用户名: 密码: 验证码:
荧光智能温度响应聚合物水凝胶微球的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
敏感性高分子水凝胶表现出的智能特性,使其在药物释放、生物标记、荧光探针、传感器和仿生人工肌肉等方面具有非常广阔的应用前景。本论文设计制备具有多种功能协同响应性质的聚合物水凝胶纳米材料,以获得高灵敏度、高选择性纳米传感器件。制备了以聚苯乙烯PS为核,聚N-异丙基丙烯酰胺PNIPAM为壳的温敏性核壳水凝胶纳米微球体系。利用配位键作用力将稀土配合物复合进核壳纳米微粒中,制备了具有荧光强度和体积温敏性的智能响应聚合物水凝胶微球。随着环境温度的变化,水凝胶微球的荧光强度在较大温度范围内(10℃-50℃)产生线性响应的规律,且具有可逆回复的光学响应性质。另外,利用库仑将具有聚集诱导荧光发射性能(AIE)有机荧光分子与带电荷的微球壳层进行有效的组装,获得了同时具有AIE性质、荧光功能和体积温敏性的多重协同响应性质的聚合物水凝胶微球。组装后该体系荧光强度增强百倍以上。不需要引入其它外界刺激,仅调节环境温度,即可实现在很大温度范围内(2℃-8℃)对微球荧光强度的线性响应和可逆回复控制。进一步考察了该荧光功能微球与不同离子和生物分子的相互作用而产生的荧光性能响应,结果表明水凝胶微球对阴离子CrO42-具有特异性荧光检测性能,以及对生物大分子的识别功能。另一方面,利用核壳水凝胶纳米微球表面亲疏水性质的温度敏感特性,控制环境温度,在具有亲疏水图案的基片上获得具有荧光发射性质的二维有序图案化组装,开拓多重响应性智能材料体系。
Polymeric materials with responses to external stimuli are of great interest in a number of applications include drug delivery、biolable、bioprobe、thermo-sensor、color-tunable crystals and catalysis. PNIPAM, with a coil-to-globule transition in water at LCST of 32℃, is one of the candidates and has been widely studied most. The coil-to-globule transition of PNIPAM-based responsive system could be a total reversible process.
     Sensitive and fast monitoring of temperature change is of great importance to the development of bioprobes、chemical valves、drug delivery systems、chemsensors and switches. Usually, various PL organic molecules, nanocrystals and quantum dots were used to engineer the fluorescent PNIPAM hydrogels. The thermo-responsive fluorescence of the reported PNIPAM-based hydrogels was only active in a very narrow temperature window, which was around the LCST. The sudden change of the emission around the LCST, which was documented as an on-off feature, enables the application limitation of these fluorescent PNIPAM hydrogels. There are outstanding needs for fluorescent PNIPAM hydrogels to response effectively and continuously in a broad temperature window without such an on-off element. Therefore, we prepared hybrid thermo-responsive hydroel nanoparticles with their PL intensity reversible, linear, and sensitive to a broad temperature range. We investigated and characterized the PL thermo-response of the hydrogel nanoparticles and discussed their applications in environmental protection, bioprobe and building of functional patterns.
     In Chapter 2, we designed the hard core to be PS-co-PNIPAM and the soft shell PNIPAM, PS-co-PNIPAM/PNIPAM hydrogel core/shell nanoparticles which were prepared by two steps of emulsion-free copolymerization. Water-soluble Europium organic complex was designed to coordinate in the shell of core/shell hydrogel nanoparticles.. Our bright Eu-doped PS-co-PNIPAM/PNIPAM hydrogel nanoparticles were detected to be linear, reversible and sensitive, regarding the emission intensity but with little change in the emission peak position. Their temperature-stimuli PL response in a broad temperature range is considerably different from that of the previously reported PNIPAM hydrogels and should bring insights into a universal approach to function nal hydrogels with reversible and linear responses to external stimuli, such as micro-thermometers、bioprobes、drug delivery、thermosensors and building of functional patterns with light emission.
     In Chapter 3, we fabricated the hard core to be PS-co-PNIPAM and the soft shell PNIPAM-AA, PS-co-PNIPAM/PNIPAM hydrogel core/shell nanoparticles.The AA provided the shell of nanoparticles carboxyl group to automatically connected with the AIE-type lumophore, TPE derivative, quaternary ammonium salt 1 by coulomb force. Then the PNIPAM-AA chains could hold the 1 tightly to hamper the freely rotation of the phenyl peripheries. As a result, the amphiphilic 1 at the nanoparticles immediately showed a drastic increase in the PL intensity, more hundreds fold intense than those from 1 solution. Meanwhile, it is remarkable that the PL response of the 1-doped PS-co-PNIPAM/PNIPAM-AA hydrogel nanoparticles is reversible and sensitive to temperature-stimuli which are considerably different from that of the previously reported fluorescent AIE molecules、crystals or films.
     Furthermore, the nanoparticles with special structures endowed the AIE molecule 1 with bright and controllable PL uniformly dispersed in either polar solution or nonpolar solution. The hydrogel nanoparticles served as a suitable carrier may greatly expand practicality and applicability of the AIE molecules at nanoscale. These novel PL nanoparticles doped with 1 with linear reversible and temperature-sensitivity in a broad temperature range (2℃-80℃) is of great importance to the development of micro-thermometer、explosive detection、biological probing、biological imaging、FL sensors and drug delivery.
     In Chapter 4, we systematically investigated the PL responses of 1-doped PS-co-PNIPAM/PNIPAM-AA hydrogel nanoparticles to CrO42- selectively at different temperature.The detection of CrO2- is important as the ion can be carried into humban beings cells and cause oxidative damage to DNA. The ion may also be introduced into drinking water through environmental pollution. The analysis showed that the PL intensity of hydrogel core/shell nanoparticles is sensitively weakened by the addition of a small amount of CrO42- in aqueous media. The PL intensity is decreased progressively with an increase in the amount of added CrO42- with highly selective, reached the discharge standard of national wastewater discharge requirements GB8978-1996 of the highest total chromium (1.5 mg/1 level). The PL intensity of the mixed solution decreased with the increase of temperature. The PL thermo-responsive plots showed that the sensitivity of PL intensity to CrO42- at low temperature was higer than at high temperature. It will be very useful in fast sensitively environmental detection, industrial wastewater discharge and water protection.
     Meanwhile, we investigated the behavior of 1-doped PS-co-PNIPAM/PNIPAM-AA hydrogel nanoparticles as a bioprobe and to find bioprobing systems with higher sensitivities. In BSA、DNA and RNA solutions of the same concentration, all the PL intensity of the solutions decreased. But the PL intensity of RNA mixed solution decreased more than the other two sample above, revealing that the hybrid hydrogel nanoparticles showed higher sensitivity to RNA. Although the PL intensity of the mixed biomolecular solution decreased with the increase of temperature, the PL thermo-response could only be achieved at lower temperature (     On the other hand, we introduce a new approach to prepare a large-area array of specifically periodical regions through assemble of Eu-doped PS-co-PNIPAM/PNIPAM hydrogel nanoparticles, only by controlling environment temperature. Surface property of the particles shells undergoes a hydrophilic to hydrophobic transition below and above LCST. Several drops of latex containing particles spread on a HDT and MHA modified substrate which had a periodical alternative hydrophilic and hydrophobic strips pattern. Large-area two-dimensional assemble with red light emission were obtained simply after drying of water.
引文
[1]. Boyko, V., Richter, S., Grillo, I., Geissler, E. Structure of thermosensitive poly(N-vinylcaprolactam-co-N-vinylpyrrolidone) microgels, Macromolecules 2005, 38:5266-5270.
    [2]. Meyer, S., Richtering, W. Influence of polymerization conditions on the structure of temperature-sensitive poly(N-isopropylacrylamide) microgels, Macromolecules 2005,38,1517-1519.
    [3]. Hay, D., N. T., Rickert, P. G., Seifert, S., Firestone, M. A. Thermoresponsive nanostructures by self-assembly of a poly(N-isopropylacrylamide)-lipid conjugate, J. Am. Chem. Soc.2004,126,2290-2291.
    [4]. Huang, X., Lowe, T. L., Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs, Biomacromolecules,2005,6,2131-2139.
    [5]. Daisuke, S., Jonathan G. M., Haruma K., L. Andrew, L., Colloidal Crystals of Thermosensitive, Core/Shell Hybrid Microgels, J. Phys. Chem. C.2007,111, 5667-5672.
    [6]. Jun, L., Xia, H., Yang, L., Di, L., Yong, W. W., Jing, H. L., Yu, B. B., Tie, J. L., Highly Photoluminescent CdTe/Poly (N-isoprolyacrylamide) Temperature-Sensitive Gels, Adv. Mater.2005,17,163-166.
    [7]. Matthias, K., Isabel, P. S., Jorge, P. J., Thomas, H., Luis, M. L. M., Nanorod-Coated PNIPAM Microgels:Thermoresponsive Optical Properties, Small 2007,3,1222-1229.
    [8]. Yang Y., Yan X. H., Cui Y., He Q., Li D.X., Wang A.H., Fei J.B., Li J.B., Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a "graft-from" method, Journal of Materials Chemistry 2008,18, 5731-5737.
    [9]. Franck Montagne, Jrome Polesel-Maris, Raphael Pugin and Harry Heinzelmann, Poly(N-isopropylacrylamide) Thin Films Densely Grafted onto Gold Surface: Preparation, Characterization, and Dynamic AFM Study of Temperature-Induced Chain Conformational Changes, Langmuir,2009,25,983-991.
    [10]. Alvarez-Puebla, RA Contreras-Caceres, R Pastoriza-Santos, I, et al., Au@pNIPAM Colloids as Molecular Traps for Surface-Enhanced, Spectroscopic, Ultra-Sensitive Analysis, Angew. Chem.-International Edition,2009,48,144-149.
    [11].江雷,冯琳,仿生智能纳米界面材料,化学工业出版社,2007.
