用户名: 密码: 验证码:
草鱼幼鱼的矿物质营养研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草鱼是中国主要淡水养殖鱼类,随着草鱼养殖技术的改进以及配合饲料的使用,单位产量不断提高。2009年,草鱼年产量已达到408.15万吨,占淡水鱼产量的20.85%(农业部渔业局,2010)。该论文以具有重要经济价值的草鱼为实验对象,系统研究了饲料中磷﹑钙﹑钾﹑镁﹑锌﹑锰共六种矿物质对草鱼生长、体组成、血液指标和矿物质含量的影响,为确定这几种矿物质在草鱼幼鱼饲料中的最适添加量提供科学依据。该论文包括七个方面的内容:
     1.实验一研究了饲料中不同磷水平对草鱼生长、饲料效率、体成分和矿物质含量的影响,以确定草鱼幼鱼的最适有效磷需求量。以酪蛋白和明胶作为蛋白源,分别配制有效磷含量为2.4(对照组)、4.3、6.3、8.4、10.4和14.8g kg~(-1)的六种等氮(粗蛋白质为400g kg~(-1))饲料,饲养草鱼幼鱼(初重5.59±0.02克)8周。结果表明,添加磷的组的特定生长率、增重率、蛋白质效率和饲料效率显著高于对照组(P<0.05)。在鱼体组成方面,随着饲料中有效磷的增加,鱼体蛋白质含量显著增加,同时脂肪含量显著下降(P<0.05)。添加磷的组全鱼、脊椎骨和鳞片的矿化情况显著好于对照组,但钙磷比并不受影响。脊椎骨和鳞片的灰分、钙和磷的含量随着饲料中有效磷含量的增加而直线上升,并在饲料有效磷含量为8.36g kg~(-1)时达到平台。血液生化分析表明,饲料中有效磷的水平对血浆中磷、钙和镁的含量以及甘油三酯和胆固醇的含量有明显的影响(P<0.05)。折线模型分析表明,饲料中有效磷含量为8.49g kg~(-1)时可以满足草鱼对磷最大的组织储存需要以及最佳的生长效果。
     2.实验二研究了饲料中不同磷(P)水平和淀粉(S)水平对草鱼生长、饲料效率、体成分和矿物质含量的影响,以考察饲料中高水平的磷能否促进草鱼对淀粉的利用。以酪蛋白和明胶作为蛋白源,分别配制三个总磷水平(P4、P10和P18g kg~(-1))以及两个淀粉水平(S200和S350g kg~(-1))的六种等氮(粗蛋白质为410g kg~(-1))饲料,饲养草鱼幼鱼(初重4.83±0.02克)8周。结果表明,P10/S200和P18/S200组的增重率和特定生长率最高,且显著高于其他组(P<0.05)。除了磷含量为4g kg~(-1)的组外,随着饲料中淀粉含量的增加,增重率和特定生长率显著下降,同时肝脏和全鱼的脂肪含量、肝体比和脂体比显著增加。实验结果表明,饲料中淀粉含量过高(350g kg~(-1))会抑制草鱼的生长以及引起脂肪沉积。在两个淀粉水平的饲料中,磷含量为4g kg~(-1)都会降低草鱼的增重率和特定生长率,同时增加脂体比(P<0.05)。饲料中磷含量显著影响全鱼的脂肪、灰分、钙、磷以及铁的含量。饲料中添加磷可以促进草鱼生长以及降低鱼体脂肪含量,但饲料中磷含量达到10g kg~(-1)时已满足草鱼的需求,再增加磷的含量对草鱼也没有进一步的影响。
     3.实验三研究了饲料中不同钙水平对草鱼生长、饲料效率和矿物质含量的影响,以确定草鱼幼鱼的最适钙需求量。以酪蛋白和明胶作为蛋白源,分别配制钙含量为2.75、4.51、6.24、7.99、9.66和11.5g kg~(-1)的六种等氮(粗蛋白质为395g kg~(-1))饲料,饲养草鱼幼鱼(初重4.52±0.02克)8周。结果表明,增重率、特定生长率、饲料效率和蛋白质效率随着饲料中钙含量的增加而直线上升,并在饲料钙含量为7.99g kg~(-1)时达到平台(P<0.05)。饲料钙含量高于7.99g kg~(-1)时,全鱼、脊椎骨和鳞片的灰分含量和血浆碱性磷酸酶的活性显著增加(P<0.05)。全鱼、脊椎骨和鳞片的钙含量随着饲料钙含量的增加而直线上升,并在饲料钙含量为7.99g kg~(-1)时达到平台(P<0.05)。相反,饲料钙含量高于9.66g kg~(-1)时,全鱼、脊椎骨和鳞片的镁含量显著下降(P<0.05)。但是,血浆中钙、磷和镁的含量并不受饲料中钙含量的影响。折线模型分析表明,饲料钙含量为8.57g kg~(-1)时可以满足草鱼对钙最大的组织储存需要以及最佳的生长效果。
     4.实验四研究了饲料中不同钾水平对草鱼生长、饲料效率、鳃部Na~+-K~+ATPase活性和矿物质含量的影响,以确定草鱼幼鱼的最适钾需求量。以酪蛋白和明胶作为蛋白源,分别配制钾含量为0.87(对照组)、2.90、5.37、7.54、9.87和12.4g kg~(-1)的六种等氮(粗蛋白质为398g kg~(-1))饲料,饲养草鱼幼鱼(初重3.96±0.02克)8周。结果表明,投喂钾含量9.87g kg~(-1)的组草鱼末均重、增重率、饲料效率和鳃部Na+-K+ATPase活性最高,而对照组最低(P<0.05)。全鱼和肌肉中钾含量随着饲料中钾含量的增加而直线上升,并在饲料钾含量为9.87g kg~(-1)时达到平台,而鳞片和脊椎骨中钾含量则在饲料钾含量为7.54g kg~(-1)时达到平台(P<0.05)。但是,饲料钾含量对全鱼、鳞片、脊椎骨或者肌肉的灰分、钙、磷和镁含量并没有影响。多项式模型分析增重率和鳃部Na~+-K~+ATPase活性,以及折线模型分析全鱼钾含量表明,草鱼幼鱼的最适钾需求量为9.45-9.99g kg~(-1)。
     5.实验五研究了饲料中不同镁水平对草鱼生长、饲料效率、体成分和矿物质含量的影响,以确定草鱼幼鱼的最适镁需求量。以酪蛋白和明胶作为蛋白源,分别配制镁含量为187(对照组)、331、473、637、779、937mg kg~(-1)的六种等氮(粗蛋白质为396g kg~(-1))饲料,饲养草鱼幼鱼(初重5.56±0.02克)8周。结果表明,增重率、特定生长率和饲料效率随着饲料中镁含量的增加而直线上升,并在饲料镁含量为637mg kg~(-1)时达到平台。在体成分方面,当饲料镁含量高于473mg kg~(-1)时,全鱼、肌肉和肝脏的水分显著下降,但脂肪含量显著增加,同时脊椎骨、鳞片和肌肉的灰分含量显著下降(P<0.05)。全鱼、脊椎骨、鳞片和血浆的镁含量随着饲料镁含量的增加而直线上升,并在饲料镁含量为637mg kg~(-1)时达到平台。但是,鱼体钙和磷的含量似乎与饲料中镁含量相反。饲料镁含量高于473mg kg~(-1)时,全鱼和脊椎骨的锌和铁含量显著下降(P<0.05)。折线模型分析表明,饲料镁含量为687mg kg~(-1)时可以满足草鱼对镁最大的组织储存需要以及最佳的生长效果。
     6.实验六研究了饲料中不同锌水平对草鱼生长、饲料效率、体成分和矿物质含量的影响,以确定草鱼幼鱼的最适锌需求量。以酪蛋白和明胶作为蛋白源,分别配制锌含量为13(对照组)、25、34、53、89和135mg kg~(-1)的六种等氮(粗蛋白质为396g kg~(-1))饲料,饲养草鱼幼鱼(初重3.97±0.05克)8周。结果表明,当饲料锌含量高于34mg kg~(-1)时,草鱼末均重、增重率和特定生长率显著增加(P<0.05)。在体成分方面,当饲料锌含量高于53mg kg~(-1)时,全鱼和肝脏的水分显著下降,但脂肪含量显著增加(P<0.05)。饲料锌水平显著影响全鱼、鳞片、脊椎骨和肝脏的矿化情况(P<0.05)。全鱼、脊椎骨、鳞片和血浆的锌含量随着饲料锌含量的增加而直线上升,并在饲料锌含量为53mg kg~(-1)时达到平台。当饲料锌含量高于53mg kg~(-1)时,血浆中甘油三酯和总胆固醇含量和碱性磷酸酶活性显著增加(P<0.05)。折线模型分析表明,饲料锌含量为55.1mg kg~(-1)时可以满足草鱼对锌最大的组织储存需要以及最佳的生长效果。
     7.实验七研究了饲料中不同锰水平对草鱼生长、饲料效率、体成分和矿物质含量的影响,以确定草鱼幼鱼的最适锰需求量。以酪蛋白和明胶作为蛋白源,分别配制锰含量为4.0(对照组)、8.9、13.8、18.7、23.6和33.3mg kg~(-1)的六种等氮(粗蛋白质为391g kg~(-1))饲料,饲养草鱼幼鱼(初重3.97±0.05克)8周。结果表明,草鱼增重率、饲料效率和蛋白质效率随着饲料锰含量的增加而直线上升,并在饲料锌含量为18.7mg kg~(-1)时达到平台(P<0.05)。在体成分方面,全鱼、肌肉和肝脏的脂肪含量随着饲料锰含量的增加显著下降(P<0.05)。当饲料锰含量高于18.7mg kg~(-1)时,草鱼肥满度显著下降(P<0.05)。饲料锰水平显著影响全鱼、鳞片和脊椎骨的矿化情况(P<0.05)。全鱼、脊椎骨和鳞片的锰含量随着饲料锰含量的增加而直线上升,并在饲料锰含量为18.7mg kg~(-1)时达到平台。然而,鱼体钙和磷的含量似乎与饲料中锰含量相反。但是,饲料锰含量对鱼体铁含量没有显著影响。折线模型分析表明,饲料锰含量为20.6mg kg~(-1)时可以满足草鱼对锰最大的组织储存需要以及最佳的生长效果。
Production of grass carp (Ctenopharyngodon idella) constitutes the largestaquaculture industry of finfish in China. In2009, the production of grass carp reached4.08million tons, which was20.85%of freshwater aquaculture production in China(Ministry of Agriculture2010). A series studies were conducted to evaluate the effectof dietary phosphorus, calcium, potassium, magnesium, zinc and manganese onjuvenile grass carp (Ctenopharyngodon idella). The results obtained can be brieflysummarized as follows:
