用户名: 密码: 验证码:
区域交通网络层次性与优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对当前区域综合交通运输网络结构、交通运输网络资源合理配置等体现可持续发展特征的综合交通运输网络研究相对滞后的现状,深入研究区域交通网络时空结构演化及基于此的交通网络规划具有重要的理论价值与工程实践意义。
     交通网络层次性作为常见基本现象,其演化机理及其与交通网络性能之间的演化关系是社会经济、自然环境、交通系统自身等多方面因素及其内部要素在动态时空中相互交织复杂作用下决定的。现有研究往往利用少数几个宏观指标对交通网络演化规律进行探讨,对层次性的研究也大多局限于解释性阐述,且通常从单一层次着手处理问题,或割裂“供”与“求”的关系,或割裂区域空间结构与交通系统之间客观存在的动态互馈关系。结果导致了各层次交通模式分布不合理,功能紊乱,难以适应区域空间结构、经济发展要求及不同交通需求。本文从系统论的角度,综合考虑多种因素之间的动态作用关系,协调交通“供”“需”动态平衡过程,将动态互馈作用关系与宏观静态分析“动”“静”结合地构造由多种动力机制协同主导的网络演化动力系统,研究交通网络及层次性的演化机理,并在此基础上利用层次性研究可持续交通网络规划与设计理论,以进一步丰富和发展综合交通系统规划理论与方法,为建设资源消耗少、环境污染小,能有效提高要素集聚能力,促进产业和人口合理分布的区域交通网络提供一种新的解决方案和发展模式。主要研究工作如下:
     (1)交通网络层次性实证
     以长株潭城市群交通网络为背景,研究了各中心城市和整个城市群交通网络的特性。研究分析表明:整个长株潭交通网络是比较抗失效的,长沙市及长株潭交通网络则是最为有序的;长株潭城市群交通网络是小世界网络而不具有无标度性。特别地,重点探讨了交通网络层次性这一极少得到专门定量化论证的基本重要性质。揭示了交通网络异配性,并结合n-聚集系数-n-度关系定量地刻画交通网络层次特征,通过实证证明了交通网络具有显著的层次组织结构特征。
     (2)交通网络性能与层次性的演化关系
     结合道路用户外部性和交通产生模型,建立了交通系统最优模型,并利用交通系统和区域空间结构之间的动态互馈作用、区域间经济联系的概念以及无标度网络模型,设计了交通网络演化规则。进而,在微观机理融合宏观机制的思想指导下构建了交通网络演化模型与算法,揭示交通网络演化规律。实例研究表明,随着网络的演化,出现了层次现象并越来越清晰,更为重要的是,交通网络总费用随之下降;利用介数中心性定义了一种新的交通网络熵,该网络熵也呈现减小趋势,揭示了交通网络渐进地向有序演化,交通系统性能得以不断优化。该研究结论为最优交通网络规划提供了方向与理论基础。
     (3)多层次多模式综合交通网络优化
     结合交通网络层次特征和交通负外部性定义了广义路径费用,构建了多层次多模式综合交通网络Logit-随机均衡的非线性规划模型,并构造了多层次多模式交通网络设计算法。通过算例网络的数值试验,着重分析了网络广义费用总量的层次结构弹性与需求弹性,以及模式分离参数对不同层次结构网络的广义费用总量的影响与模式分离参数取定不同值的情况下平均广义费用的需求弹性。研究表明:在考虑层次性的情况下所设计的综合交通网络能更好地适应需求的增长,且层次结构网络对模式分离参数是不敏感的。
     进而,扩展研究并建立了带弹性需求与路段容量约束条件的多层次多模式交通运输网络模型与算法。其一,细化定义了交通运输模式分担率,并结合Logit模型,研究了带能力约束的多层次多模式弹性需求交通网络随机均衡及其等价变分不等式;并提出层次均衡条件,推导出弹性需求情况下的多层次多模式确定性均衡配流问题的等价变分不等式。其二,建立了更切合实际的城市群立体物流网络双准则双层规划模型,融合增广Lagrange对偶方法设计了具有近似全局最优搜索能力的双层规划遗传算法。
     (4)交通网络资源优化配置方法与交通网络层次规划基本框架
     在充分分析算法的实践与理论基础上,定义了层次因子,并提出确定交通网络的层次数目和层次因子的方法;在Dial算法的基础上引入层次因子设计了交通网络结构优化算法。由该算法得到的交通网络总阻抗在层次因子的某一合理取值范围内小于Dial算法所得的总阻抗,且交通网络的总阻抗随较高层次路段的层次提升而减小,而交通网络的尾气排放总量却随较高层次路段的层次提升而增大,但它无论如何都小于由Dial算法所得到的结果。由此可见,通过将网络层次状况控制在合理范围内就能有效地调节和优化交通网络资源配置。籍此,提出了基于层次性的交通网络资源的优化配置的一般方法。
     其次,基于交通系统与区域空间结构之间的动态互馈机制和公交导向性开发策略开展客流预测研究,并在明晰用地组团区位特征下的各层次道路功能,限定各层次间的交叉、衔接与转换关系后,结合交通网络资源优化配置方法,设计了城市道路网络层次规划方法的基本框架。该方法是从定量建模与系统分析角度进行的,且考虑了路网的组织结构,能保证路网整体优化及动态调整。
There are not enough quantitative researches in regional comprehensive transport network reflecting the characteristics of sustainable development such as comprehensive transport network structure and optimal transport network resources allocation. So it is significant in practical engineering and theoretical development to intensively study regional transport network spatio-temporal structure evolution mechanism and laws and application in transport network design and planning.