    [12]. Francesca Cavalieri, Almar Postma, Lillian Lee and Frank Caruso, Assembly and Functionalization of DNA-Polymer Microcapsules,ACS Nano,2009,3,234-240.
    [13]. Jonathan, G.M., Robert, D. B., J.Michael C., L. Andrew, L., Self-Assembly of "Paint-On" Colloidal Crystals Using Poly (styrene-co-N-isopropyalcrylamide) Spheres, Chem. Mater.2007,19,1584-1591.
    [14]. Chapman, C. F. Liu, Y. Sonek, G. J. Tromberg, B. The use of exogenous fluorescent probes for temperature measurements in single living cells, J. Photochem. Photobiol.1995,62,416-425.
    [15]. Chandrasekharan, N. Kelly, L. A. A Dual Fluorescence Temperature Sensor Based on Perylene/Exciplex Interconversion, J. Am. Chem. Soc.2001,123, 9898-9899.
    [16]. Brewster, R. E. Kidd, M. J. Schuh, M. D. Optical thermometer based on the stability of a phosphorescent 6-bromo-2-naphthol/a-cyclodextrin2 ternary complex, Chem. Commun.2001,1134-1135.
    [17]. I. D. Figueroa, M. El Baraka, E. Quinones, O. Rosario and M. Deumie. A fluorescent temperature probe based on the association between the excited states of 4-(N,N-dimethylamino)benzonitrile and β-cyclodextrin, Anal. Chem.1998,70, 3974-3977.
    [18]. Engeser, M. Fabbrizzi, L. Licchelli, M. Sacchi, D. A fluorescent molecular thermometer based on the nickel(Ⅱ) high-spin/low-spin interconversion, Chem. Commun.1999,1191-1192.
    [19]. Lou, J. Hatton, T. A. Laibinis, P. E. Fluorescent probes for monitoring temperature in organic solvents, Anal. Chem.1997,69,1262-1264.
    [20]. Schrum, K. F. Williams, A. M. Haerther, S. A. Ben-Amotz, D. Molecular Fluorescence Thermometry, Anal. Chem.1994,66,2788-2790.
    [21]. de Silva, A. P. Gunaratne, H. Q. N. Jayasekera, K. R. O'Callaghan, S. Sandanayake, K. R. A. S. Chem. Lett.1995,123-124.
    [22]. Gong, Y. J. Gao, M. Y. Wang, D. Y. Mohwald, H., Incorporating fluorescent CdTe nanocrystals into a hydrogel via hydrogen bonding:Toward fluorescent microspheres with temperature-responsive properties, Chem. Mater. 2005,17,2648-2653.
    [23]. Seiichi Uchiyama, Yuriko Matsumura, A. Prasanna de Silva, and Kaoru Iwai, Fluorescent Molecular Thermometers Based on Polymers Showing Temperature-Induced Phase Transitions and Labeled with Polarity-ResponsiveBenzofurazans, Anal. Chem.2003,75,5926-5935.
    [24]. Kenyon, A. Recent developments in rare-earth doped materials for optoelectronics, J. Prog. Quantum Electron.2002,26,225-284.
    [25]. Blasse, G. Grabmaier, B. C. Luminescent Materials Spinger-Verlag:Berlin, 1994.
    [26]. Blasse, G. Luminescence of inorganic solids:From isolated centres to concentrated systems, Prog. Solid State Chem.1988,18,79-171.
    [27]. Elbanowski, M. Makowsaka, B. The lanthanides as luminescent probes in investigations of biochemical systems", J. Photochem. Photobiol. A 1996,99, 85-92.
    [28]. Biinzli, J.-C. G. Benefiting from the Unique Properties of Lanthanide Ions, Acc. Chem. Res.2006,39,53-61.
    [29]. Bunzli, J.-C. G. Piguet, C. Taking advantage of luminescent lanthanide ions, Chem. Soc. ReV.2005,34,1048-1077.
    [30]. Hasegawa, Y. Wada, Y. Yanagida, S. Strategies for the design of luminescent lanthanide(Ⅲ) complexes and their photonic applications, J. Photochem. Photobiol.2004,5,183-202.
    [31]. Tissue, B. M. "Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts", Chem. Mater.1998,10,2837-2845.
    [32]. Carnall, W. T. Beitz, J. V. Crosswhite, H. Rajnak, K. Mann, J. B. Spectroscopic properties of the f-elements in compounds and solutions. In Systematics and the Properties of Lanthanides Sinha, S. P., Ed. D. Reidel Publishing Company:Dordrecht, The Netherlands,1983 p 389.
    [33]. Carnall, W. T. The absorption and fluorescence spectra of rare earth ions in solution. In Handbook on the Physics and Chemistry of Rare Earths, Gschneidner, K. A., Jr., Eyring, L., Eds. Elsevier:Amsterdam,1979,3, Chapter 24,171.
    [34]. Blasse, J. Chemistry and Physics of R-activated Phosphors. In Handbook on the Physics and Chemistry of Rare Earths Gschneidner, K. A., Jr., Eyring, L., Eds. Elsevier:Amsterdam,1979,4, Chapter 34,237.
    [35]. Weber, M. J. Rare Earth Lasers. In Handbook on the Physics and Chemistry of Rare Earths Gschneidner, K. A., Jr., Eyring, L., Eds. Elsevier:Amsterdam, 1979,4, Chapter 35,275.
    [36]. Morrison, C. A. Leavitt, R. P. Spectroscopic properties of triply ionized lanthanides in transparent host crystals. In Handbook on the Physics and Chemistry of Rare Earths Gschneidner, K. A., Jr., Eyring, L., Eds. Elsevier: Amsterdam,1982,5, Chapter 46, p 461.
    [37]. Weissman, S. I. Intramolecular energy transfer. The fluorescence of complexes of europium, J. Chem. Phys.1942,10,214-217.
    [38]. Whan, R. E. Crosby, G. A. Luminscence studies of rare eart complexes: Benzoylacetonate and dibenzoylmethide chelates, J. Mol. Spectrosc.1962,8, 315-327.
    [39]. Crosby, G. A. Whan, R. E. Alire, R. M. Intramolecular energy transfer in rare earth chelates, Role of the triplet state J. Chem. Phys.1961,34,743.
    [40]. Crosby, G. A. Whan, R. E. Freeman, J. J. J. Phys. Chem.1962,66,2493-2499.
    [41]. Edser, C. Plast., Addit. Compd.2002,4 (3),20.
    [42]. Goldburt, E. T. Bolchoukhine, V. A. Levonovitch, B. N. Sochtine, N. P. Sicinano, A. Sandy, M. von Gundlach, P. World Patent 2000024243,2002.
    [43]. Minich, I. Minich, A. Karnachuk, R. Golovazkaja, I. Raida, V. Proceedings of the 5th Korea-Russia International Symposium on Science and Technology 2001,77.
    [44]. Goldburt, E. T. Bolchoukhine, V. A. Levonovitch, B. N. Sochtine, N. P. US Patent 6,153,665,2000.
    [45]. Yang, C. Sun, Z. F. Liu, L. Zhang, L. Q. Preparation and luminescence performance of rare earth agriculture-used light transformation composites, J. Mater. Sci.2008,43,1681-1687.
    [46]. IkedaIkeda, M. Yoshioka, J. Shirasaki, S. Kiyoyanagi, N. Kitayama, Y. US Patent 20060145122,2006.
    [47]. Suyver, J. F. Meijerink, A. Chem. Weekbl.2002,98 (4),12.
    [48]. Kik, P. G. Polman, A. Erbium-doped optical-waveguide amplifiers in silicon, MRS Bull.1998,23,48-54.
    [49]. Kobayashi, T. Nakatsuka, S. Iwafuji, T. Kuriki, K. Imai, N. Nakamoto, T. Claude, C. D. Sasaki, K. Koike, Y. Fabrication and superfluorescence of rare-earth chelate-doped graded index polymer optical fibers, Appl. Phys. Lett. 1997,71,2421-2423.
    [50]. Mataki, H. Tsuchii, K. Mibuka, N. Suzuki, A. Taniguchi, J. S. H. Yamashita, K. Oe, K. J. Photopolym. Sci. Technol.2007,20,67.
    [51]. J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Worhoff, and M. Pollnau Gain
    bandwidth of 80 nm and 2 dB/cm peak gainin Al2O3:Er3+ optical amplifiers on silicon, J. Opt. Soc. Am. B 2010 27 187
    [52]. Kido, J. Nagai, K. Ohashi, Y. Electroluminescence in a terbium complex, Chem. Lett.1990,657-660.
    [53]. T. Oyamada, Y. Kawamura, T. Koyama, H. Sasabe and C. Adachi Formation of Eu(DPM)3:BCP chelate complexes by vacuum co-deposition and their application in organic light-emitting diodes, Adv. Mater.,2004,16,1082-1086.
    [54]. J. Fang, H. You, J. Gao and D. Ma, Chem. Phys. Lett.,2004,392,11.
    [55]. H. Xu, K. Yin and W. Huang, Comparison of the Electrochemical and Luminescence Properties of Two Carbazole-Based Phosphine Oxide EuⅢ Complexes:Effect of Different Bipolar Ligand Structures, ChemPhysChem,2008, 9,1752-1760.
    [56]. H. Xu, K. Yin and W. Huang, Tuning the intramolecular energy transfer, morphology, and carrier injection ability of the complexes, Chem.-Eur. J.,2007, 13,10281-10293.
    [57]. W. Zhu, Q. Jiang, Z. Lu, X. Wei, M. Xie, D. Zou and T. Tsutsui, Red electroluminescence from a novel europium β-diketone complex with acylpyrazolone ligand, Synth. Met.,2000,111-112.
    [58]. H. Xin, F. Y. Li, M. Shi, Z. Q. Bian and C. H. Huang, Efficient Electroluminescence from a New Terbium Complex, J. Am. Chem. Soc.,2003, 125,7166-7177.