     1. A growth trial was conducted to estimate the optimum concentration of dietaryavailable phosphorus (P) for grass carp (Ctenopharyngodon idella) and the effect ofdietary P levels on growth performance and body composition of this fish. Triplicategroups of grass carp (5.59±0.02g) were fed diets containing graded levels (2.36,4.27,6.31,8.36,10.4and14.8g kg~(-1)) of available P for8weeks. Grass carp fed with theP-supplemented diets had significantly higher specific growth rate, weight gain,protein efficiency ratio and feed efficiency than fish fed with the basal diet. In wholebody composition, protein content increased, while lipid content decreased with theincrease of P level in diet (P <0.05). Fish fed with the P-supplemented diets hadsignificantly higher whole body, vertebrae and scales mineralization (P <0.05), butCa/P ratios were not influenced. Crude ash, Ca and P contents in scales weresignificantly increased with the increase of dietary available P concentration to8.36gkg~(-1)and then remained stable beyond this level (P <0.05). Similar trend was found invertebrae. The blood chemistry analysis showed that dietary available P had distincteffects on P, Ca and Mg contents, as well as contents of triacyglycerol and total cholesterol. Broken-line analysis indicated that8.49g kg~(-1)dietary available P wasrequired for maximal tissue storage and mineralization as well as optimal growth.
     2. Six isonitrogenous (410g kg~(-1)) diets with three levels of total phosphorus (P4,P10and P18g kg~(-1)) and two levels of starch (S200and S350g kg~(-1)) were fed totriplicate groups of30fish to evaluate whether the high level of dietary phosphoruscould improve the utilization of starch. Over8-week-growth trial, best weight gain(WG) and specific growth rate (SGR)(P <0.05) were observed in fish fed theP10/S200and P18/S200diets. WG and SGR significantly decreased as starch levelsincreased except for P4, while lipid contents of liver and whole body, hepatosomaticindex (HSI) and intraperitoneal fat ratio (IPF) significantly increased. These resultssuggested that high dietary starch will depress the growth performance and cause lipidaccumulation. Within both starch levels, fish fed-diet with P4tended to produce lower(P <0.05) WG and SGR, and had higher (P <0.05) values of IPF. The whole bodylipid, ash, calcium, phosphorus and iron contents were significantly affected bydietary phosphorus levels. Supplied phosphorus could improve the growth anddecrease the whole body lipid, but there is no more effect after the phosphorusrequirement was met at10g kg~(-1).
     3. A growth trial was conducted to estimate the optimum concentration of dietarycalcium (Ca) for grass carp (Ctenopharyngodon idella). Triplicate groups of grasscarp (4.52±0.02g) were fed diets containing graded levels (2.75,4.51,6.24,7.99,9.66and11.5g kg~(-1)) of Ca for8weeks. Weight gain, specific growth rate, feedefficiency and protein efficiency ratio were linearly increased up to the7.99g kg~(-1)dietary Ca and then maintained stable beyond this level (P <0.05). Dietary Ca levelshigher than7.99g kg~(-1)significantly increased the ash contents of whole body,vertebrae and scales. Ca contents in whole body, vertebrae and scales were linearlyincreased up to the7.99g kg~(-1)dietary Ca and then maintained stable beyond this level(P <0.05). Contrarily, dietary Ca levels higher than9.66g kg~(-1)significantly decreasedMg contents in whole body, vertebrae, and scales. Dietary Ca levels higher than7.99g kg~(-1)significantly increased plasma alkaline phosphatase activity. However, plasmaCa, P and Mg contents were not significantly affected by dietary Ca supplements (P>0.05). Broken-line analysis indicated that8.57g kg~(-1)dietary Ca was required formaximal tissue storage and mineralization as well as optimal growth.