     Transport network hierarchy, as a common basic phenomena, whose evolution mechanism and evolutionary relationship with transport network performance are determined by the intertwined interactions of many elements of economy and society, natural environment, and transport system itself. Most existing researches model transport network with a single hierarchy level, separating demand and supply, and ignoring the dynamic interaction mechanism between transport system and regional spatial structure, which result in a defective transport system, with unreasonable distribution and obscure function in all levels, difficult to adapt to regional spatial structure, economic development requirements and changes in traffic demands.
     From a systematical way, this dessertation research, comprehensively considerates dynamic interactions among several elements, dynamic equilibrium of traffic demand and supply, and coordinates dynamic interaction mechanism and macro-static analysis to formulate transport network evolutionary dynamic system synergisticly dominated by some dynamic rules. Hereafter, evolutionary mechanism of transport network and its hierarchy property are studied, followed by investigation of sustainable multilevel transport network planning and design theory. These researches can enrich and improve the current theories in integrated transport system planning, provide a kind of novel solution approach and development pattern for regional transport network planning with low resource consumption, little pollution, and the ability to effectively enhance manufacture factors convergency and to promote the reasonable distribution of industry and population.
     The study is mainly reflected in the following aspects.
     (1) Transport network hierarchy existence
     Taking the case of Chang-Zhu-Tan Urban Agglomeration traffic network, network properties are investigated. Investigations and analyses show that the traffic networks have small-world behavior but without scale-free property, and that, among the five traffic networks, the Chang-Zhu-Tan Urban Agglomeration traffic network is strong resilient against failure, and that traffic networks of Changsha and the urban agglomeration are the most orderly systems. More importantly, traffic network hierarchy that received few quantitative proof, has been focused on. The authors are inspired to analyze traffic network hierarchy with disassortativity and to employ the n-degree-n-clustering coefficient relationship to quntitatively characterize hierarchy in the traffic networks. An exciting conclusion is drawn, through numerical results and analyses, that the traffic networks are proved to be hierarchically organized.
     (2) The evolutionary relationship of transport network performance with hierarchy
     Combining with traffic produce model, a traffic system optimal model is constructed taking the road users externality into account. The dynamic interaction mechanism between traffic system and regional spatial structure and scale-free network model together with the economic relation concept are invited to design traffic network evolutionary rules. Furthermore, a traffic network evolutionary model and algorithm to disclose the traffic network evolution laws has been established in the guidance of microscopic dynamics and macroscopic mechanism. A case study shows that, during the process of network evolving, hierarchy emerges and turns clearer, and what is more significant is that the total network cost decreases; the computation of a new transport network entropy defined by betweenness centrality illustrates that the network entropy becomes smaller and the traffic network evolves to a more orderly structure with improving performance. The results can provide theoretical groundwork for optimal transport planning.
     (3) Multilevel multimode comprehensive transport network optimization
     Generalized path cost is formulated with traffic negative externalities and transport network hierarchy involved in. Nonlinear programming is established for Logit-stochastic equilibrium model of multilevel multimode comprehensive transport network. All lead to an algorithm for multilevel multimode transport network design. A series of numerical experiments of example network have been carried out according to the proposed algorithm. Hierarchy elasticity and demand elasticity of nework total generalized cost are defined and focused on; and also the impact of mode split parameter on the total generalized cost of networks with different hierarchical structure and demand elsticity of average generalized cost with different mode split parameter value are analized. Analyses show that the designed comprehensive transport network with transport hierarchy can better adapt to the growth of traffic demands without great network performance deterioration and that hierarchical transport network is relatively insensitive to the change of mode split parameter value.
     Following foregoing studies, extended studies of multilevel multimode transport network models and algorithms have been carried out under the consideration of elastic demand and link capacity constraints. Firstly, after transport mode split finely defined based on hierarchical property, a multilevel multimode transport network stochastic equilibrium model has been proposed. The equivalent variational inequality of the stochastic equilibrium is presented with equivalence proof established. Formulating the hierarchical equilibrium conditions in the light of Wardrop equilibrium principle, the equivalent variational inequality of the determinate equilibrium model, corresponding to the former transport network stochastic equilibrium model, is established. Secondly, a more practical bi-criteria bi-level programming model has been proposed for urban agglomeration three-dimensional logistics networks. A genetic algorithm to obtain approximate global optimum, fused in which a solution approach of Lagrangian dual that could overcome the defects of the widely-applied Frank-Wolfe method, is presented for the bi-level programming.
