injury in the saline-perfused heart: a study in endothelial NO synthae knockout mice [J].J Mol Cell Cardiol,1999,31:827-836.
    [12] Zhao X, Chen YR, He G, et al. Endothelial nitric oxide sythase(NOS3)knockout decreases NOS2 induction, limiting hyper oxygenation and conferring in the postischemic heart [J].Am J Physiol Heart Circ Physiol,2007,292:H1541-H1550.
    [13]谷天祥,张显清,谷春久,等.心肌缺血再灌注损伤亚细胞Ca2+反常与ATP酶泵功能抑制[J].中华心血管病杂志, 2001, 29(7): 420-423.
    [14] NordlieMA,Wold LE, Simkhovich BZ, et al.Molecular aspects of ischemic Heart disease: ischemia/reperfusion-induced genetic changes and potential applications of gene and RNA interference therapy[J].J Cardiovasc Pharmacol Therapy, 2006, 11(1): 17-30.
    [15] Hwang YC, Sato S, Tsai JY, et al. Aldose reductase activation is a key component of myocardial response to ischemia1[J].FASEB J. 2002 16(2):243-5.
    [16] Ramana K V, BhatnagarA, Srivastava S K. Inhibition of aldose reductase attenuates TNF-alpha-induced expression of adhesion molecules in endothelial cells [J]. FASEB J, 2004, 18: 1209 -1218.
    [17] Scarabelli TM, Knight R, Stephanou A, et al. Clinical implications of apoptosis in ischemic myocardium [J]. Curr Probl Cardiol. 2006 31(3):181-264.
    [18] SdznerM,RudigerHA, SdznerN.Transgenicmice over expressing human are resistant to hepatic ischemia and reperfusion[J].J Hepato,l 2002, 36(2): 218-225.
    [19] Gao F,Gao E,Yue TL, et al. Nitric oxide mediates the anti-apoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphory lation [J].Circulation, 2002, 105(12):1497-150
    [20]张宝仁,何斌,徐志云,等.缺血预处理对缺血再灌注心肌细胞凋亡的影响[J].第二军医大学学报,2003,24(3):255—257.
    [21]张繁之,吕家高,卜军等,预处理对缺血再灌注时心肌电生理的影响[J].心脏杂志2006,18(5):503-505
    [22]孙忠东,池一凡,杨铁南,等.双下肢缺血预处理对未成熟心肌细胞凋亡和相关凋亡蛋白表达的影响[J].中国心血管杂志,2004,9(2):85-86.
    [23] Lee P,Sata M,Lefer DJ, et al. Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo[J]. Am J Physiol Heart Circ Physiol,2003,284(2):H456-H463.
    [24] Joashi U,Tibby SM,Turner C,et al. Soluble Fas may be a proinflammatory marker after cardiopulmonary bypass in children [J]. Thorac Cardiovasc,2002,123(1):137-l44.
    [25] Zhao ZQ,Corvera JS,Halkos ME,et a1.Inhibition of myocardial injuryby ischemic postconditioning during reperfusion : comparison with ischemic preconditioning[J].Am J Physiol Heart Circ Physio2003,285(2):H579-588
    [26] Galagudza M ,kurapeev D,Minasian S,et a1.Ischemic postconditioning:brief ischemia during reperfusion converts persistent ventricular fibrillation into regular rhythm [J].Eur Cardiothorac Surg,2004,25:1006-1010.
    [27] Zhao ZQ,Vintcn,Johansen J. Postconditioning:Reduction of reperfusion induced injury[J].Cardiovasc Res,2006,70(2):200-21
    [28] Zatta AJ,Kin H,Lee G,et a1.Infarct-sparing effect of myocardial Post-conditioning is dependent on protein kinase C signaling [J]. Cardiovasc Res,2006,70(2):315-324.
    [29] Kin H,Zatta AJ ,Lofye MT,et a1.Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine[J]. Cardiovasc Res,2005,67(1):124-133.
    [30] Bopassa JC,Fcrrcra R,Gatcau-Roesch O,et a1.PI 32kinase regulates the mitochondrial transition pore in controlled reperfusion and Postconditioning [J].Cardiovasc Res,2006,69(1):178—185
    [31]杨美婷,高航.抗心肌缺血/再灌注损伤新方案-缺血后处理[J].中国急救医学2008,8(2):167-169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700