     4. A growth trial was conducted to estimate the optimum concentration of dietarypotassium (K) for grass carp (Ctenopharyngodon idella). Triplicate groups of grasscarp (3.96±0.06g) were fed diets containing graded levels (0.87,2.90,5.37,7.54,9.87and12.4g kg~(-1)) of K for8weeks. Final body weight, weight gain and feedefficiency and gill Na+-K+ATPase activity were highest in fish fed with9.87g kg~(-1)dietary K and lowest in fish fed the basal diet (P <0.05). K contents in whole bodyand muscle were linearly increased up to the9.87g kg~(-1)dietary K and then leveled offbeyond this level, while in scales and vertebrae up to the7.54g kg~(-1)dietary K (P <0.05). However, dietary K levels had no significant effect on ash, Ca, P and Mgcontents in whole body, scales, vertebrae or muscle. Analysis by polynomialregression of weight gain and gill Na+-K+ATPase activity and by the broken-lineregression of whole body K concentrations indicated that the adequate dietary Kconcentration for grass carp is about9.45-9.99g kg~(-1)diet.
     5. A growth trial was conducted to estimate the optimum concentration of dietaryMagnesium (Mg) for grass carp (Ctenopharyngodon idella). Triplicate groups ofgrass carp (5.56±0.02g) were fed diets containing graded levels (187,331,473,637,779and937mg kg~(-1)) of Mg for8weeks. Weight gain, specific growth rate and feedefficiency were linearly increased up to the637mg kg~(-1)dietary Mg and then leveledoff beyond this level. For body composition, dietary Mg levels higher than473mgkg~(-1)significantly decreased the moisture content but increased the lipid content ofwhole body, muscle and liver. Dietary Mg levels higher than473mg kg~(-1)significantlydecreased the ash contents of vertebrae, scales and muscle. Mg contents in wholebody, vertebrae, scales and plasma were increased up to the637mg kg~(-1)dietary Mgand then leveled off beyond this level. However, Ca and P contents seem to beinversely related to dietary Mg. Dietary Mg levels higher than473mg kg~(-1)significantly decreased Zn and Fe contents in whole body and vertebrae. Broken-lineanalysis indicated that687mg kg~(-1)dietary Mg was required for maximal tissue Mgstorage, as well as satisfied for the optimal growth.
     6. A growth trial was conducted to estimate the optimum requirement of dietaryzinc (Zn) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp(3.97±0.05g) were fed diets containing graded levels (13,25,34,53,89and135mg kg~(-1)) of Zn for8weeks. Grass carp fed with dietary Zn levels higher than34mg kg~(-1)significantly increased final body weight, weight gain and specific growth rate (P <0.05). For body composition, fish fed with dietary Zn levels higher than53mg kg~(-1)significantly decreased the moisture contents but increased the lipid contents of wholebody and liver. Whole body, scales, vertebrae and liver mineralization were allaffected significantly (P <0.05) by dietary Zn levels. Zn contents in whole body,scales, vertebrae and plasma were linearly increased up to the53mg kg~(-1)dietary Znand then remained stable beyond this level. Grass carp fed with dietary Zn levelshigher than53mg kg~(-1)significantly increased TG and T-CHO contents and ALPactivity in plasma (P <0.05). Broken-line analysis indicated that55.1mg kg~(-1)dietaryZn was required for maximal tissue storage and mineralization as well as optimalgrowth of grass carp.
     7. A growth trial was conducted to estimate the optimum concentration of dietaryManganese (Mn) for grass carp (Ctenopharyngodon idella). Triplicate groups of grasscarp (3.97±0.05g) were fed diets containing graded levels (4.0,8.9,13.8,18.7,23.6and33.3mg kg~(-1)) of Mn for8weeks. Weight gain, feed efficiency and proteinefficiency ratio were linearly increased up to the18.7mg kg~(-1)dietary Mn and thenmaintained stable beyond this level (P <0.05). For body composition, lipid contentsin whole body, muscle and liver decreased significantly with increasing dietary Mnlevel. Grass carp fed with dietary Mn levels higher than18.7mg kg~(-1)significantlydecreased condition factor. Whole body, vertebrae and scales mineralization were allaffected significantly by dietary Mn levels. Mn contents in whole body, vertebrae andscales were linearly increased up to the18.7mg kg~(-1)dietary Mn and then maintainedstable beyond this level. Contrarily, Ca and P contents seem to be inversely related todietary Mn. However, dietary Mn levels had no significant effect on body Fe contents.Broken-line analysis indicated that20.6mg kg~(-1)dietary Mn was required for maximaltissue Mn storage as well as optimal growth of juvenile grass carp.
引文
陈建明.我国养殖鱼类对矿物元素的需要量[J].水产养殖,2000,2:45.
    杜震宇.草鱼对脂肪的氧化能力和对饲料脂肪利用的研究[D].博士论文.广州:中山大学,2005.
    黄世蕉,沈竑.维生素B6对草鱼脂肪代谢的影响[J].水生生物学报,1992,16(4):313-321.
    黄耀桐,刘永坚.草鱼对营养盐钙磷及饲料钙磷镁铁的利用率[J].水生生物学报.1990,14(2):145-152.
    胡斌,李小勤,冷向军等.饲料Vc对草鱼生长、肌肉品质及非特异性免疫的影响[J].中国水产科学,2008,15(5):794-800.
    蒋明,王卫民,文华等.维生素K3草鱼生长、体成分和凝血时间的影响[J].淡水渔业,2007,37(2):61-64.
    廖朝兴,雍文岳.草鱼配合饲料营养参数及配制技术[J].淡水渔业,1997,27(1):31-33.
    林鼎.鱼类饲料的电子计算机配方[J].淡水渔业,1986,(1):37-38.
    林鼎,萧锡延.鱼虾营养研究进展[M].广州:中山大学出版社,1995.
    林鼎,毛永庆.鱼类营养与配合饲料[M].广州:中山大学出版社,1987.
    林鼎,毛永庆,蔡发盛.鲩鱼(Ctenopharyngodon idellus)鱼种生长阶段蛋白质最适需要量的研究[J].水生生物学集刊,1980,7(2):207-212.
    林浩然.草鱼的营养代谢生理研究II.应用放射性同位素14C研究草鱼对粗纤维的消化吸收[J].中山大学学报,1978,4:106-109.
    刘安龙,文华,蒋明等.草鱼幼鱼对饲料中泛酸需要量的研究[J].水产科学,2007,26(5):263-266.
    刘玮,任本根.饲料中不同脂肪含量对草鱼稚鱼生长的影响[J].江西科学,1995,13:219-223.
    刘玮,徐萍.不同脂肪源饲料对草鱼稚鱼生长的影响[J].水产学报,1995,19(4):362-365.
    毛永庆,蔡发盛,林鼎.幼鲩(草鱼)对蛋白质、糖、脂肪、无机混和盐和纤维素日需求量的研究[M].鱼类学论文集(第四辑),北京:科学出版社,1985,81-92.
    农业部渔业局.2004中国渔业统计年鉴[M].北京:中国农业出版社,2004.
    农业部渔业局.2007中国渔业统计年鉴[M].北京:中国农业出版社,2007.
    农业部渔业局.2010中国渔业统计年鉴[M].北京:中国农业出版社,2010.
    潘庆,廖翔华.草鱼对淀粉饲料的消化吸收和利用[J].中山大学学报论丛,1997,5:86-89.