    [59]. Z. F. Li, L. Zhou, J. B. Yu, H. J. Zhang, R. P. Deng, Z. P. Peng and Z. Y. Guo, Synthesis, Structure, Photoluminescence and Electroluminescence Properties of a New Dysprosium Complex, J. Phys. Chem. C,2007,111,2295-2300.
    [60]. F. Zhang, Z. Xu, S. Zhao, L. Liu, B. Sun and J. Pei, Physica B:Improvement of rare-earth complex electroluminescence by using organic inorganic heterostructure Condens, Matter,2006,381,256-259.
    [61]. Z. Chen, Z. Deng, Y. Shi, Y. Xu, J. Xiao, Y. Zhang and R. Wang, J. Lumin.,2007, 671,122-123.
    [62]. D. Guo, Z. Deng, C. Liang, P. Lin, Y. Li and Y. Xu, J. Lumin.,2007,683, 122-123.
    [63]. Y. Lv, J. Zhang, W. Cao, L. Song and Z. Xu, Spectrochim. Acta, Part A,2008,70, 253.
    [64]. Amao, Y. Okura, I. Miyashita, T. Thenoyltrifluoroacetonato 1,10-Phenanthroline Europium (Ⅲ) Complex Immobilized in Fluoropolymer Film as Optical Oxygen Sensing, Material,Chem. Lett.2000,934-935.
    [65]. Amao, Y. Okura, I. Miyashita, T. Optical oxygen sensing based on the luminescence quenching of europium(Ⅲ) complex immobilized in fluoropolymer film, Bull. Chem. Soc. Jpn.2000,73,2663-2668.
    [66]. Amao, Y. Okura, I. Miyashita, T. Photo luminescent oxygen sensing using tris(acetylacetonato)-1,10-phenanthroline terbium(Ⅲ) complex doped on alumina film, Chem. Lett.2000,1286-1287.
    [67]. Lobnik, A. Majcen, N. Niederreiter, K. Uray, G. Optical pH sensor based on the absorption of antenna generated europium luminescence by bromothymol blue in a sol-gel membrane, Sens. Actuators B 2001,74,200-206.
    [68]. Turel, M. Cajlakovic, M. Austin, E. Dakin, J. P. Uray, G. Lobnik, A. Direct UV-LED lifetime pH sensor based on a semi-permeable sol-gel membrane immobilized luminescent Eu3+ chelate complex, Sens. Actuators B 2008,131, 247-253.
    [69]. Lobnik, A. Niederreiter, K. Uray, G. Optical ph sensor based on sol-gel-doped new luminescent, dye Proc. SPIE 1999,3856,243-250.
    [70]. Wong, K. L. Law, G. L. Yang, Y. Y. Wong, W. T. A Highly Porous Luminescent Terbium-Organic Framework for Anion Sensing, Adv. Mater.2006, 18,1051-1504.
    [71]. Barja, B. C. Aramendia, P. F. Luminescent Eu(Ⅲ) hybrid materials for sensor applications, Photochem. Photobiol. Sci.2008,7,1391-1399.
    [72]. Wolfbeis, O. S. Durkop, A. Wu, M. Lin, Z. H. Europium ion-based luminescent sensing probe for hydrogen peroxide, Angew. Chem., Int. Ed.2002, 41,4495-4498.
    [73]. Courrol, L. C. Samad, R. E. R. E. Curr. Pharm. Anal.2008,4,238-248. Curr. Pharm. Anal.2008,4,238-248.
    [74]. Wickersheim, K. A. US Patent 4,448,547,1984.
    [75]. Khalil, G. E. Lau, K. Phelan, G. D. Carlson, B. Gouterman, M. Callis, J. B. Dalton, L. R. Europium beta-deketonate temperature sensors:effects of ligands, matrix, and concentration, ReV. Sci. Instrum.2004,75,192-206.
    [76]. Basu, B. B. J. Vasantharajan, N. J. Lumin.2008,128,1701.
    [77]. Liu, Y. Qian, G. D. Wang, Z. Y. Wang, M. Q. Appl. Phys. Lett.2005,86, 071907-1—071907-3.
    [78]. Kolodnor, P. Tyson, J. A. Microscopic Fluorescent Imaging of Surface Temperature Profiles with 0.01℃ Resolution, Appl. Phys. Lett.1982,40, 782-784.
    [79]. Kolodner, P. Tyson, J. A. Appl. Phys. Lett.1983,42,117-119.
    [80]. Herzum, C. Boit, C. Kolzer, J. Otto, J. Weiland, R. Microelectron. Kolodner, P. Katzir, A. Hartsough, N. Noncontact Surface Temperature Measurement during Reactive-ion Etching using Fluorescent Polymer Films, Appl. Phys. Lett.1983,42,749-751.
    [81]. Kolodner, P. Katzir, A. Hartsough, N. J. Vac. Sci. Technol. B 1983,1,501.
    [82]. Hampel, G. Kolodner, P. Gammel, P. L. Polakos, P. A. deObaldia, E. Mankiewich, P. M. Anderson, A. Slattery, R. Zhang, D. Liang, G. C. Shih, C. F. High power failure of superconducting microwave filters:Investigation by means of thermal imaging, Appl. Phys. Lett.1996,69,571.
    [83]. Haugen, O. Johansen, T. H. Chen, H. Yurchenko, V. Vase, P. Winkler, D. Davidson, B. A. Testa, G. Sarnelli, E. Altshuler, E. IEEE Trans. Appl. Supercond.2007,17,3215.
    [84]. Niratisairak, S. Haugen, O. Johansen, T. H. Ishibashi, T.Observation of hotspot in BSCCO thin film structure by fluorescent thermal imaging, Physica C 2008,468,442-446.
    [85]. McGrath, J. J. Lian, B. US Patent 6,648,506,2003.
    [86]. R. E. Connally and J. A. Piper, ReviewTime-gated luminescence microscopy, Ann. N. Y. Acad. Sci.,2008,1130,106-116.
    [87]. N. Sergent, J. A. Levitt, M. A. Green and K. Suhling, Proc. SPIE,2008,6861, 68610K.
    [88]. B. Song, C. D. B. Vandevyver, E. Deiters, A.-S. Chauvin, I. A. Hemmila and J.-C. G. Bunzli, versatile method for quantification of DNA and PCR products based on time-resolved EuⅢ luminescence, Analyst,2008,133,1749-1756.
    [89]. E. Deiters, B. Song, A.-S. Chauvin, C. D. B. Vandevyver and J.-C. G. Bunzli, Effect of the length of polyoxyethylene substituents on luminescent bimetallic lanthanide bioprobes, New J. Chem.,2008,32,1140-1152.
    [90]. E. Deiters, B. Song, A.-S. Chauvin, C. Vandevyver, Chem.-Eur. J., Luminescent Bimetallic Lanthanide Bioprobes for Cellular Imaging with Excitation in the Visible-Light Range,2009,15,885-900.
    [91]. B. Song, C. D. B. Vandevyver, A.-S. Chauvin Time-resolved luminescence microscopy of bimetallic lanthanide helicates in living cells, Org. Biomol. Chem., 2008,6,4125-4133.
    [92]. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun.,2001,1740-1741.
    [93]. B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. Zhu, Efficient blue emission from siloles, J. Mater. Chem.,2001,11,2974-2978.
    [94]. M. Freemantle, Chem. Eng. News,2001,79,29-58.
    [95]. Th. Forster and K. Kasper, Z. Phys. Chem. (Munich),1954,1,275.
    [96]. J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London,1970.
    [97]. J. Malkin, Photophysical and Photochemical Properties of Aromatic Compounds, CRC, Boca Raton,1992.
    [98]. N. J. Turro, Modern Molecular Photochemistry, University Science Books, Mill Valley,1991.
    [99]. J. Slavik, Fluorescence Microscopy and Fluorescent Probes, Plenum, New York, 1996.
    [100]. W. H. Tan, K. M. Wang and T. J. Drake, Molecular beacons Curr. Opin. Chem. Biol.,2004,8,547-553.
    [101]. K. E. Sapsford, L. Berti and I. L. Medintz, Materials for fluorescence resonance energy transfer analysis:beyond traditional donor-acceptor combinations, Angew. Chem., Int. Ed.,2006,45,4562-4589.
    [102]. S. M. Borisov and O. S. Wolfbeis, Review:Optical Biosensors, Chem. Rev., 2008,108,423-461.
    [103]. A. P. Alivisatos, W. Gu and C. Larabell, Quantum dots as cellular probes, Annu. Rev. Biomed. Eng.,2005,7,55-76.
    [104]. I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater.,2005,4,435-446.
    [105]. M. De, P. S. Ghosh and V. M. Rotello, Applications of Nanoparticles in Biology, Adv. Mater.,2008,20,4225-4241.
    [106]. D. W. Domaille, E. L. Que and C. J. Chang, Synthetic Fluorescent Sensors for Studying the Cell Biology of Metals, Nat. Chem. Biol.,2008,4,168-175.
    [107]. M. H. Lim and S. J. Lippard, DNA Strand Cleavage Near a CC Mismatch Directed by a Metalloinsertor, Acc. Chem. Res.,2007,40,41.
    [108]. J.-S. Yang and J.-L. Yan Central-ring functionalization and application of rigid, aromatic, and H-shaped pentiptycene scaffold, Chem. Commun.,2008, 1501-1512.
    [109]. Y.-T. Lee, C.-L. Chiang and C.-T. Solid-state highly fluorescent diphenylaminospirobifluorenylfumaronitrile red emitters for non-doped organic light-emitting diodes, Chen, Chem. Commun.,2008,217-219.
    [110]. J. Wang, Zhao, Y. C. Dou, H. Sun, P. Xu, K. Ye, J. Zhang, S. Jiang, F. Li and Y. Wang, Alkyl and Dendron Substituted Quinacridones:Synthesis, Structures, and Luminescent Properties, J. Phys. Chem. B,2007,111,5082-5089.