     (4) Optimal allocation approach for transport network resource and basic framework of transport network hierarchical planning
     After the analyses of bases for algorithm design from practical and theoretical aspects, a definition of hierarchy factor is formulated and two approaches to determine which are proposed. Furthermore, hierarchy factors are applied to design a new transport network structure optimizing algorithm (TNSOA) basing on the typical Dial's traffic assignment algorithm. The total impedance of the transport network obtained by the algorithm proposed decreases when upgrading the hierarchical level of link in the higher level and is less than by Dial's when the hierarchy factors are controlled in a certain domain, and that the total exhaust emission of the transport network obtained by TNSOA increases when upgrading the hierarchical level of link in the higher level and is anyhow less than by Dial's. The allocation of transport network resources can be effectively optimized and adjusted through controlling the network hierarchical level. All of the aforementioned investigations have finally contributed to an optimal allocation methodology of transport network resource.
     Then, basic framework of transport network hierarchical planning is investigated. After the passenger traffic forecast method studied under the guidance of the interaction mechanism between traffic system and urban spatial structure and the transit oriented development strategy, following with clarifying road function in different hierarchical level in the circumstance of location characteristics of land groups, constraining the cross, connection, conversion means between certain hierarchical levels, optimal allocation approach for transport network resource is invited to propose a basic framework of urban road network hierarchical planning method. The planning method and procedures are obtained through systematical analysis and quantitative modeling, guaranteeing the choiceness, optimization and dynamic adjustment of the whole road network designed.
引文
[1]王庆云.交通运输发展理论与实践[M].北京:中国科学技术出版社,2006.
    [2]陆化普.交通规划理论与方法[M].北京:清华大学出版社,2006.
    [3]陆建,胡刚.常规公交线网布局层次规划法及其应用[J].城市交通,2004,(4):34-37.
    [4]肖滨,范炳全,柯欣.城市公交线网的分层规划方法[J].城市交通,2005,3(3):19-22.
    [5]Taaffe E J, Morrill R L, Gould P R. Transport expansion in underdeveloped countries:a comparative analysis[J]. Geographical Review,1963,53(4):503-529.
    [6]Perrin J M, Durand-Raucher Y. Hierarchization of road networks and associated levels of service in a complex urban structure[C]//Proceedings of the First World Congress on Applications of Transport Telematics and Intelligent Vehicle-Highway Systems,1995,2:454.
    [7]Tomko M, Winter S, Claramunt C. Experiential hierarchies of streets[J]. Computers, Environment and Urban Systems,2008,32(1):41-52.
    [8]Horner M W, O'Kelly M E. Embedding economies of scale concepts for hub network design[J]. Journal of Transport Geography,2001,9(4):255-265.
    [9]Yamins D, Rasmussen S, Fogel D. Growing urban roads[J]. Networks and Spatial Economics, 2003,3(1):69-85.
    [10]Yerra B M, Levinson D M. The'emergence of hierarchy in transportation networks[J]. The Annals of Regional Science,2005,39(3):541-553.
    [11]陈学武,胡刚.公交分层系统的规划方法研究[C]//北京快速公交系统发展战略研讨会文集,2003.
    [12]Van Nes R, Bovy P. Multimodal traveling and its impact on urban transit network design[J]. Journal of Advanced Transportation,2004,38(3):225-241.
    [13]Manheim M L, Marvin L著,许绍林译.运输系统分析基本原理(第一卷基本概念)[M].北京:人民交通出版社,1992.
    [14]陆化普.城市土地利用与交通系统的一体化规划[J].清华大学学报(自然科学版),2006,46(9):1499-1504.
    [15]姜璐,李克强.简单巨系统演化理论[M].北京:北京师范大学出版社,2002.
    [16]陈涛,陈森发.城市道路交通系统耗散结构特性的研究[J].土木工程学报,2004,37(1):74-77.
    [17]徐永能.大城市公共客运交通系统结构演化机理与优化方法研究[D].南京:东南大学博士学位论文,2006.
    [18]刘继生,陈彦光.交通网络空间结构的分形维数及其测算方法探讨[J].地理学报,1999,54(5):471-478.
    [19]Domenech A. A topological phase transition between small-worlds and fractal scaling in urban railway transportation networks? [J] Physica A:Statistical Mechanics and its Applications,2009, 388(21):4658-4668.
    [20]段杰,李江.基于空间分析的城市交通网络结构特征研究[J].中山大学学报(自然科学版),2002,41(6):105-108.