    苏传福,罗莉,文华等.日粮铁对草鱼生长、体成分和部分血液指标的影响[J].淡水渔业,2007,37(1):48-52.
    苏传福,罗莉,文华等.硒对草鱼生长、营养组成和消化酶活性的影响[J].上海水产大学学报,2007,16(2):124-129.
    田丽霞,刘永坚,冯健等.不同种类淀粉对草鱼生长、肠系膜脂肪沉积和鱼体组成的影响[J].水产学报,2002,26(3):247-251.
    王道尊,赵亮,谭玉钧.草鱼鱼种对胆碱需要量的研究[J].水产学报,1995,19(2):132-139.
    王道尊,赵亮.一龄草鱼对锰的需要量[J].上海水产大学学报,1994,3(1-2):34-39.
    汪福保,罗莉,李云等.镁对草鱼生长和脂肪代谢的影响[J].动物营养学报,2010,22(1):93-99.
    王胜.草鱼蛋白质氨基酸营养[D].博士论文.广州:中山大学,2006.
    文华,赵智勇,蒋明等.草鱼幼鱼肌醇营养需要量的研究[J].中国水产科学,2007,14(5):794-800.
    吴凡,文华,蒋明等.维生素B12对草鱼幼鱼生长、体组分和造血机能的影响[J].吉林农业大学学报,2007,29(6):695-69.
    吴凡,蒋明,赵智勇等.草鱼幼鱼对烟酸的需要量[J].水产学报,2008,32(1):65-70.
    雍文岳,黄忠志,廖朝兴等.饲料中脂肪含量对草鱼生长的影响[J].淡水渔业,1985,6:11-14.
    游文章,黄忠志,廖朝兴等.草鱼对饲料中磷需要量的研究[J].水产学报.1987,11(4):.285-292.
    赵智勇,文华,吴凡等.草鱼鱼种叶酸需要量的研究[J].上海水产大学学报,2008,17(2):187-192.
    Andersen, F., Maage, A.&Julshamn, K.(1996) An estimation of dietary ironrequirement of Atlantic salmon, Salmo salar L., parr. Aquaculture Nutrition,2,41-47.
    AOAC (1995). Official Methods of Analysis. Association of Official AnalyticalChemists, Arlington,1141pp.
    Austreng, E.(1978) Digestibility determination in fish using chronic oxide markingand analysis of contents from different segments of the gastrointestinal tract.Aquaculture,13,265–272.
    Ballestrazzi, R., Lanari, D.&D'Agaro, E.(1998) Performance, nutrient retentionefficiency, total ammonia and reactive phosphorus excretion of growingEuropean sea-bass (Dicentrarchus labrax, L.) as affected by diet processing andfeeding level. Aquaculture,161,55-65.
    Baly, D.L., Schneiderman, J.S.&Garcia-Welsh, A.L.(1990) Effect of manganesedeficiency on insulin binding, glucose transport and metabolism in rat adipocytes.The Journal of nutrition,120,1075.
    Bell, L. T.&Hurler, L. S.(1973) Ultrastructral effects of manganese among organsand intracellular organelles of the rat. Journal of Biological Chemistry,217,489-495.
    Bell, L.T.&Hurley, L.S.(1974) Histochemical enzyme changes in epidermis ofmanganese-deficient fetal mice. In Proceedings of the Society for ExperimentalBiology and Medicine. Society for Experimental Biology and Medicine (NewYork, NY),145,1321.
    Boyd, C.E.(1971) Phosphorus dynamic in ponds In Proceedings of the annualconference-Southeastern Association of Game and Fish Commissioners, pp.418.
    Brown, M.L., Jaramillo Jr., F.&Gatlin III, D.M.(1993) Dietary phosphorusrequirement of juvenile sunshine bass, Morone chrysops [female symbol] M.saxatilis [male symbol]. Aquaculture,113,355-363.
    Buentello, J.A., Goff, J.B.&Gatlin III, D.M.(2009) Dietary Zinc Requirement ofHybrid Striped Bass, Morone chrysops×Morone saxatilis, and Bioavailability ofTwo Chemically Different Zinc Compounds. Journal of the World AquacultureSociety,40,687-694.
    Bureau, D.P., Hua, K.&Cho, C.Y.(2006) Effect of feeding level on growth andnutrient deposition in rainbow trout (Oncorhynchus mykiss Walbaum) growingfrom150to600g. Aquaculture Research,37,1090-1098.
    Chua, T.&Teng, S.(1982) Effects of food ration on growth, condition factor, foodconversion efficiency, and net yield of estuary grouper, Epinephelus salmoidesmaxwell, cultured in floating net-cages. Aquaculture,27,273-283.
    Coleman, J.E.(1992) Structure and mechanism of alkaline phosphatase. Annu. Rev.Biophys. Journal of biomolecular structure&dynamics,21,441–483.
    Coloso, R. M., King, K., Fletcher, J.W. et al.(2003) Phosphorus utilization in rainbowtrout (Oncorhynchus mykiss) fed practical diets and its consequences on effluentphosphorus levels. Aquaculture,220,801–820.
    Cousins, R.J.&McMahon, R.J.(2000) Integrative aspects of zinc transporters. TheJournal of nutrition,130,1384S.
    Couto, A., Enes, P., Peres, H. et al.(2008) Effect of water temperature and dietarystarch on growth and metabolic utilization of diets in gilthead sea bream (Sparusaurata) juveniles. Comparative Biochemistry and Physiology-Part A:Molecular&Integrative Physiology,151,45-50.
    Dabrowska, H., Meyer-Burgdorff, K.H.&Gunther, K.D.(1989) Interaction betweendietary protein and magnesium level in tilapia (Oreochromis niloticus).Aquaculture,76,277-291.
    Dabrowska, H., Meyer-Burgdorff, K.H.&Gunther, K.D.(1991) Magnesium status infreshwater fish, common carp (Cyprinus carpio, L.) And the dietaryprotein-magnesium interaction. Fish Physiology and Biochemistry,9,165-172.
    Dabrowski, K.(1977) Protein requirements of grass carp fry (Ctenopharyngodonidella Val.). Aquaculture,12,63-73.
    De Rosa, G., Keen, C.L., Leach, R.M. et al.(1980) Regulation of superoxidedismutase activity by dietary manganese. The Journal of nutrition,110,795.
    Dixon, D. G.&Hilton, J. W.(1981) Influence of available dietary carbohydratecontent on tolerance of waterborne copper by rainbow trout Salmo gairdneriRichardson. Journal of fish biology,19,509–517.
    Do Carmo E Sá, M.(2004) Optimum zinc supplementation level in Nile tilapiaOreochromis niloticus juveniles diets. Aquaculture,238,385-401.
    Dougall, D.S., Woods III, L.C., Douglass, L.W. et al.(1996) Dietary phosphorusrequirement of juvenile striped bass, Morone saxatilis. Journal of the WorldAquaculture Society,27,82–91.
    Duncan, D.B.(1955) Multiple range test and multiple F tests. Biometrics,11,1-42.
    Du, Z.Y., Clouet, P., Huang, L.M., et al.(2008) Utilization of different dietary lipidsources at high level in herbivorous grass carp (Ctenopharyngodon idella)mechanism related to hepatic fatty acid oxidation. Aquaculture Nutrition,14,77-92.