    [111]. A. P. Kulkarni and S. A. Jenekhe, Blue Light-Emitting Diodes with Good Spectral Stability Based on Blends of Poly(9,9-dioctylfluorene):Interplay between Morphology, Photophysics, and Device Performance, Macromolecules, 2003,36,5285-5296.
    [112]. L. Chen, S. Xu, D. McBranch and D. Whitten, Tuning the Properties of Conjugated Polyelectrolytes Through Surfactant Complexation, J. Am. Chem. Soc.,2000,122,9302-9303.
    [113]. P. N. Taylor, M. J. O'Connell, L. A. McNeill, M. J. Hall, R. T. Aplin and H. L. Anderson, Building photogenic molecules-molecules made for direct individual observation, Angew. Chem., Int. Ed.,2000,39,3456-3460.
    [114]. H. Chen, W.Y. Lam, J. Luo, Y. Ho, B.Z. Tang, D. Zhu, M. Wong, H.S. Kwok, Highly efficient organic light-emitting diodes with a silole-based compound, Appl. Phys. Lett.2002,81,574-576.
    [115]. J. Chen, C.C.W. Law, J.W.Y. Lam, Y. Dong, S.M.F. Lo, I.D. Williams, D. Zhu, B.Z. Tang, Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5- tetra-phenylsiloles, Chem. Mater.2003,15,1535-1546.
    [116]. Junwu Chen, Zhiliang Xie, Jacky W. Y. Lam, Charles C. W. Law, and Ben Zhong Tang, Silole-Containing Polyacetylenes. Synthesis, Thermal Stability, Light Emission, Nanodimensional Aggregation, and Restricted Intramolecular Rotation, Macromolecules 2003,36,1108-1117.
    [117]. Junwu Chen, Han Peng, Charles C. W. Law, Yuping Dong, Jacky W. Y. Lam, Ian D. Williams, and Ben Zhong Tang, Hyperbranched Poly(phenylenesilolene)s: Synthesis, Thermal Stability, Electronic Conjugation, Optical Power Limiting, and Cooling-Enhanced Light Emission, Macromolecules 2003,36,4319-4327.
    [118]. Y. Ren, J.W.Y. Lam, Y.Q. Dong, B.Z. Tang, K.S. Wong, J. Enhanced emission efficiency and excited state lifetime due to restricted intramolecular motion in silole aggregates, Phys. Chem. B 2005,109,1135-1140.
    [119]. Y. Ren, Y. Dong, J.W.Y. Lam, B.Z. Tang, K.S. Wong, Studies on the aggregation-induced emission of silole film and crystal by time-resolved fluorescence technique, Chem. Phys. Lett.2005,402,468-473
    [120]. Z. Li, Y.Q. Dong, B. Xiu, Y. Tang, M. Haeussler, H. Tong, Y.P. Dong, J.W.Y. Lam, Y. Ren, H.H.Y. Sung, K.S. Wong, P. Gao, I.D. Williams, H.S. Kwok, B.Z. Tang, Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials, J. Phys. Chem. B 2005,109,10061-10066.
    [121]. C.J. Bhongale, C.W. Chang, E.W.G. Diau, C.S. Hsu, Y.Q. Dong, B.Z. Tang, Formation of nanostructures of hexaphenylsilole with enhanced color-tunable emissions, Chem. Phys. Lett.2006,419,444-449.
    [122]. Y.Q. Dong, J.W.Y. Lam, A. Qin, Z. Li, J.Z. Sun, Y.P. Dong, B.Z. Tang, Vapochromism and Crystallization-Enhanced Emission of 1,1-Disubstituted 2,3,4,5-Tetraphenylsiloles, J. Inorg. Organomet.2007, Polym. Mater.17,673-678
    [123]. L. Heng, J. Zhai, A. Qin, Y. Zhang, Y. Dong, B.Z. Tang, L. Jiang, Fabrication of Hexaphenylsilole Nanowires and Their Morphology-Tunable Photoluminescence, Chemphyschem 2007,8,1513-1518.
    [124]. Y.Q. Dong, J.W.Y. Lam, A. Qin, Z. Li, J.Z. Liu, J.Z. Sun, Y.P. Dong, B.Z. Tang, Endowing hexaphenylsilole with chemical sensory and biological probing properties by attaching amino pendants to the silolyl core, Chem. Phys. Lett.2007, 446,124-127.
    [125]. L. Heng, Y.Q. Dong, J. Zhai, B.Z. Tang, L. Jiang, Solvent Fuming Responsive Switching of Both Wettability and Solid-State Luminescence in Silole Film, Langmuir 2008,24,2157-2161.
    [126]. Z. Li, Y.Q. Dong, J.W.Y. Lam, J.X. Sun, A.J. Qin, M. Haeussler, Y.P. Dong, H.H.Y. Sung, I.D. Williams, H.S. Kwok, B.Z. Tang, Functionalized Siloles: Versatile Synthesis, Aggregation-Induced Emission, and Sensory and Device Applications, Adv. Funct. Mater.2009,19,905-917.
    [127]. X. Fan, J.L. Sun, F.Z. Wang, Z.Z. Chu, P. Wang, Y.Q. Dong, R.R. Hu, B.Z. Tang, D.C. Zou, Photoluminescence and Electroluminescence of Hexaphenylsilole Are Enhanced by Pressurization in the Solid State, Chem. Commun.2008,2989-2991.
    [128]. G. Yu, S. Yin, Y. Liu, J. Chen, X. Xu, X. Sun, D. Ma, X. Zhan, Q. Peng, Z. Shuai, B.Z. Tang, D. Zhu, W. Fang, Y. Luo, Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles, J. Am. Chem. Soc.2005,127,6335-6346.
    [129]. Zhen Li, Yong Qiang Dong, Jacky W. Y. Lam, Jiaxin Sun, Anjun Qin, Luminescent Silole Nanoparticles as Chemoselective Sensors for Cr(Ⅵ). J. Am. Chem. Soc.,2005,127,11661-11665.
    [130]. C.P.Y. Chan, M. Haeussler, B.Z. Tang, Y. Dong, K.K. Sin, W.C. Mak, D. Trau, M. Seydack, R. Renneberg, Silole nanocrystals as novel biolabels, J. Immuno. Methods 2004,295,111-118.
    [131]. C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes, Appl. Phys. Lett.1987,51,913-915.
    [132]. G. Gustafsson, Y. Cao, G.M. Treacy, F. Klavetter, N. Colaneri, A.J. Heeger, Flexible light-emitting diodes made from soluble conducting polymers, Nature 1992,357,477-479.
    [133]. X. Gong, D. Moses, A.J. Heeger, S. Liu, A.K.Y. Jen, High-performance polymer light-emitting diodes fabricated with a polymer hole injection layer, Appl. Phys. Lett.2003,83,183-185.
    [134]. M.A. Baldo, D.F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature 1998,395,151-154.
    [135]. M.A. Baldo, M.E. Thompson, S.R. Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer, Nature 2000,403, 750-753.
    [136]. D.G. Ma, G. Wang, Y.F. Hu, Y.G. Zhang, L.X. Wang, X.B. Jing, F.S. Wang, A dinuclear aluminum 8-hydroxyquinoline complex with high electron mobility for organic light-emitting diodes, Appl. Phys. Lett.82,2003,1296-1298.
    [137]. K. Park, Controlled Drug Delivery:Challenges and Strategies, ACS Professional Reference Book, American Chemical Society, Washington, DC, 1997.
    [138]. I. Roy and M. N. Gupta, Smart Polymeric Materials:Emerging Biochemical Applications, Chemistry & Biology,2003,10,1161-1171.
    [139]. R. Pelton, Temperature-sensitive aqueous microgels, Advances in Colloid and Interface Science,2000,85,1-33.
    [140]. H. G. Schild, Poly(N-isopropylacrylamide):experiment, theory and application, Progress in Polymer Science,1992,17(2),163-249.
    [141]. K. S. Soppimath, T. M. Aminabhavi, A. M. Dave, S. G. Kumbar and W. E. Rudzinski, Stimulus-responsive smart hydrogels as novel drug delivery systems, Drug Development and Industrial Pharmacy,2002,28,957-974.
    [142]. D. Schmaljohann, Thermo- and pH-responsive polymers in drug delivery, Advanced Drug Delivery Reviews,2006,58,1655-1670.
    [143]. J. Kost and R. Langer, Responsive polymeric delivery systems, Advanced Drug Delivery Reviews,2001,46,125-148.
    [144]. Y. Qiu and K. Park, Environment-sensitive hydrogels for drug delivery, Advanced Drug Delivery Reviews,2001,53,321-339.
    [145]. B. Jeong and A. Gutowska, Lessons from nature:stimuli-responsive polymers and their biomedical Applications, Trends in Biotechnology,2002,20,305-311.
    [146]. I. Y. Galaev and B. Mattiasson, Trends in "Smart" polymers and what they could do in biotechnology and medicine, Biotechnology,1999,17,335-340.
    [147]. K.Matyjaszewski, T. P. Davis, Handbook of Radical Polymerization, John Wiley and Sons, Inc., Hoboken,2002.
    [148]. Pichot C, Duracher D, Elaissari A, Mallet F. Polym Prepr Am Chem Soc Div Polym Chem 2000,4,11026-10277.
    [149]. Pelton RH. Polystyrene and Polystyrene-Butadiene Latexes Stabilized by Poly(N-Isopropylacrylamide), J Polym Sci 1988,26,9-18.
    [150]. Ballauff M. Macromol Chem Phys 2003 204:220-234.
    [151]. Hellweg T, Dewhurst CD, Bruckner E, Kratz K, Eimer W. Colloid Polym Sci 2000278:972-978.
    [152]. Nayak S, Gan D, Serpe MJ, Lyon LA. Small 2005 1:416-421.
    [153]. Berndt I, Popescu C, Wortmann FJ, Richtering W. Angew Chem Int Ed 2006 45:1081-1085.