    [21]黄静兰.交通运输网络特性分析[J].综合运输,2003,(6):11-13.
    [22]李朝阳,王新军.关于我国城市道路功能分类的思考[J].城市规划汇刊,1999,(4):39-42.
    [23]文国玮.城市交通与道路系统规划[M].北京:清华大学出版社,2001.
    [24]蔡军.城市路网结构体系规划[M].北京:中国建筑工业出版社,2008.
    [25]蔡军.转向比例与合理干路网密度研究[J].城市交通,2005,3(4):54-58.
    [26]Thomson J M,倪文彦,陶吴馨译.城市布局与交通规划[M].北京:中国建筑工业出版社,1987.
    [27]徐慰慈.城市交通规划论[M].上海:同济大学出版社,1998.
    [28]Radnor J P, Norman J A, Paul H W. Transportation Engineering planning and design[M]. Singapore:John Wiley & Sons, Inc.,1982.
    [29]裴玉龙,陈洪仁.区域公路网合理密度确定方法的讨论[J].哈尔滨建筑大学学报,1995,28(2):13-15.
    [30]裴玉龙,张树升.区域干线公路网规划理论的研究[J].哈尔滨建筑大学学报,1995,28(2):106-114.
    [31]杨秋侠.工矿企业道路网规划[J].西安建筑科技大学学报,1999,31(3):97-98.
    [32]王建军,王吉平,彭志群.城市道路网络合理等级级配探讨[J].城市交通,2005,3(1):37-42.
    [33]胡绍荣.城市道路交通供需平衡理论研究[D].西安:长安大学硕士学位论文,2004.
    [34]石飞.城市道路等级级配及布局方法研究[D].南京:东南大学博士学位论文,2006.
    [35]李枫.城市轨道交通系统分析[J].铁道学报,2000,22(增刊):36-40.
    [36]石钦文,徐利民,胡思继.可持续发展综合交通运输系统规划理论研究[J].综合运输,2006,(6):5-8.
    [37]陈旭梅,于雷,林国鑫.智能交通技术对城市综合公共交通系统协调的影响分析[J].交通运输系统工程与信息,2005,5(3):13-60.
    [38]张国伍,任树芬.发展中的北京城市交通系统分析[J].系统工程理论方法应用,1993,2(1):63-75.
    [39]张生瑞,严宝杰.交通运输系统协调发展的理论分析[J].长安大学学报(自然科学版),2002,22(2):51-53.
    [40]魏连雨,杨春风.城市交通基础设施规模及协调发展[J].西安公路交通大学学报,2001,21(2):66-69.
    [41]魏连雨,马永锋.城市道路交通系统供需协调发展[J].交通运输工程学报,2004,4(4):58-61.
    [42]West G B, Brown J H, Enquist B J. A general model for the origin of allometric scaling laws in biology[J]. Science,1997,276(5309):122-126.
    [43]West G B, Brown J H, Enquist B J. The fourth dimension of life:fractal geometry and allometric scaling of organisms[J]. Science,1999,284(5420):1677-1679.
    [44]Lammer S, Gehlsen B, Helbing D. Scaling laws in the spatial structure of urban road networks[J]. Physica A:Statistical and Theoretical Physics,2006,363(1):89-95.
    [45]Zipf G K. Human behavior and the principle of least effort:An introduction to human ecology[M]. Addison-wesley press, Cambridge M A,1949.
    [46]Salingaros N A, West B J. A universal rule for the distribution of sizes[J]. Environment and Planning B:Planning and Design,1999,26:909-923.
    [47]Andersson C, Hellervik A, Lindgren K. A spatial network explanation for a hierarchy of urban power laws[J]. Physica A:Statistical Mechanics and its Applications,2005,345(1-2):227-244.
    [48]De Jong T M. Milieudifferentiatie, Monografieen milieuplanning/SOM 2[M]. Delft University Press, Delft,1988.
    [49]De Jong T M, Paasman M. Het Metropolitane Debat, Een vocabulaire voor besluitvorming over de kaart van Nederland[M]. Stichting Milieu en stedelijke ontwikkeling (MESO), Zoetermeer,1998.
    [50]Becker S, Brenner K, Frankhauser P, et al. Selbstorganisation urbaner Strukturen[J]. ARCH, 1994,121(3):57-68.
    [51]Christaller W. Central places in southern Germany[M]. Translated by C. W. Baskin, Prentice Hall, New York,1966.
    [52]Medda F, Nijkamp P, Rietveld P. Urban industrial relocation:The theory of edge cities[J]. Environment & Planning B,1999,26:751-761.
    [53]Batty M. Urban evolution on the desktop:simulation with the use of extended cellular automata[J]. Environment and Planning A,1998,30:1943-1968.
    [54]Page S E. On the emergence of cities[R]. Working papers Santa Fe Institute, Santa Fe Institute, Santa Fe,1998.