    Eid, A.(1994) Dietary zinc requirement of fingerling Oreochromis niloticus.Aquaculture,119,259-264.
    Eide, D.J.(2006) Zinc transporters and the cellular trafficking of zinc. Biochimica etBiophysica Acta (BBA)-Molecular Cell Research,1763,711-722.
    El-Mowafi, A.&Maage, A.(1998) Magnesium requirement of Atlantic salmon(Salmo salar L.) parr in seawater‐treated fresh water1. Aquaculture Nutrition,4,31-38.
    Epstein, F.H., Silva, P.&Kormanik, G.(1980) Role of Na-K-ATPase in chloride cellfunction. American Journal of Physiology-Regulatory, Integrative andComparative Physiology,238, R246.
    Evans, D.H., Piermarini, P.M.&Choe, K.P.(2005) The multifunctional fish gill:dominant site of gas exchange, osmoregulation, acid-base regulation, andexcretion of nitrogenous waste. Physiological Reviews,85,97.
    Eya, J.C.&Lovell, R.T.(1997) Available phosphorus requirements of food-sizechannel catfish (Ictalurus punctatus) fed practical diets in ponds. Aquaculture,154,283-291.
    Frenzel, E.&Pfeffer, E.(1982) Untersuchungen über den Mineralstoff-Bedarf vonRegenbogen-Forellen (Salmo Gairdneri, R.). Archives of Animal Nutrition,32,1-8.
    Gatlin III, D.M., O'Connell, J.P.&Scarpa, J.(1991) Dietary zinc requirement of thered drum, Sciaenops ocellatus. Aquaculture,92,259-265.
    Gatlin III, D.M.&Phillips, H.F.(1989) Dietary calcium, phytate and zinc interactionsin channel catfish. Aquaculture,79,259-266.
    Gatlin III, D.M., Robinson, E.H., Poe, W.E. et al.(1982) Magnesium requirement offingerling channel catfish and signs of magnesium deficiency. The Journal ofnutrition,112,1182.
    Gatlin III, D.M.&Wilson, R.P.(1983) Dietary zinc requirement of fingerling channelcatfish. The Journal of nutrition,113,630.
    Gatlin III, D.M.&Wilson, R.P.(1984) Studies on the manganese requirement offingerling channel catfish. Aquaculture,41,85-92.
    Gregory, L. A.&Eales, J. G.(1975) Factors contributing to high levels of plasmaiodide in brook trout, Salvelinus fontinalis (Mitchill). Canadian Journal ofZoology,53,267-277.
    Grisdale-Helland, B.&Helland, S.J.(1998) Macronutrient utilization by Atlantichalibut (Hippoglossus hippoglossus): diet digestibility and growth of1kg fish.Aquaculture166,57–65.
    Handy, R.D.(1996) Dietary exposure to toxic metals in fish. In: Taylor EW,(eds)Toxicology of Aquatic Pollution: Physiological, Cellular and MolecularApproaches, pp.29-60. Cambridge University Press, Cambridge, UK.
    Hardy, R.W.&Shearer, K.D.(1985) Effect of dietary calcium phosphate and zincsupplementation on whole body zinc concentration of rainbow trout (Salmogairdneri). Canadian Journal of Fisheries and Aquatic Sciences,42,181-184.
    Hepher, B.(1988) Nutrition of Pond Fishes. Cambridge University Press, Cambridge.388pp.
    Hilton, J.W.(1989) The interaction of vitamins, minerals and diet composition in thediet of fish. Aquaculture,79,223-244.
    Hodson, P. V.&Hilton, J. W.(1983) The nutritional requirements and toxicity to fishof dietary and waterborne selenium. Ecological Bulletins,35,335-340.
    Horne, R.A.,(1969) Marine Chemistry. The Structure of Water and the Chemistry ofthe Hydrosphere. John Wiley and Sons Inc, New York.568pp.
    Hossain, M.A.&Furuichi, M.(1999a) Necessity of dietary calcium supplement inblack sea bream. Fisheries Science-Tokyo-,65,893–897.
    Hossain, M.A.&Furuichi, M.(1999b) Calcium requirement of tiger puffer fed asemi-purified diet. Aquaculture International,7,287–293.
    Hossain, M.A.&Furuichi, M.(2000) Essentiality of dietary calcium supplement inredlip mullet Liza haematocheila. Aquaculture Nutrition,6,33–38.
    Houston, A. H.1985. Erythrocyte magnesium in freshwater fishes. Magnesium,4,106-128.
    Hung, S.S.O., Conte, F.S.&Hallen, E.K.(1993) Effects of feeding rates on growth,body composition and nutrient metabolism in striped bass (Morone saxatilis)fingerlings. Aquaculture,112,349-361.
    Hurley, L.S.&Keen, C.L.(1987) Manganese. In: Trace Elements in Human andAnimal Nutrition (Mertz, W. ed.), Vol.1,5th edn., pp.185–224. Academic Press,London.
    Hutchins, C.G., Rawles, S.D.&Gatlin III, D.M.(1998) Effects of dietarycarbohydrate kind and level on growth, body composition and glycemic responseof juvenile sunshine bass (Morone chrysops [female symbol] M. saxatilis[male symbol]). Aquaculture,161,187-199.
    Hwang, P.P., Sun, C.M.&Wu, S.M.(1988) Characterization of gill Na+-K+-activatedadenosine triphosphate from tilapia Oreochromis mossambicus. Bulletin of theInstitute of Zoology Academia Sinica,27,49-56.
    Ichii, T.&Mugiya, Y.(1983) Effects of a dietary deficiency in calcium on growth andcalcium uptake from the aquatic environment in the goldfish, Carassius auratus.Comparative Biochemistry and Physiology Part A: Physiology,74A,259–262.
    Ichikawa, R.&Oguri, M.(1961) Metabolism of radionucleotides in fish. I.Strontium-calcium discrimination in gill absorption. Nippon Suisan Gakkaishi,27,351–357.
    Jafri, A.K.(1995) Protein-sparing effect of dietary carbohydrate in diets for fingerlingLabeo rohita. Aquaculture,136,331-339.
    Kaushik, S.J.(2001) Mineral nutrition. Nutrition and feeding of fish and crustaceans.Springer–Praxis, Chichester169-181.
    Kaushik, S.J.&de Oliva Teles, A.(1985) Effect of digestible energy on nitrogen andenergy balance in rainbow trout. Aquaculture,50,89-101.
    Kim, J.D., Kim, K.S., Song, J.S. et al.(1998) Optimum level of dietary monocalciumphosphate based on growth and phosphorus excretion of mirror carp, Cyprinuscarpio. Aquaculture,161,337-344.
    Knox, D., Cowey, C.B.&Adron, J.W.(1981) Studies on the nutrition of salmonidfish. The magnesium requirement of rainbow trout (Salmo gairdneri). BritishJournal of Nutrition,45,137-148.
    Knox, D., Cowey, C.B.&Adron, J.W.(1983) Studies on the nutrition of rainbowtrout (Salmo gairdneri) Magnesium deficiency: the effect of feeding with aMg-supplemented diet. Br. The Journal of nutrition,50,121-127.
    Krogdahl, Hemre, G.I.&Mommsen, T.P.(2005) Carbohydrates in fish nutrition:digestion and absorption in postlarval stages. Aquaculture Nutrition,11,103-122.