    [154]. Berndt I, Pedersen JS, Richtering W. Angew Chem Int Ed 2006 45:1737-1741.
    [155]. Hirotsu, S., Tanaka, T., Hirokawa, Y., Volume-phase transitions of ionized N-isopropylacrylamide gels, J.Chem. Phys.1987,81,1392.
    [156]. Schild, H. G. Poly(N-isopropylacrylamide):experiment, theory and application. Prog. Polym. Sci.17,163-249 1992
    [157]. Peppas, N. A., Hilt, J. Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine:from fundamentals to bionanotechnology. Adv. Mater.18, 1345-1360 2006
    [158].4 Chaterji, S., Kwon, I. K. & Park, K. Hydrogels for medical and biomedical applications. Prog. Polym. Sci.32,1083-1122 2007
    [159].5 Okano, T., Bae, Y. H., Jacobs, H. & Kim, S. W. Thermally on-off switching polymers for drug permeation and release. J. Control. Rel.11,255-265 1990
    [160]. S. T. Milner, Polymer Brushes, Science,1991,251,905-914.
    [161]. H. Yim, M. S. Kent, D. L. Huber, S. Satija, J. Majewski and G. S. Smith, Conformation of End-Tethered PNIPAM Chains in Water and in Acetone by Neutron Reflectivity, Macromolecules,2003,36,5244-5251.
    [162]. H. Yim, M. S. Kent, S. Mendez, G. P. Lopez, S. Satija and Y. Seo, Effects of Grafting Density and Molecular Weight on the Temperature-Dependent Conformational Change of Poly(N-isopropylacrylamide) Grafted Chains in Water, Macromolecules,2006,39,3420-3426.
    [163]. L. K. Ista, V. H. Perez-Luna and G. P. Lopez, Surface-Grafted, Environmentally Sensitive Polymers for Biofilm Release, Appl. Environ. Microbiol.,1999,65,1603-1609.
    [164]. H. Feil, Y. H. Bae, F. Jan and S. W. Kim, Molecular separation by thermosensitive hy- drogel membranes, J. Membr. Sci.,1991,64,283-294.
    [165]. D. E. Discher and A. Eisenberg, Polymer vesicles, Science,2002,297, 967-972.
    [166]. V. Butun, N. C. Billingham and S. P. Armes, Synthesis and aqueous solution properties of novelhydrophilic-hydrophilic block copolymers based on tertiary aminemethacrylates, Chem. Commun.,1997,671-672.
    [167]. F. J. Xu, S. P. Zhong, L. Y. L. Yung, E. T. Kang and K. G. Neoh, Surface-Active and Stimuli-Responsive Polymer-Si(100) Hybrids from Surface-Initiated Atom Transfer Radical Polymerization for Control of Cell Adhesion, Biomacromolecules,2004,5,2392-2403.
    [168]. Y. Deng, W. Yang, C. Wang and S. Fu, A Novel Approach for Preparation of Thermoresponsive Polymer Magnetic. Microspheres with Core±Shell Structure, Adv. Mater.,2003,15,1729-1732.
    [169]. M. Kaholek, W. K. Lee, B. LaMattina, K. C. Caster and S. Zauscher, Fabrication of Stimulus-Responsive Nanopatterned Polymer Brushes by Scanning-Probe Lithography, Nano Letters,2004,4,373-376.
    [170]. M. Kaholek, W. K. g. Lee, J. Feng, B. LaMattina, D. J. Dyer and S. Zauscher, Polyelectrolyte Brush Arrays Fabricated by Combining Electron Beam Lithography with Surface-Initiated Photopolymerization, Chem. Mater.,2006,18, 3660-3664.
    [171]. Lu Y, Mei Y, Drechsler M, Ballauff M. Angew Chem Int Ed 2006 45: 813-816.
    [172]. Lu Y, Mei Y, Drechsler M, Ballauff M. Thermosensitive core-shell particles as carrier systems for metallic nanoparticles, J Phys Chem B 2006 110:3930-3937.
    [173]. Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M. Chem Mater 2007, Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core-Shell Microgels,19(5),1062-1069.
    [174]. Blanchette J, Peppas NA. Ann, Oral Chemotherapeutic Delivery:Design and Cellular Response, Biomed Eng 2005.33,142-149.
    [175]. P. A. Dresco, V. S. Zaitsev, R. J. Gambino and B. Chu, Preparation and Properties of Magnetite and Polymer Magnetite Nanoparticles, Langmuir,1999, 15,1945-1951.
    [176]. J. H. Kim and T. R. Lee, Thermo- and pH-Responsive Hydrogel-Coated Gold Nanoparticles, Chem. Mater.,2004,16,3647-3651.
    [177]. P. Gong, J. Yu, H. Sun, J. Hong, S. Zhao, D. Xu and S. Yao, Preparation and characterization of OH-functionalized magnetic nanogels under UV irradiation, J. Appl. Polym. Sci.,2006,101,1283-1290.
    [178]. R. A. Frimpong and J. Z. Hilt, Poly(n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization, Nanotechnology,2008,19,175101.
    [179]. T. Kawano, Y. Niidome, T. Mori, Y. Katayama and T. Niidome, PNIPAM Gel-Coated Gold Nanorods for Targeted Delivery Responding to a Near-Infrared Laser, Bioconjugate Chem.,2009,20,209-212.
    [180]. M. Das, N. Sanson, D. Fava and E. Kumacheva, Microgels Loaded with Gold Nanorods:Photothermally Triggered Volume Transitions under Physiological Conditions, Langmuir,2007,23,196-201.
    [181]. S. Park,Y.Lee,D.N.Kim,S. Park,E. Jangand W.-G.Koh, React.Funct. Polym.,2009,69,293.
    [182]. Dipti Biswal, Hariharasudhan D. Chirra and J. Zach Hilt, Fabrication of hydrogel microstructures using polymerization controlled by microcontact printing (PCμCP), Biomed Microdevices,2008,10,213-219.
    [183]. A. Kamulegeya, J. Huang, G. Ding, J. Chen and Y. Liu, Self assembled magnetic PVP/PVA hydrogel microspheres; magnetic drug targeting of VX2 auricular tumours using pingyangmycin, J. Drug Targeting,2006,14,243-253.
    [184]. H. Sun, L. Zhang, X. Zhang, C. Zhang, Z. Wei and S. Yao,188Re-labeled MPEG-modified superparamagnetic nanogels:preparation and targeting application in rabbits, Biomed. Microdevices,2008,10,281-287.
    [185]. T. Hoare, J. Santamaria, G. F. Goya, S. Irusta, D. Lin, S. Lau, R. Padera, R. Langer and D. S. Kohane, A magnetically triggered composite membrane for on-demand drug delivery, Nano Lett.,2009,9,3651-3657.
    [186]. N. S. Satarkar and J. Z. Hilt, Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release, J. Controlled Release,2008,130,246-251.
    [187]. M. Zrinyi, Intelligent polymer gels controlled by magnetic fields, Colloid Polym. Sci.,2000,278,98-103.
    [188]. R. Fuhrer, W. J. Stark, Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility, Small,2009,5,383-388.
    [189]. N. Kato, F. Takahashi, J. Intell. Mater. Syst. Struct.,1997,8,588-595.
    [190]. N. S. Satarkar, J. Z. Hilt, Magnetic hydrogel nanocomposites as remote controlled microfluidic valves, Lab Chip,2009,9,1773-1779.
    [191]. S. Ghosh, C. Yang, T. Cai, Z. Hu and A. Neogi, J. Phys. D. Oscillating magnetic field-actuated microvalves for micro- and nanofluidics, Appl. Phys., 2009,42,135501.
    [192]. J. Li, X. Hong, Y. Liu, D. Li, Y. W. Wang, J. H. Li, Y. B. Bai, T. J. Li, Highly Photoluminescent CdTe/PNIPAM Temperature Sensitive Gels, Adv. Mater.,2005, 17,163-166.
    [193]. M. Agrawal, J. Rubio-Retama, N.E. Zafeiropoulos, N. Gaponik, S. Gupta, V. Cimrova, V. Lesnyak, E. Lopez-Cabarcos, S. Tzavalas, R. Rojas-Reyna, A. Eychmuller, M. Stamm, Langmuir,2008,24,9820-9824.
    [194]. Q. Yan, J. Y. Yuan, W. Z. Yuan, M. Zhou, Y. W. Yin, C. Y. Pan Copolymer logical switches adjusted through core-shell micelles:from temperature response to fluorescence response Chem. Commun.,2008,6188-6190.
    [195]. L. Tang, J. K. Jin, Sun, B. Z. A fluorescent thermometer operating in aggregation-induced emission mechanism:probing thermal transitions of PNIPAM in wate Tang, Chem. Commun.,2009,4974-4976.
    [196]. Gong, Y. J. Gao, M. Y. Wang, D. Y. Mohwald, H., Incorporating fluorescent CdTe nanocrystals into a hydrogel via hydrogen bonding:Toward fluorescent microspheres with temperature-responsive properties, Chem. Mater. 2005,17,2648-2653.
    [197]. Lei Shen, Andrij Pich, Daniele Fava, Mingfeng Wang, Sandeep Kumar, Chi Wu, Gregory D. Scholes and Mitchell A. Winnik Loading quantum dots into thermo-responsive microgels by reversible transfer from organic solvents to water, J. Mater. Chem.2008,18,763-770.
    [198]. Sung Woo Hong, Won Ho Jo Synthesis of Polymeric Temperature Sensor Based on Photophysical Property of Fullerene and Thermal Sensitivity of Poly(N-isopropylacrylamide), Macromolecules 2009,42,2756-2761.
    [199]. Chie Gota, Kohki Okabe, Takashi Funatsu, Yoshie Harada, and Seiichi Uchiyama, Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry, J. Am. Chem. Soc.2009,131,2766-2767.
    [200]. Seiichi Uchiyama, Yuriko Matsumura, A. Prasanna de Silva, and Kaoru Iwai, Fluorescent Molecular Thermometers Based on Polymers Showing Temperature-Induced Phase Transitions and Labeled with Polarity-Responsive Benzofurazans, Anal. Chem.2003,75,5926-5935.