    [55]Blank A, Solomon S. Power laws in cities population, financial markets and internet sites (scaling in systems with a variable number of components) [J]. Physica A:Statistical Mechanics and its Applications,2000,287(1-2):279-288.
    [56]Watts D J, Strogatz S H. Collective dynamics of small-world networks[J]. Nature,1998, 393(6684):440-442.
    [57]Barabasi A L, Albert R. Emergence of Scaling in Random Networks[J]. Science,1999,286(15): 509-511.
    [58]Albert R, Barabasi A L. Topology of evolving networks:local events and universality[J]. Physical Review Letters,2000,85(24):5234-5237.
    [59]Eckmann J-P, Moses E. Curvature of co-links uncovers hidden thematic layers in the world wide web[C]//Proceedings of the National Academy of Sciences,2002,99(9):5825-5829.
    [60]Newman M E J. Scientific collaboration networks. I. Network construction and fundamental results[J]. Physical Review E,2001,64(1):16131.
    [61]Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks[J]. Nature,2000,407(6804):651-654.
    [62]高自友,赵小梅,黄海军,等.复杂网络理论与城市交通系统复杂性问题的相关研究[J].交通运输系统工程与信息,2006,6(3):41-47.
    [63]Wu J, Gao Z, Sun H, et al. Urban transit system as a scale-free network[J]. Modern Physics Letters B,2004,18(19):1043-1050.
    [64]Sienkiewicz J, Holyst J A. Statistical analysis of 22 public transport networks in Poland[J]. Physical Review E,2005,72(4):46127.
    [65]Xu X, Hu J, Liu F, et al. Scaling and correlations in three bus-transport networks of China[J]. Physica A:Statistical Mechanics and its Applications,2007,374(1):441-448.
    [66]李英,周伟,郭世进.上海公共交通网络复杂性分析[J].系统工程,2007,25(1):38-41.
    [67]Seaton K. A, Hackett L M. Stations, trains and small-world networks[J]. Physica A:Statistical Mechanics and its Applications,2004,339(3-4):635-644.
    [68]Angeloudis P, Fisk D. Large subway systems as complex networks[J]. Physica A:Statistical Mechanics and its Applications,2006,367:553-558.
    [69]Latora V, Marchiori M. Is the Boston subway a small-world network?[J] Physica A:Statistical Mechanics and its Applications,2002,314(1-4):109-113.
    [70]Wu J, Gao Z, Sun H. Complexity and efficiency of beijing transit network[J]. International Journal of Modern Physics B,2006,20(15):2129-2136.
    [71]Pastor-Satorras R, Vazquez A, Vespignani A. Dynamical and correlation properties of the Internet[J]. Physical Review Letters,2001,87(25):258701.
    [72]Newman M E J. Mixing patterns in networks[J]. Physical Review E,2003,67(2):26126.
    [73]Sun J-T, Wang S-J, Huang Z-G, et al. Effect of degree correlations on networked traffic dynamics[J]. Physica A:Statistical Mechanics and its Applications,2009,388(15-16): 3244-3248.
    [74]Ravasz E, Somera A L, Mongru D A, et al. Hierarchical organization of modularity in metabolic networks[J]. Science,2002,297(5586):1551-1555.
    [75]Newman M E J. The structure and function of complex networks[J]. SIAM Review,2003,45(2): 167-256.
    [76]Vazquez A, Pastor-Satorras R, Vespignani A. Large-scale topological and dynamical properties of the Internet[J]. Physical Review E,2002,65(6):66130.
    [77]Ravasz E, Barabasi A L. Hierarchical organization in complex networks[J]. Physical Review E, 2003,67(2):26112.
    [78]Chen M, Yu B, Xu P, et al. A new deterministic complex network model with hierarchical structure[J]. Physica A:Statistical and Theoretical Physics,2007, (385):707-717.
    [79]Wu J J, Sun H J, Gao Z Y. Dynamic urban traffic flow behavior on scale-free networks[J]. Physica A:Statistical Mechanics and its Applications,2008,387(2-3):653-660.
    [80]Zheng J-F, Gao Z-Y, Zhao X-M. Properties of transportation dynamics on scale-free networks[J]. Physica A:Statistical and Theoretical Physics,2007,373:837-844.
    [81]Xu M, Gao Z Y. Behaviour in a dynamical model of traffic assignment with elastic demand[J]. Chinese Phys.,2007,16(6):1608-1614.
    [82]Xia Y, Liu N, Lu H H C. Oscillation and chaos in a deterministic traffic network[J]. Chaos, Solitons & Fractals,2009,42(3):1700-1704.
    [83]Kirchhoff P, Friedrich M, Haller M. Rufbus-linien im Landkreis Erding[J]. Der Nahverkehr, 1996, (4):29-32.
    [84]四兵锋,高自友.多模式城市混合交通平衡配流模型及算法[J].公路交通科技,1999,16(1):44-48.