    Lall, S.P.(1991) Digestibility, metabolism and excretion of dietary phosphorus in fish.In: Nutritional Strategies and Aquaculture Waste (Cowey, C.B.&Cho, C.Y. eds),pp.21–50. University of Guelph, Guelph, ON.
    Lall, S.P.(1989) The minerals. In: Fish Nutrition,2nd edn, Vol.1(Halver, J.E. ed.),pp.235–236. Academic Press Inc., San Diego, CA, USA.
    Lall, S.P.(2002) The minerals. In: Halver JE, Hardy RW (eds) Fish nutrition,3rd edn,pp264–274. Academic Press, New York.
    Lall, S.P., Paterson, W.D., Hines, J.A., Adams, N.J.(1985) Control of bacterialkidney disease in Atlantic salmon Salmo salar L. by dietary modification.Journal of Fish Diseases,8,113-124.
    Lanari, D., Poli, B.M., Ballestrazzi, R. et al.(1999) The effects of dietary fat and NFElevels on growing European sea bass (Dicentrarchus labrax L.). Growth rate,body and fillet composition, carcass traits and nutrient retention efficiency.Aquaculture,179,351-364.
    Levine, B.S., Walling, M.W.&Coburn, J.W.(1981) Effect of vitamin D sterols anddietary magnesium on calcium and phosphorous homeostasis. American Journalof Physiology-Endocrinology and Metabolism,241, E35.
    Lim, C.&Klesius, P.H.(2003) Influence of Dietary Levels of Magnesium on Growth,Tissue Mineral Content, and Resistance of Channel Catfish Ictalurus punctatusChallenged with Edwardsiella ictaluri. Journal of the World Aquaculture Society,34,18-28.
    Lin, Y.H., Lin, S.M.&Shiau, S.Y.(2008) Dietary manganese requirements ofjuvenile tilapia, Oreochromis niloticus x O. aureus. Aquaculture,284,207-210.
    Lorentzen, M.&Maage, A.(1999) Trace element status of juvenile Atlantic salmonSalmo salar L. fed a fish-meal based diet with or without supplementation ofzinc, iron, manganese and copper from first feeding. Aquaculture Nutrition,5,163-172.
    Lorentzen, M., Maage, A.&Julshamn, K.(1996) Manganese supplementation of apractical, fish meal based diet for Atlantic salmon parr. Aquaculture Nutrition,2,121-125.
    Lovell, R. T.(1979) Formulat ing diets for aquaculture species. Feedstuffs,51,29-32.
    Lovell, R.T.(1989) Nutrition and Feeding of Fish. Van Nostrand Reinhold, New York,260pp.
    Luo, Z., Tan, X.Y., Liu, X. et al.(2009) Dietary total phosphorus requirement ofjuvenile yellow catfish Pelteobagrus fulvidraco. Aquaculture International,310,186-191.
    Maage, A., Lygren, B.&El-Mowafic, A.(2000) Manganese requirement of Atlanticsalmon (Salmo salar) fry. Fisheries Science,66,1-8.
    Maret, W.&Kr El, A.(2007) Cellular zinc and redox buffering capacity ofmetallothionein/thionein in health and disease. Molecular Medicine,13,371.
    Marine, D.(1914) Further observations and experiments on goiter in brook trout.Journal of experimental medicine,19,70-75.
    Marshall, W.S.&Bryson, S.E.(1998) Transport mechanisms of seawater teleostchloride cells: an inclusive model of a multifunctional cell. ComparativeBiochemistry and Physiology Part A: Molecular&Integrative Physiology,119,97-106.
    McClain, W.&Gatlin III, D.M.(1988) Dietary zinc requirement of Oreochromisaureus and effects of dietary calcium and phytate on zinc bioavailability. Journalof the World Aquaculture Society,19,103-108.
    McDonough, A.A., Thompson, C.B.&Youn, J.H.(2002) Skeletal muscle regulatesextracellular potassium. American Journal of Physiology-Renal Physiology,282, F967.
    McDowell, L.R.(2003) Minerals in Animal and Human Nutrition,2nd edn. ElsevierScience, Amsterdam.
    Ng, W.K., Lu, K.S., Hashim, R. et al.(2000) Effects of feeding rate on growth, feedutilization and body composition of a tropical bagrid catfish. AquacultureInternational,8,19-29.
    National Research Council (NRC)(1983) Nutrient Requirements of WarmwaterFishes and Shellfishes. Washington, DC: National Academy of Science.
    National Research Council (NRC)(1993) Nutrient requirements of fish. NationalAcademy Press, Washington, DC.
    Nwanna, L.C., Kühlwein, H.&Schwarz, F.J.(2010) Phosphorus requirement ofcommon carp (Cyprinus carpio L) based on growth and mineralization.Aquaculture Research,41,401-410.
    Nwanna, L.C.&Schwarz, F.J.(2007) Effect of supplemental phytase on growth,phosphorus digestibility and bone mineralization of common carp (Cyprinuscarpio L). Aquaculture Research,38,1037-1044.
    O’Connell, J.P.&Gatlin, D.M., III (1994) Effect of calcium and vitamin D3onweight gain and mineral composition of the blue tilapia (Oreochromis aureus) inlow-calcium water. Aquaculture,125,107–117.
    Ogino, C.&Chiou, J.Y.(1976) Mineral requirements in fish–II. Magnesiumrequirement of carp. Bulletin of the Japanese Society of Scientific Fisheries,42,71–75.
    Ogino, C., Takashima, F.&Chiou, J.Y.(1978) Requirement of Rainbow Trout forDietary Magnesium,(In Japanese). Bulletin of the Japanese Society of ScientificFisheries,44,1105–1108.
    Ogino, C.&Takeda, H.(1976) Mineral requirements in fish. III. Calcium andphosphorus requirements in carp. Bulletin of the Japanese Society of ScientificFisheries,42,793–799.
    Ogino, C.&Takeda, H.(1978) Requirements of rainbow trout for dietary calciumand phosphorus. Bulletin of the Japanese Society of Scientific Fisheries,44,1019–1022.
    Ogino, C., Takeuchi, L., Takeda, H. et al.(1979) Availability of dietary phosphorus incarp and rainbow trout. Bulletin of the Japanese Society of Scientific Fisheries,45,1527–1532.
    Ogino, C.&Yang, G.Y.(1978) Requirement of rainbow trout for dietary zinc.Bulletin of the Japanese Society of Scientific Fisheries,44,1015-1018.
    Ogino, C.&Yang, G.Y.(1979) Requirement of Carp for Dietary Zinc (In Japanese).Bulletin of the Japanese Society of Scientific Fisheries,45,967-969.
    Ogino, C.&Yang, G.Y.(1980) Requirements of carp and rainbow trout for dietarymanganese and copper. Bulletin of the Japanese Society of Scientific Fisheries,46,455-458.
    Oikari, A.O.&Rankin, J.C.(1985) Renal excretion of magnesium in a freshwaterteleost, Salmo gairdneri. Journal of experimental biology,117,319.
    Pan, L., Zhu, X., Xie, S. et al.(2008) Effects of dietary manganese on growth andtissue manganese concentrations of juvenile gibel carp, Carassius auratusgibelio. Aquaculture Nutrition,14,459-463.