    [201]. Yasuhiro Shiraishi, Ryo Miyamoto, Xuan Zhang, and Takayuki Hirai Rhodamine-Based Fluorescent Thermometer Exhibiting Selective Emission Enhancement at a Specific Temperature Range, Org. Lett.,2007,9,3921-3924.
    [202]. M. Keerl, J. S. Pedersen, W. Richtering, Temperature sensitive copolymer microgels with nanophase separated structure, J. Am. Chem. Soc.,2009,131, 3093-3097.
    [203]. D. Janczewski, N. Tomczak, M. Y. Han, G. J. Vancso, Stimulus Responsive PNIPAM/QD Hybrid Microspheres by Copolymerization with Surface Engineered QDs, Macromolecules,2009,42,1801-1804.
    [204]. M. Karg, S. Wellert, I. P. Santos, A. Lapp, L. M. Liz-Marzan, T. Hellweg, Thermoresponsive core-shell microgels with silica nanoparticle cores:size, structure, and volume phase transition of the polymer shell, Phys. Chem. Chem. Phys.,2008,10,6708-6716.
    [205]. Seiichi Uchiyama, Yuriko Matsumura, A. Prasanna de Silva, and Kaoru Iwai, Modulation of the Sensitive Temperature Range of Fluorescent Molecular Thermometers Based on Thermoresponsive Polymers, Anal. Chem.2004,76, 1793-1798.
    [206]. Seiichi Uchiyama, Narumi Kawai, A. Prasanna de Silva, and Kaoru Iwai, Fluorescent Polymeric AND Logic Gate with Temperature and pH as Inputs, J. Am. Chem. Soc.2004,126,3032-3033.
    [207]. Kaoru Iwai, Yuriko Matsumura, Seiichi Uchiyama and A. Prasanna de Silva Development of fluorescent microgel thermometers based on thermoresponsive polymers and their modulation of sensitivity range, J. Mater. Chem.,2005,15, 2796-2800.
    [208]. Yasuhiro Shiraishi, Ryo Miyamoto, and Takayuki Hirai A Hemicyanine-Conjugated Copolymer as a Highly Sensitive Fluorescent Thermometer, Langmuir 2008,24,4273-4279.
    [209]. Zhiqian Guo, Weihong Zhu, Yuyan Xiong, and He Tian Multiple Logic Fluorescent Thermometer System Based on N-Isopropylmethacrylamide Copolymer Bearing Dicyanomethylene-4H-pyran Moiety, Macromolecules 2009,42,1448-1453.
    [210]. M. Agrawal, J. Rubio-Retama, N.E. Zafeiropoulos, N. Gaponik, S. Gupta, V. Cimrova, V. Lesnyak, E. Lopez-Cabarcos, S. Tzavalas, R. Rojas-Reyna, A. Eychmuller, M. Stamm, Switchable photoluminescence of CdTe nanocrystals by temperature responsive microgels, Langmuir,2008,24,9820-9824.
    [211]. Okamoto Y., Wang S.S., Zhu K.J., et al, Synthesis,Characterization and Application of Rare Metal Ion Chelating, Polymer[A]. New York:Plenum Press, 1985,425.
    [212]. Lu, Y. Mei, Y. Ballauff, M. J., Thermosensitive core-shell particles as carrier systems for metallic nanoparticles, Phys. Chem. B 2006,110,3930-3937.
    [1]. Boyko, V., Richter, S., Grillo, I., Geissler, E., Structure of thermosensitive poly(N-vinylcaprolactam-co-N-vinylpyrrolidone) microgels, Macromolecules 2005,38,5266-5270.
    [2]. Meyer, S., Richtering, W., Influence of polymerization conditions on the structure of temperature-sensitive poly(N-isopropylacrylamide) microgels, Macromolecules 2005,38,1517-1519.
    [3]. Hay, D., N. T., Rickert, P. G., Seifert, S., Firestone, M. A., Thermoresponsive nanostructures by self-assembly of a poly(N-isopropylacrylamide)-lipid conjugate, J. Am. Chem. Soc.2004,126,2290-2291.
    [4]. Huang, X., Lowe, T. L., Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs, Biomacromolecules 2005,6,2131-2139.
    [5]. Daisuke, S., Jonathan G. M., Haruma K., L. Andrew, L., Colloidal Crystals of Thermosensitive, Core/Shell Hybrid Microgels, J. Phys. Chem. C.2007,111, 5667-5672.
    [6]. Jun, L., Xia, H., Yang, L., Di, L., Yong, W. W., Jing, H. L., Yu, B. B., Tie, J. L., Highly Photoluminescent CdTe/Poly (N-isoprolyacrylamide) Temperature-Sensitive Gels, Adv. Mater.2005,17,163-166.
    [7]. Matthias, K., Isabel, P. S., Jorge, P. J., Thomas, H., Luis, M. L. M., Nanorod-Coated PNIPAM Microgels:Thermoresponsive Optical Properties, Small,2007,3,1222-1229.
    [8]. Yang Y., Yan X. H., Cui Y., He Q., Li D.X., Wang A.H., Fei J.B., Li J.B., Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a "graft-from" method, J. Mater. Chem.,2008,18,5731-5737.
    [9]. Franck Montagne, Jrome Polesel-Maris, Raphael Pugin and Harry Heinzelmann, Poly(N-isopropylacrylamide) Thin Films Densely Grafted onto Gold Surface: Preparation, Characterization, and Dynamic AFM Study of Temperature-Induced Chain Conformational Changes, Langmuir,2009,25,983-991.
    [10]. Alvarez-Puebla, RA; Contreras-Caceres, R; Pastoriza-Santos, I, et al., Au@pNIPAM Colloids as Molecular Traps for Surface-Enhanced, Spectroscopic, Ultra-Sensitive Analysis, Angew. Chem.-International Edition,2009,48,138-143.
    [11]. Francesca Cavalieri, Almar Postma, Lillian Lee and Frank Caruso, Assembly and Functionalization of DNA-Polymer Microcapsules,ACS Nano,2009,3,234-240.
    [12]. Jonathan, G.M., Robert, D. B., J.Michael C., L. Andrew, L., Self-Assembly of "Paint-On" Colloidal Crystals Using Poly (styrene-co-N-isopropyalcrylamide) Spheres, Chem. Mater.2007,19,1584-1591.
    [13]. Nabzar, L.; Duracher, D.; Elaissari, A.; Chauveteau, G.; Pichot, C. Electrokinetic Properties and Colloidal Stability of Cationic Amino-Containing N-Isopropylacrylamide-Styrene Copolymer Particles Bearing Different Shell Structures, Langmuir 1998,14,5062-5069.
    [14]. Wang D. M., Zhang J. H., Lin Q., et al, Lanthanide complex/polymer composite optical resin with intense narrow band emission, high transparency and good mechanical performance, J. Materials Chemistry,2003,13,2279-2284.
    [15]. Okamoto Y., Wang S.S., Zhu K.J., et al, Synthesis,Characterization and Application of Rare Metal Ion Chelating Polymer[A]. New York:Plenum Press, 1985,425.
    [16]. Wang D. M., Zhang J. H., Lin Q., et al, Lanthanide complex/polymer composite optical resin with intense narrow band emission, high transparency and good mechanical performance, J. Materials Chemistry,2003,13,2279-2284.
    [17]. Gong, Y. J.; Gao, M. Y.; Wang, D. Y.; Mohwald, H., Incorporating fluorescent CdTe nanocrystals into a hydrogel via hydrogen bonding:Toward fluorescent microspheres with temperature-responsive properties, Chem. Mater.2005,17, 2648-2653.
    [18]. Lu, Y.; Mei, Y.; Ballauff, M. J., Thermosensitive core-shell particles as carrier systems for metallic nanoparticles, Phys. Chem. B 2006,110,3930-3937.
    [19]. D. Janczewski, N. Tomczak, M. Y. Han, G. J. Vancso, Stimulus Responsive PNIPAM/QD Hybrid Microspheres by Copolymerization with Surface Engineered QDs Macromolecules,2009,42,1801-1804.
    [20]. J. Li, X. Hong, Y. Liu, D. Li, Y. W. Wang, J. H. Li, Y. B. Bai, T. J. Li, Highly Photoluminescent CdTe/PNIPAM Temperature Sensitive Gels Adv. Mater.,2005, 17,163-166.
    [21]. Lei Shen, Andrij Pich, Daniele Fava, Mingfeng Wang, Sandeep Kumar, Chi Wu, Gregory D. Scholes and Mitchell A. Winnik Loading quantum dots into thermo-responsive microgels by reversible transfer from organic solvents to waterJ. Mater. Chem.,2008,18,763-770.
    [22]. Q. Yan, J. Y. Yuan, W. Z. Yuan, M. Zhou, Y. W. Yin, C. Y. Pan Copolymer logical switches adjusted through core-shell micelles:from temperature response to fluorescence response Chem. Commun.,2008,6188-6190.
    [23]. L. Tang, J. K. Jin, A. Qin, W. Z. Yuan, Y. Mao, J. Mei, J. Z. Sun, B. Z. A fluorescent thermometer operating in aggregation-induced emission mechanism: probing thermal transitions of PNIPAM in wate Tang, Chem. Commun.,2009, 4974-4976.
    [24]. M. Agrawal, J. Rubio-Retama, N.E. Zafeiropoulos, N. Gaponik, S. Gupta, V. Cimrova, V. Lesnyak, E. Lopez-Cabarcos, S. Tzavalas, R. Rojas-Reyna, A. Eychmuller, M. Stamm, Switchable photoluminescence of CdTe nanocrystals by temperature responsive microgels Langmuir,2008,24,9820-9824.