    [85]傅白白,刘法胜,夏尊铨.变分不等式的双层平衡表示及其在交通流分配中的应用[J].系统理论工程与实践,1999,19(12):70-73.
    [86]Shan L L, Gao Z Y. A combined model of network and land-use in urban transportation[C]// Proceeding of ICTTS'2000, Beijing,2000.
    [87]王媛媛,陆化普.基于可持续发展的土地利用与交通结构组合模型[J].清华大学学报(自然科学版),2004,44(9):1240-1243.
    [88]杜进有.区域交通网络分析方法研究[D].成都:西南交通大学博士学位论文,2006.
    [89]赵航,何世伟,宋瑞.区域运输通道网络设计研究[J].土木工程学报,2007,40(5):74-78.
    [90]四兵锋,孙壮志,赵小梅.基于随机用户平衡的混合交通网络流量分离模型[J].中国公路学报,2006,19(01):93-98.
    [91]沈未,陆化普.基于可持续发展的城市交通结构优化模型与应用[J].中南公路工程,2005,(1):150-151.
    [92]林震,杨浩.城市交通结构的优化模型分析[J].土木工程学报,2005,38(5):100-104.
    [93]杜进有.区域交通网络分析方法研究[D].成都:西南交通大学博士学位论文,2007.
    [94]姚新胜,黄洪钟,周仲荣.基于广义满意度原理的多目标优化理论研究[J].应用科学学报,2002,20(3):7-12.
    [95]刘晓佳,李友好,施其洲.运输通道结构配置中的客流量分配模型及算法[J].同济大学学报(自然科学版),2007,35(7):924-929.
    [96]Morlok E K, Schofer J, Pierskalla W, et al. Development and application of a highway network design model[R]. Final Report prepared for Federal Highway Administration, Environment Planning Branch, Department of Civil Engineering, Northwestern University, Evanston, IL, 1973.
    [97]LeBlanc L J, Morlok E K, Pierskalla W P. An efficient approach to solving the road network equilibrium traffic assignment problem[J]. Transportation Research,1975,9(5):309-318.
    [98]Yang H, Bell M G H. A capacity paradox in network design and how to avoid it[J]. Transportation Research Part A:Policy and Practice,1998,32(7):539-545.
    [99]Yang H, Bell M G H. Models and algorithms for road network design:a review and some new developments[J]. Transport Reviews,1998,18(3):257-278.
    [100]Yang H. Sensitivity analysis for the elastic-demand network equilibrium problem with applications[J]. Transportation Research Part B:Methodological,1997,31(1):55-70.
    [101]Huang H, Wang S, Bell M. A bi-level formulation and quasi-Newton algorithm for stochastic equilibrium network design problem with elastic demand[J]. Journal of Systems Science and Complexity,2001,14(1):40-53.
    [102]Ban J X, Liu H X, Ferris M C, et al. A general MPCC model and its solution algorithm for continuous network design problem[J]. Mathematical and Computer Modelling,2006,43(5-6): 493-505.
    [103]赵彤,高自友.交通离散网络设计与土地使用问题的组合模型及求解算法[J].土木工程学报,2003,36(07):33-38.
    [104]Sumalee A, Watling D P. Reliable network design problem with stochastic demand[C]// Proceedings of the 2nd International Symposium on Transport Network Reliability, Queenstown and Christchurch, New Zealand,2004:123-129.
    [105]张好智.城市道路交通网络设计问题的相关优化模型与算法[D].北京:北京交通大学博士论文,2007.
    [106]李夏苗,胡思继.发展快捷运输网络构筑铁路运输系统优势[J].技术经济,2002,12:13-14.
    [107]李夏苗,佘勇,等.模糊聚类分析在铁路快运网络中的应用[J].中国铁道科学,2005,26(4):124-129.
    [108]陈群,史峰.城市轨道交通网络布局的双层优化模型[J].中南大学学报(自然科学版),2008, 39(3):623-628.
    [109]Verter V, Kara B Y. A path-based approach for hazmat transport network design[J]. Management Science,2008,54(1):29-40.
    [110]Erkut E, Gzara F. Solving the hazmat transport network design problem[J]. Computers & Operations Research,2008,35(7):2234-2247.
    [111]Bianco L, Caramia M, Giordani S. A bilevel flow model for hazmat transportation network design[J]. Transportation Research Part C:Emerging Technologies,2009,17(2):175-196.
    [112]李琼星.城市公交线网规划研究[D].长沙:湖南大学硕士学位论文,2002.
    [113]于星涛.快速公交系统规划研究—以济南市为例[D].上海:同济大学硕士学位论文,2006.
    [114]Daganzo C, Sheffi Y. On stochastic models of traffic assignment[J]. Transportation Science, 1977,11(3):253.