    Partridge, G.J.&Lymbery, A.J.(2008) The effect of salinity on the requirement forpotassium by barramundi (Lates calcarifer) in saline groundwater. Aquaculture,278,164-170.
    Peres, H.&Oliva-Teles, A.(2002) Utilization of raw and gelatinized starch byEuropean sea bass (Dicentrarchus labrax) juveniles. Aquaculture,205,287-299.
    Perry, S.F., Goss, G.G.&Fenwick, J.C.(1992) Interrelationships between gill chloridecell morphology and calcium uptake in freshwater teleosts. Fish Physiology andBiochemistry,10,327–337.
    Phillips, A.M., Podoliak, H.A., Brockway, D.R. et al.(1958) The nutrition of trout.Cortland Hatchery Rep.26, NY Conserv. Dep. Fishery Research Bulletin,21.
    Phillips, A. M., Podiliak, H. A., Livingston, D.L. et al.(1960) Metabolism of tracelevels of dietary cobalt by brook trout. Fishery Research Bulletin,23,36-46.
    Puvanendran, V., Boyce, D.L.&Brown, J.A.(2003) Food ration requirements of0+yellowtail flounder Limanda ferruginea (Storer) juveniles. Aquaculture,220,459-475.
    Rankin, J.C.&Davenport, J.(1981) Animal osmoregulation, Halsted Press.
    Reigh, R.C., Robinson, E.H.&Brown, P.B.(1991) Effects of Dietary Magnesium onGrowth and Tissue Magnesium Content of Blue Tilapia Oreochromis aureus.Journal of the World Aquaculture Society,22,192-200.
    Robbins, K.R., Norton, H.W.&Baker, D.H.(1979) Estimation of nutrientrequirements from growth data. The Journal of nutrition,109,1710.
    Robinson, E.H., LaBomascus, D., Brown, P.B. et al.(1987) Dietary calcium andphosphorus requirements of Oreochromis aureus reared in calcium-free water.Aquaculture,64,267–276.
    Robinson, E.H., Rawles, S.D., Yette, H.E. et al.(1986) Dietary calcium requirementof channel catfish, Ictalurus punctatus, reared in calcium-free water. Aquaculture,39,343–364.
    Rodehutscord, M.(1996) Response of rainbow trout (Oncorhynchus mykiss) growingfrom50to200g to supplements of dibasic sodium phosphate in a semi-purifieddiet. The Journal of nutrition,126,324.
    Rodehutscord, M.&Pfeffer, E.(1995) Requirement for phosphorus in rainbow trout(Oncorhychus mykiss) growing from50to200g. Water Science and Technology,31,137–141.
    Roginski, E. E.&Mertz, W.(1977) A biphasic response of rats to cobalt. The Journal ofnutrition,107,1537-1542.
    Roy, P.K.&Lall, S.P.(2003) Dietary phosphorus requirement of juvenile haddock(Melanogrammus aeglefinus L.). Aquaculture,221,451-468.
    Sakamoto, S.&Yone, Y.(1976) Requirement of red sea bream for dietary Ca. Bulletinof the Japanese Society of Scientific Fisheries,3,59–64.
    Sakamoto, S.&Yone, Y.(1979) Requirement of red sea bream for dietary Mg.Bulletin of the Japanese Society of Scientific Fisheries,45,57-60.
    Satoh, S., Izume, K., Takeuchi, T. et al.(1992) Effect of supplemental tricalciumphosphate on zinc and manganese availability to common carp. Nippon SuisanGakkaishi,58,539-545.
    Satoh, S., Tabata, K., Izume, K. et al.(1987) Effect of dietary tricalcium phosphate onavailability of zinc to rainbow trout. Nippon Suisan Gakkaishi,53,1199–1205.
    Satoh, S., Takeuchi, T.&Watanabe, T.(1987) Availability to carp of manganese inwhite fish meal and of various manganese compounds. Nippon Suisan Gakkaishi,53,825-832.
    Satoh, S., Takeuchi, T.&Watanabe, T.(1991) Availability of manganese andmagnesium contained in white fish meal to rainbow trout Oncorhynchus mykiss.Nippon Suisan Gakkaishi,57,99-104.
    Satoh, S., Yamamoto, H., Takeuchi, T. et al.(1983) Effects on growth and mineralcomposition of carp of deletion of trace elements [zinc, manganese, copper,cobalt] or magnesium from fish meal diet. Bulletin of the Japanese Society ofScientific Fisheries,49,431-435.
    Satoh, S., Yamamoto, H., Takeuchi, T. et al.(1983) Effect on growth and mineralcomposition of rainbow trout of deletion of trace elements or magnesium fromfishmeal diet. Bulletin of the Japanese Society of Scientific Fisheries,49,425–429.
    Scarpa, J.&Gatlin, D.M.(1992) Dietary zinc requirements of channel catfish,Ictalurus punctatus, swim-up fry in soft and hard water. Aquaculture,106,311-322.
    Schaefer, A., Koppe, W.M., Meyer-Burgdorff, K.H. et al.(1995) Effects of P-supplyon growth and mineralization in mirror carp (Cyprinus carpio L.). Journal ofApplied Ichthyology,11,397-400.
    Serrini, G., Zhang, Z.&Wilson, R.P.(1996) Dietary riboflavin requirement offingerling channel catfish (Ictalurus punctatus). Aquaculture,139,285-290.
    Shao, Q., Ma, J., Xu, Z. et al.(2008) Dietary phosphorus requirement of juvenileblack sea bream, Sparus macrocephalus. Aquaculture,277,92-100.
    Shearer, K.D.(1988) Dietary potassium requirement of juvenile chinook salmon.Aquaculture,73,119-129.
    Shearer, K.D.(1989) Whole body magnesium concentration as an indicator ofmagnesium status in rainbow trout (Salmo gairdneri). Aquaculture,77,201-210.
    Shearer, K.D.&Asgard, T.(1990) Availability of dietary magnesium to rainbowtrout as determined by apparent retention. Aquaculture,86,51-61.
    Shearer, K.D.&Hardy, R.W.(1987) Phosphorus deficiency in rainbow trout fed a dietcontaining deboned fillet scrap. The Progressive Fish-Culturist,49,192–197.
    Shiau, S.&Hsieh, J.(2001) Quantifying the dietary potassium requirement ofjuvenile hybrid tilapia (Oreochromis niloticus x O. aureus). Brit. The Journal ofnutrition,85,213.
    Shiau, S.Y.&Tseng, H.C.(2007) Dietary calcium requirements of juvenile tilapia,Oreochromis niloticus x O. aureus, reared in fresh water. Aquaculture Nutrition,13,298–303.
    Shils, M.E.(1994) Magnesium. In: Modern Nutrition in Health and Disease (Shils, M.E., Olson, J.A.&Shike, M. eds),8th edn, Vol.1, pp.164–184. Lea&Febiger,London.
    Shim, K.F.&Ho, C.S.(1989) Calcium and phosphorus requirements of guppyPoecilia reticulata. Nippon Suisan Gakkaishi,55,1947-1953.
    Shim, K.F.&Ng, S.H.(1988) Magnesium requirement of the guppy (Poeciliareticulata Peters). Aquaculture,73,131-141.