    [25]. Sung Woo Hong, Doo Young Kim, Jea Uk Lee, and Won Ho Jo Synthesis of Polymeric Temperature Sensor Based on Photophysical Property of Fullerene and Thermal Sensitivity of Poly(N-isopropylacrylamide) Macromolecules 2009,42, 2756-2761.
    [26]. Chie Gota, Kohki Okabe, Takashi Funatsu, Yoshie Harada, and Seiichi Uchiyama, Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry J. Am. Chem. Soc.2009,131,2766-2767.
    [27]. Seiichi Uchiyama, Yuriko Matsumura, A. Prasanna de Silva, and Kaoru Iwai, Fluorescent Molecular Thermometers Based on Polymers Showing Temperature-Induced Phase Transitions and Labeled with Polarity-Responsive Benzofurazans Anal. Chem.2003,75,5926-5935.
    [28]. M. Karg, S. Wellert, I. P. Santos, A. Lapp, L. M. Liz-Marzan, T. Hellweg, Thermoresponsive core-shell microgels with silica nanoparticle cores:size, structure, and volume phase transition of the polymer shellPhys. Chem. Chem. Phys.,2008,10,6708-6716.
    [29]. Seiichi Uchiyama, Yuriko Matsumura, A. Prasanna de Silva, and Kaoru Iwai, Modulation of the Sensitive Temperature Range of Fluorescent Molecular Thermometers Based on Thermoresponsive Polymers Anal. Chem.2004,76, 1793-1798.
    [30]. Seiichi Uchiyama, Narumi Kawai, A. Prasanna de Silva, and Kaoru Iwai, Fluorescent Polymeric AND Logic Gate with Temperature and pH as Inputs J. Am. Chem. Soc.2004,126,3032-3033.
    [31]. Kaoru Iwai, Yuriko Matsumura, Seiichi Uchiyama and A. Prasanna de Silva Development of fluorescent microgel thermometers based on thermoresponsive polymers and their modulation of sensitivity range J. Mater. Chem.,2005,15, 2796-2800.
    [32]. Yasuhiro Shiraishi, Ryo Miyamoto, and Takayuki Hirai Langmuir A Hemicyanine-Conjugated Copolymer as a Highly Sensitive Fluorescent Thermometer 2008,24,4273-4279.
    [33]. Zhiqian Guo, Weihong Zhu, Yuyan Xiong, and He Tian Macromolecules Multiple Logic Fluorescent Thermometer System Based on N-Isopropylmethacrylamide Copolymer Bearing Dicyanomethylene-4H-pyran Moiety 2009,42,1448-1453.
    [34]. Yasuhiro Shiraishi, Ryo Miyamoto, Xuan Zhang, and Takayuki Hirai Rhodamine-Based Fluorescent Thermometer Exhibiting Selective Emission Enhancement at a Specific Temperature Range Org. Lett.,2007,9,3921-3924.
    [1]. S. W. Thomas Ⅲ, G. D. Joly and T. M. Swager, Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers, Chem. Rev.,2007,107, 1339-1386.
    [2]. A. Menon, M. Galvin, K. A. Walz and L. Rothberg, Synth. Met.,2004,141, 197-202.
    [3]. C.-T. Chen, Evolution of Red Organic Light-Emitting Diodes:Materials and Devices, Chem. Mater.,2004,16,4389-4440.
    [4]. M. Grell, D. D. C. Bradley, G. Ungar, J. Hill and K. S. Whitehead, Interplay of Physical Structure and Photophysics for a Liquid Crystalline Polyfluorene, Macromolecules,1999,32,5810-5817.
    [5]. R. Jakubiak, C. J. Collison, W. C. Wan and L. Rothberg, Aggregation Quenching of Luminescence in Electroluminescent Conjugated Polymers, J. Phys. Chem. A, 1999,103,2394-2398.
    [6]. M. Grell, D. D. C. Bradley, X. Long, T. Chamberlain, M. Inbasekaran, E. P. Woo and M. Chain geometry, solution aggregation and enhanced dichroism in the liquidcrystalline conjugated polymer poly(9,9-dioctylfluorene), Soliman, Acta Polym.,1998,49,439-444.
    [7]. H. Bassler, Aggregate fluorescence in conjugated polymers, Chem. Phys. Lett., 1995,240,373-378.
    [8]. A. C. Grimsdale and K. Mullen, Bridged polyphenylenes-from polyfluorenes to ladder polymers, Adv. Polym. Sci.,2008,212,1-48.
    [9]. W.W. H.Wong and A. B. Holmes, Polydibenzosiloles, Adv. Polym. Sci.,2008, 212,85-98.
    [10]. P. L. T. Boudreault, N. Blouin and M. Leclerc, Poly(2,7-carbazole)s and related polymers, Adv. Polym. Sci.,2008,212,99-124.
    [11]. J. C. Sanchez and W. C. Trogler, Hydrosilylation of Diynes as a Route to Functional Polymers Delocalized Through Silicon, Macromol. Chem. Phys.,2008, 209,1527-1540.
    [12]. Y. Zhang, B. Liu and Y. Cao, Synthesis and Characterization of a Water-Soluble Carboxylated Polyfluorene and Its Fluorescence Quenching by Cationic Quenchers and Proteins, Chem.-Asian J.,2008,3,739-745.
    [13]. J. Chen and Y. Cao, Silole-containing polymers:Chemistry and optoelectronic properties, Macromol. Rapid Commun.,2007,28,1714-1742.
    [14]. V. W. W. Yam and K. M. C. Wong, Top. Curr. Chem.,2005,257,1-32.
    [15]. F. J. M. Hoeben, P. Jonkheijm, E.W.Meijer and A. P. H. J. Schenning, About Supramolecular Assemblies of π-Conjugated Systems, Chem. Rev.,2005,105, 1491-1546.
    [16]. W. Lu, M. C. W. Chan, N. Y. Zhu, C. M. Che, Z. He and K. Y. Structural Basis for Vapoluminescent Organoplatinum Materials Derived from Noncovalent Interactions as Recognition Components, Eur. J.,2003,9,6155-6166.
    [17]. U. H. F. Bunz, Polyaryleneethynylenes:syntheses, properties, structures, and applications, Chem. Rev.,2000,100,1605-1644.
    [18]. F. Hide, M. A. Diaz- Garcia, B. J. Schwartz and A. J. Heeger, Ace. Chem. Res., 1997,30,430.
    [19]. J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo,I. D. Williams, D. Zhu and B. Z. Tang, Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles, Chem. Mater.,2003,15,1535-1546.
    [20]. G. Yu, S. Yin, Y. Liu, J. Chen, X. Xu, X. Sun, D. Ma, X. Zhan,Q. Peng, Z. Shuai, B. Z. Tang, D. Zhu, W. Fang and Y. Luo, Structures, electronic states, photo luminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles, J. Am. Chem. Soc.,2005,127,6335-6346.
    [21]. B. Z. Tang, Y. Geng, J. W. Y. Lam, B. Y. Hong, J. W. Y. Lam, B. Z. Tang, Aggregation-Induced Emission:Phenomenon, Mechanism and Applications, Chem. Commun.2009,4332-4353.
    [22]. L. Tang, J. K. Jin, A. Qin, W. Z. Yuan, Y. Mao, J. Mei, J. Z. Sun, B. Z. Tang, Fluorescent Thermometer Operating in Aggregation-Induced Emission Mechanism:Probing Thermal Transitions of PNIPAM in Water Chem. Commun., 2009,4974-4976.
    [23]. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun.2001,1740-1741.
    [24]. Zhen Li, Yong Qiang Dong, Jacky W. Y. Lam, Jiaxin Sun, Anjun Qin, Matthias Hauβler, Yu Ping Dong, Herman H. Y. Sung, Ian D. Williams, Hoi Sing Kwok, and Ben Zhong Tang, Functionalized Siloles:Versatile Synthesis,Aggregation-Induced Emission, and Sensory and Device Applications, Adv. Funct. Mater.2009,19,1-7.
    [25]. C.P.Y. Chan, M. Haeussler, B.Z. Tang, Y. Dong, K.K. Sin, W.C. Mak, D. Trau, M. Seydack, R. Renneberg, Silole nanocrystals as novel biolabels, J. Immuno. Methods 2004,295,111-118.
    [26]. Y. Ren, J.W.Y. Lam, Y.Q. Dong, B.Z. Tang, K.S. Wong, Enhanced Emission Efficiency and Excited State Lifetime Due to Restricted Intramolecular Motion in Silole Aggregates, J. Phys. Chem. B 2005,109,1135-1140.
    [27]. Y. Ren, Y. Dong, J.W.Y. Lam, B.Z. Tang, K.S. Wong, Studies on the aggregation-induced emission of silole film and crystal by time-resolved fluorescence technique, Chem. Phys. Lett 2005,402,468-473.
    [28]. Z. Li, Y.Q. Dong, B. Xiu, Y. Tang, M. Haeussler, H. Tong, Y.P. Dong, J.W.Y. Lam, Y. Ren, H.H.Y. Sung, K.S. Wong, P. Gao, I.D. Williams, H.S. Kwok, B.Z. Tang, Structural Control of the photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials, J. Phys. Chem. B 2005,109,10061-10066.
    [29]. J. Chen, B. Xu, K. Yang, Y. Cao, H.H.Y. Sung, I.D. Williams, B.Z. Tang, Photoluminescence spectral reliance on aggregation order of 1,1-Bis(2'-thienyl)-2,3,4,5-tetraphenylsilole, J. Phys.Chem. B 2005,109, 17086-17093.
    [30]. Y.Q. Dong, J.W.Y. Lam, Z. Li, A. Qin, H. Tong, Y.P. Dong, X.D. Feng, B.Z. Tang, J. Inorg. Organomet. Polym. Mater.2005,15,287-291.
    [31]. H. Chen, W.Y. Lam, J. Luo, Y. Ho, B.Z. Tang, D. Zhu, M. Wong, H.S. Kwok, Highly efficient organic light-emitting diodes with a silole-based compound, Appl. Phys. Lett.2002,81,574-576.