    [115]Sheffi Y, Powell W. A comparison of stochastic and deterministic traffic assignment over congested networks[J]. Transportation Research Part B:Methodological,1981,15(1):53-64.
    [116]Sheffi Y. Urban transportation networks:Equilibrium analysis with mathematical programming methods[M]. Englewood Cliffs (New Jersey):Prentice-Hall, Inc.,1985.
    [117]Dial R B. A probabilistic multipath traffic assignment model which obviates path enumeration[J]. Transportation Research,1971,5(2):83-111.
    [118]Bell M G H. Alternatives to Dial's logit assignment algorithm[J]. Transportation Research Part B: Methodological,1995,29(4):287-295.
    [119]Leurent F. Curbing the computational difficulty of the logit equilibrium assignment model [J]. Transportation Research Part B,1997,31(4):315-326.
    [120]Huang H-J, Bell M G H. A study on logit assignment which excludes all cyclic flows[J]. Transportation Research Part B:Methodological,1998,32(6):401-412.
    [121]Bell M G H, Lam W H K, Ploss G, et al. Stochastic user equilibrium assignment and iterative balancing[C]//Proceedings of the 12th International Symposium on Transportation and Traffic Theory (C. F. Daganzo, ed.). Berkeley, CA. New York:Elsevier,1993,Number of 427-439.
    [122]任刚,王炜.基于转向的Logit交通分配算法[J].交通运输工程学报,2005,5(4):101-105.
    [123]四兵锋,张好智,高自友.求解Logit随机网络配流问题的改进Dial算法[J].中国公路学报,2009,22(1):78-83.
    [124]Huang H J. A combined algorithm for solving and calibrating the stochastic traffic assignment model[J]. Journal of the Operational Research Society,1995,46(8):977-987.
    [125]Huang H-J, Li Z-C. A multiclass, multicriteria logit-based traffic equilibrium assignment model under ATIS[J]. European Journal of Operational Research,2007,176(3):1464-1477.
    [126]Bell M G H, Lam W H K, Iida Y. A time-dependent multi-class path flow estimator [M]. In: Lesort, J.B. (Ed.), Transportation and Traffic Theory. Elsevier, Oxford,1996:173-194.
    [127]Huang H J, Lam W H K. A multi-class dynamic user equilibrium model for queuing networks with advanced traveler information systems [J]. Journal of Mathematical Modelling and Algorithms,2003,2(4):349-377.
    [128]Dafermos S C. Traffic equilibrium and variational inequalities[J]. Transportation Science,1980, 14(1):42-54.
    [129]Aashtiani H. The multi-modal traffic assignment problem[D]. Ph.D. Thesis, Operations Research Center, MIT, Cambridge, MA,1979.
    [130]Asmuth R. Traffic network equilibria[D]. Ph.D. Thesis, Department of Operations Research, Stanford University, Stanford, CA,1978.
    [131]Fisk C S, Boyce D E. Alternative variational inequality formulations of the network equilibrium-travel choice problem[J]. Transportation Science,1983,17(4):454-463.
    [132]Thore S, Nagurney A, Pan J. Generalized goal programming and variational inequalities[J]. Operations Research Letters,1992,12(4):217-226.
    [133]Daniele P, Maugeri A, Oettli W. Variational inequalities and time-dependent traffic equilibria[J]. Comptes Rendus de l'Academie des Sciences-Series I-Mathematics,1998,326(9):1059-1062.
    [134]Daniele P, Maugeri A. Variational inequalities and discrete and continuum models of network equilibrium problems[J]. Mathematical and Computer Modelling,2002,35(5-6):689-708.
    [135]Liu L N, Boyce D E. Variational inequality formulation of the system-optimal travel choice problem and efficient congestion tolls for a general transportation network with multiple time periods[J]. Regional Science and Urban Economics,2002,32(5):627-650.
    [136]He B-s, Yang H, Zhang C-s. A modified augmented Lagrangian method for a class of monotone variational inequalities[J]. European Journal of Operational Research,2004,159(1):35-51.
    [137]Cojocaru M-G, Daniele P, Nagurney A. Double-layered dynamics:A unified theory of projected dynamical systems and evolutionary variational inequalities[J]. European Journal of Operational Research,2006,175(1):494-507.
    [138]Barbagallo A. Existence and regularity of solutions to nonlinear degenerate evolutionary variational inequalities with applications to dynamic network equilibrium problems[J]. Applied Mathematics and Computation,2009,208(1):1-13.
    [139]Nagurney A, Pan J. Evolution variational inequalities and projected dynamical systems with application to human migration[J]. Mathematical and Computer Modelling,2006,43(5-6): 646-657.
    [140]Nagurney A, Liu Z, Cojocaru M-G, et al. Dynamic electric power supply chains and transportation networks:An evolutionary variational inequality formulation[J]. Transportation Research Part E:Logistics and Transportation Review,2007,43(5):624-646.