    Skonberg, D.I., Yogev, L., Hardy, R.W. et al.(1997) Metabolic response to dietaryphosphorus intake in rainbow trout (Oncorhynchus mykiss). Aquaculture,157,11-24.
    Slaunwhite, W.R.(1988) Fundamentals of endocrinology, Marcel Dekker, New York.
    Soliman, A.K.&Wilson, R.P.(1992) Water-soluble vitamin requirements of tilapia.2.Riboflavin requirement of blue tilapia, Oreochromis aureus. Aquaculture,104,309-314.
    Steffens, W.(1989) Principles of Fish Nutrition. Ellis Horwood, Chichester, England.384pp.
    Steffens, W.(1997) Princípios Fundamentales de la Alimentación de los Peces.Acribia, Zaragoza.272pp.
    Stone, D.(2003) Dietary carbohydrate utilization by fish. Rev. Fish. Sci.,11,337-369.
    Sugiura, S., Kelsey, K.&Ferraris, R.(2007) Molecular and conventional responses oflarge rainbow trout to dietary phosphorus restriction. Journal of ComparativePhysiology B: Biochemical, Systemic, and Environmental Physiology,177,461-472.
    Swinkels, J.W., Kornegay, E.T., Zhou, W. et al.(1996) Effectiveness of a zinc aminoacid chelate and zinc sulfate in restoring serum and soft tissue zincconcentrations when fed to zinc-depleted pigs. Journal of Animal Science,74,2420.
    Tacon, A.G..(1992) Nutritional Fish Pathology. Morphological Signs of NutrientDeficiency and Toxicity in Farmed Fish, Vol.330. FAO Fisheries TechnicalPaper. FAO, Rome, Italy,75pp.
    Tacon, A.G.(1993) Nutritional pathology. Morphological signs of nutrient deficiencyand toxicity in farmed fish. FAO Fisheries Technical Paper,330,1–75.
    Tacon, A.G., Knox, D.&Cowey, C.B.(1984) Effect of Different dietary Levels ofSalt-mixtures on Growth and Body Composition in Carp. Bulletin of theJapanese Society of Scientific Fisheries,50,1217-1222.
    Tailiang Liu, Hua Wen, Ming Jiang et al.(2010) Effect of dietary chromiumpicolinate on growth performance and blood parameters in grass carp fingerling,Ctenopharyngodon idellus. Fish Physiology and Biochemistry,36,565-572.
    Takeuchi, M.&Nakazoe, J.(1981) Effect of dietary phosphorus on lipid content andits composition in carp. Bulletin of the Japanese Society of Scientific Fisheries,47,347-352.
    Van der Velden, J.A., Flik, G., Spanings, F. et al.(1992) Physiological effects of low‐magnesium feeding in the common carp, Cyprinus carpio. Journal ofExperimental Zoology,264,237-244.
    Van Ham, E.H., Berntssen, M.H.G, Imsland, A.K. et al.(2003) The influence oftemperature and ration on growth, feed conversion, body composition andnutrient retention of juvenile turbot (Scophthalmus maximus). Aquaculture,217,547-558.
    Vielma, J., Koskela, J.&Ruohonen, K.(2002) Growth, bone mineralization, and heatand low oxygen tolerance in European whitefish (Coregonus lavaretus L.) fedwith graded levels of phosphorus. Aquaculture,212,321-333.
    Vielma, J.&Lall, S.P.(1998) Control of phosphorus homeostasis of Atlantic salmon(Salmo salar) in fresh water. Fish Physiology and Biochemistry,19,83-93.
    Vielma, J.&Lall, S.P.(1998) Phosphorus utilization by Atlantic salmon (Salmo salar)reared in freshwater is not influenced by higher dietary calcium intake.Aquaculture,160,117–128.
    Watanabe, T., Kiron, V.&Satoh, S.(1997) Trace minerals in fish nutrition.Aquaculture,151,185-207.
    Watanabe, T., Murakami, A., Takeuchi, L. et al.(1980) Requirement of Chum salmonheld in freshwater for dietary phosphorus. Bulletin of the Japanese Society ofScientific Fisheries,46,361–367.
    Watanabe, T., Satoh, S.&Takeuchi, T.(1988) Availability of minerals in fishmeal tofish. Asian Fisheries Science,1,175–195.
    Willis, J.N.&Sunda, W.G.(1984) Relative contributions of food and water in theaccumulation of zinc by two species of marine fish. Marine Biology,80,273-279.
    Wilson, R. P.(1994) Review: Utilization of dietary carbohydrate by fish. Aquaculture124,67-80.
    Wilson, R.P.&Naggar, G.E.(1992) Potassium requirement of fingerling channelcatfish, Ictalurus puntatus. Aquaculture,108,169-175.
    Wood, C.M.&McDonald, G.(1988) Impact of Environmental Acidification on GillFunction in Fish. Environmental Protection Agency, International Symposium,Guangzhou. pp.162–182.
    Yamaguchi, M.(1998) Role of zinc in bone formation and bone resorption. TheJournal of Trace Elements in Experimental Medicine,11,119-135.
    Yamamoto, H., Satoh, S., Takeuchi, T. et al.(1983) Effects on rainbow trout [Salmogairdnerii] of deletion of manganese or trace elements from fish meal diet.Bulletin of the Japanese Society of Scientific Fisheries,49,287–293.
    Yang, S., Lin, T., Liu, F. et al.(2006) Influence of dietary phosphorus levels ongrowth, metabolic response and body composition of juvenile silver perch(Bidyanus bidyanus). Aquaculture,253,592-601.
    Ye, C., Liu, Y., Tian, L. et al.(2006) Effect of dietary calcium and phosphorus ongrowth, feed efficiency, mineral content and body composition of juvenilegrouper, Epinephelus coioides. Aquaculture,255,263-271.
    Ye, C.X., Tian, L.X., Mai, K.S. et al.(2010) Dietary magnesium did not affectcalcium and phosphorus content in juvenile grouper, Epinephelus coioides.Aquaculture Nutrition,4,378-384.
    Ye, C.X., Tian, L.X., Yang, H.J. et al.(2009) Growth performance and tissue mineralcontent of juvenile grouper (Epinephelus coioides) fed diets supplemented withvarious levels of manganese. Aquaculture Nutrition,15,608-614.
    Yuan, Y.C., Yang, H.J., Gong, S.Y. et al.(2011) Dietary phosphorus requirement ofjuvenile Chinese sucker, Myxocyprinus asiaticus. Aquaculture Nutrition,17,159-169.
    Zeitoun, I.H., Ullrey, D.E.&Magee, W.T.(1976) Quantifying nutrient requirementof fish. Journal of the Fisheries Research Board of Canada,33,167-172.
    Zhang C., Mai K., Ai Q. et al.(2006) Dietary phosphorus requirement of juvenileJapanese seabass, Lateolabrax japonicus. Aquaculture,255,201-209.
    Zhou, Q.C., Liu, Y.J., Mai, K.S. et al.(2004) Effect of dietary phosphorus levels ongrowth, body composition, muscle and bone mineral concentrations forOrange-Spotted Grouper Epinephelus coioides reared in floating cages. Journalof the World Aquaculture Society,35,427-435.
    Zhu, C., Dong, S., Wang, F. et al.(2006) Effects of seawater potassium concentrationon the dietary potassium requirement of Litopenaeus vannamei. Aquaculture,258,543-550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700