    [32]. J. Chen, Z. Xie, J.W.Y. Lam, C.C.W. Law, B.Z. Tang, Silole-Containing Polyacetylenes, Macromolecules,2003,36,1108-1117.
    [33]. Lahcen Nabzar, David Duracher, Abdelhamid Elaissari,Guy Chauveteau, and Christian Pichot, Electrokinetic Properties and Colloidal Stability of Cationic Amino-Containing N-Isopropylacrylamide-Styrene Copolymer Particles Bearing Different Shell Structures Langmuir 1998,14,5062-5069.
    [34]. Daisuke Suzuki, Jonathan G. McGrath, Haruma Kawaguchi, and L. Andrew Lyon, Colloidal Crystals of Thermosensitive, Core/Shell Hybrid MicrogelsJ. Phys. Chem. C 2007,111,5667-5672.
    [1]. U.S. Environmental Protection Agency, List of Drinking Water Contaminants and Their Maximum Contaminant Levels, http://www.epa.gov/safewater/ mcl.html#mcls (last accessed August 2008).
    [2]. N. Peitzsch, G. Eberz, D. H. Nies, Alcaligenes eutrophus as a bacterial chromate sensor, Appl. Environ. Microbiol.1998,64,453-458.
    [3]. A. Ivask, M. Virta, A. Kahru, Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil, Soil Biol. Biochem.2002,34, 1439-1447.
    [4]. M. Schreurs, G. W. Somsen, C. Gooijer, N. H. Velthorst, R. W. Frei, Lanthanide luminescence quenching as a detection method in ion chromatography. Chromate in surface and drinking water, J. Chromatogr. A.1989,482,351-359.
    [5]. D. Xiao, K. Wang, W. Xiao, Synchronous fluorescece and absorbance dynamic liquid drop sensor for Cr(VI) determination at the femtomole level, Analyst 2001, 126,1387.
    [6]. Z. Li, Y.Q. Dong, J.W.Y. Lam, J.X. Sun, A.J. Qin, M. Haeussler, Y.P. Dong, H.H.Y. Sung, I.D. Williams, H.S. Kwok, B.Z. Tang, Functionalized Siloles: Versatile Synthesis, Aggregation-Induced Emission, and Sensory and Device Applications, Adv. Funct. Mater.2009,19,905-917.
    [7]. Sarah J. Toal, Kelsey A. Jones, Douglas Magde, and William C. Trogler Luminescent Silole Nanoparticles as Chemoselective Sensors for Cr(Ⅵ), J. Am. Chem. Soc.2005,127,11661-11665.
    [8]. Anjun Qin, Jacky W. Y. Lam, Li Tang, Cathy K. W. Jim, Hui Zhao, Jingzhi Sun, and Ben Zhong Tang, Polytriazoles with Aggregation-Induced Emission Characteristics:Synthesis by Click Polymerization and Application as Explosive Chemosensor, Macromolecules 2009,42,1421-1424.
    [9]. Y.Q. Dong, J.W.Y. Lam, A. Qin, Z. Li, J.Z. Sun, Y.P. Dong, B.Z. Tang, Vapochromism and Crystallization-Enhanced Emission of 1,1-Disubstituted 2,3,4,5-Tetraphenylsiloles, J. Inorg. Organomet. Polym. Mater.2007,17, 673-678.
    [10]. C.P.Y. Chan, M. Haeussler, B.Z. Tang, Y. Dong, K.K. Sin, W.C. Mak, D. Trau, M. Seydack, R. Renneberg, J. Immuno. Methods 2004,295,111-118.
    [11]. Y.Q. Dong, J.W.Y. Lam, A. Qin, Z. Li, J.Z. Liu, J.Z. Sun, Y.P. Dong, B.Z. Tang, Endowing hexaphenylsilole with chemical sensory and biological probing properties by attaching amino pendants to the silolyl core, Chem. Phys. Lett.2007, 446,124-127.
    [12]. Y. Yu, Y. Hong, C. Feng, J. Liu, J.W.Y. Lam, M. Faisal, K.M. Ng, K.Q. Luo, B.Z. Tang, Synthesis of an AIE-active fluorogen and its application in cell imaging, Sci. China Ser. B 2009,52,15-19.
    [13]. Chad E. Reese, Alexander V. Mikhonin, Marta Kamenjicki, Alexander Tikhonov, and Sanford A. Asher, Nanogel Nanosecond Photonic Crystal Optical Switching, J. Am. Chem. Soc.,2004,126,1493-1496.
    [14]. Jonathan G., McGrath, Robert D., Bock, J., Michael C. L. Andrew Lyou, Self-Assembly of "Paint-On" Colloidal Crystals Using Poly (styrene-co-N-isopropylacrylamide) Spheres, Chem.Mater,2007,19,1584-1591.
    [15]. Thomas Hellweg, Charles D. Dewhurst, Wolfgang Eimer, and Karl Kratz, PNIPAM-co-polystyrene Core-Shell Microgels:Structure, Swelling Behavior, and Crystallization, Langmuir,2004,20 (11),4330-4335.
    [16]. Daisuke, S., Jonathan G., McGrath, Haruma K., L., Andrew L. Colloidal Crystals of Thermosensitive, Core/Shell Hybrid Microgels, J. Phys. Chem. C 2007,111, 5667-5672.
    [17]. Sakiko,T., Haruma, K. Self-Assembly of Poly(N-isopropylacrylamide)-Carrying Microspheres into Two-Dimensional Colloidal Arrays, Langmuir,2005, 21,2434-2437.
    [18]. Shamim, N., Hong, L., Hidajat, K. Uddin, M. S. Thermosensitive-polymer-coated magnetic nanoparticles:Adsorption and desorption of Bovine Serum Albumin, J. Colloid Interface Sci.2006,304, (1),1-8.
    [19]. Zhao, X. L., Ding, X. B., Deng, Z. H., Zheng, Z. H., Peng, Y. X., Long, X. P. Thermoswitchable Electronic Properties of a Gold Nanoparticle/Hydrogel Composite, Macromol. Rapid. Commun.2005,26,1784-1787.
    [20]. Shan, J., Nuopponen, M., Jiang, H., Viitala, T., Kauppinen, E., Kontturi, K., Tenhu, H. Amphiphilic Gold Nanoparticles Grafted with Poly(N-isopropylacrylamide) and Polystyrene, Macromolecules 2005,38, 2912-926.
    [21]. Shan, J., Nuopponen, M., Jiang, H., Kauppinen, E., Tenhu, H. Preparation of Poly(N-isopropylacrylamide)-Monolayer-Protected Gold Clusters:Synthesis Methods, Core Size, and Thickness of Monolayer, Macromolecules 2003,36, 4526-4533.
    [22]. Li, D. X., He, Q., Cui, Y., Wang, K. W., Zhang, X. M., Li, J. B. Thermosensitive Copolymer Networks Modify Gold Nanoparticles for Nanocomposite Entrapment, Chem. Eur. J.2007,13,2224-2229.
    [23]. Suzuki, D.; Kawaguchi, H. Gold Nanoparticle Localization at the Core Surface by Using Thermosensitive Core-Shell Particles as a Template, Langmuir 2005,21, 12016-12024.
    [24]. Chong-Kooi, C., Stephen, R., Ian, S., Ian, S., Linda,S. Polym Int.2006,55,740.
    [25]. Jiang, F. M., Si, X. Z. J.Mu, S. Zheng, Poly(N-isopropylacrylamide) nanocrosslinked by polyhedral oligomeric silsesquioxane:temperature-responsive behavior of hydrogels, Journal of Colloidal and Interface Science,2007,307, 377-385.
    [26]. Matthias, K., Isabel, P., Luis,M.L., Thomas, H. Chem.Phys.Chem.2006,7,2298.
    [27]. Jerome, J. C., Matthias, B. Imaging the Volume Transition in Thermosensitive Core-Shell Particles by Cryo-Transmission Electron Microscopy, Langmuir, 2006,22,2403-2406.
    [28]. Sun, Q., Deng,Y. Encapsulation of Polystyrene Latex with Temperature-Responsive Poly(N-isopropylacrylamide) via a Self-Assembling Approach and the Adsorption Behaviors Therein, Langmuir,2005,21,5812-5816.
    [29]. G. Yu, S. Yin, Y. Liu, J. Chen, X. Xu, X. Sun, D. Ma, X. Zhan,Q. Peng, Z. Shuai, B. Z. Tang, D. Zhu, W. Fang and Y. Luo, Structures, Electronic States, Photoluminescence, and Carrier Transport Properties of 1,1-Disubstituted 2,3,4,5-Tetraphenylsiloles, J. Am. Chem. Soc.,2005,127,6335-6346.
    [30]. B. Z. Tang, Y. Geng, J. W. Y. Lam, B. Y. Hong, J. W. Y. Lam, B. Z. Tang, Aggregation-induced emission:phenomenon, mechanism and applications, Chem. Commun.2009,4332-4353.
    [31]. L. Tang, J. K. Jin, A. Qin, W. Z. Yuan, Y. Mao, J. Mei, J. Z. Sun, B. Z. Tang, A fluorescent thermometer operating in aggregation-induced emission mechanism: probing thermal transitions of PNIPAM in water, Chem. Commun.,2009, 4974-4976.
    [32]. J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles, Chem. Mater.,2003,15,1535-1546.
    [33]. Zhu D. F.; Li X.; Zhang G.; Li W.; Zhang. X.; Zhang X. M.; Wang T. W.; Yang B. A Versatile Approach to Fabricate Ordered Heterogeneous Bull's-eye-like Micro structure Arrays, Langmuir,2010,26,5172-5718.
    [34]. Li X.; Wang T. Q.; Zhang J. H.; Yan X.; Zhang X. M.; Zhu D. F.; Li W.; Zhang X.; Yang B., Modulating Two-Dimensional Non-Close-Packed Colloidal Crystal Arrays by Deformable Soft Lithography, Langmuir 2010,26,2930-2936.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700