    [141]Friesz T, Bernstein D, Smith T, et al. A variational inequality formulation of the dynamic network user equilibrium problem[J]. Operations Research,1993,41(1):179-191.
    [142]Ran B, Boyce D E. Modeling dynamic transportation networks[J]. Berlin:Springer-Verlag, 1996.
    [143]Lu C-C, Mahmassani H S, Zhou X. A bi-criterion dynamic user equilibrium traffic assignment model and solution algorithm for evaluating dynamic road pricing strategies[J]. Transportation Research Part C:Emerging Technologies,2008,16(4):371-389.
    [144]Larsson T, Patriksson M. Simplicial decomposition with disaggregated representation for the trac assignment problem[J]. Transportation Science,1992,26:4-17.
    [145]Lin G H, Zhang L W, Pang L P. Two projection-type algorithms for solving pseudo-monotone variational inequality problems[J]. OR Transactions,2005,9(1):58-64.
    [146]黄海军.城市交通网络平衡分析一理论与实践[M].北京:人民交通出版社,1994.
    [147]四兵锋,赵小梅,孙壮志.城市混合交通网络系统优化模型及其算法[J].中国公路学报,2008,21(1):77-82.
    [148]Smith M J. A new dynamic traffic model and the existence and calculation of dynamic user equilibria on congested capacity-constrained road networks[J]. Transportation Research Part B: Methodological,1993,27(1):49-63.
    [149]Larsson T, Patriksson M. An augmented Lagrangean dual algorithm for link capacity side constrained traffic assignment problems[J]. Transportation Research Part B,1995,29(6): 433-455.
    [150]Ferrari P. Capacity constraints in urban transport networks[J]. Transportation Research Part B: Methodological,1997,31(4):291-301.
    [151]Lam W H K, Zhou J, Sheng Z-h. A capacity restraint transit assignment with elastic line frequency[J]. Transportation Research Part B:Methodological,2002,36(10):919-938.
    [152]Nie Y, Zhang H M, Lee D H. Models and algorithms for the traffic assignment problem with link capacity constraints[J]. Transportation Research Part B,2004,38(4):285-312.
    [153]Schmocker J-D, Bell M G H, Kurauchi F. A quasi-dynamic capacity constrained frequency-based transit assignment model[J]. Transportation Research Part B:Methodological, 2008,42(10):925-945.
    [154]Wu Z X, Lam W H K. A network equilibrium model for congested multi-mode transport network with elastic demand[C]//Transportation in the Information Age:Proceedings of the 7th Conference of Hong Kong Society for Transportation Studies,2002, p.274-283.
    [155]Nagurney A, Dong J. A multiclass, multicriteria traffic network equilibrium model with elastic demand[J]. Transportation Research Part B:Methodological,2002,36(5):445-469.
    [156]Connors R D, Sumalee A, Watling D P. Sensitivity analysis of the variable demand probit stochastic user equilibrium with multiple user-classes[J]. Transportation Research Part B: Methodological,2007,41(6):593-615.
    [157]Lam W H K, Li Z, Wong S C, et al. Modeling an elastic-demand bimodal transport network with park-and-ride trips[J]. Tsinghua Science & Technology,2007,12(2):158-166.
    [158]Hearn D W, Ribera J. Multipliers and gradient methods[J]. Journal of Optimization Theories and Applications,1980,4:303-320.
    [159]Bertsekas D P. Constrained optimization and Lagrange multiplier methods[M]. San Diego (CA): Academic Press,1982.
    [160]Patriksson M, Daduna J R. The traffic assignment problem:models and methods[M]. BV (The Netherlands):VSP Utrecht,1994.
    [161]Hearn D W. Bounding flows in traffic assignment models[R]. Research report 80-4, Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL,1980.
    [162]Inouye H. Traffic equilibria and its solution in congested road networks[C]//Vienna:In:Genser, R. (Ed.), Proceedings of IFAC Conference on Control in Transportation Systems,1987, Number of 267-272.
    [163]Yang H, Yagar S. Traffic assignment and signal control in saturated road networks[J]. Transportation Research Part A:Policy and Practice,1995,29(2):125-139.
    [164]Prashker J N, Toledo T. Adaptation of the gradient projection algorithm for the traffic assignment problem with side constraints[C]//The 80th Annual meeting of Transportation Record Board, Washington,2001.
    [165]Hestenes M R. Multiplier and gradient methods[J]. Journal of Optimization Theory and Applications,1969,4(5):303-320.
    [166]Powell M. A method for nonlinear constraints in minimization problems[J]. Optimization,1969: 283-298.
    [167]Bell M G H. Stochastic user equilibrium assignment in networks with queues[J]. Transportation Research Part B:Methodological,1995,29(2):125-137.
    [168]Yang H, Huang H-J. Analysis of the time-varying pricing of a bottleneck with elastic demand using optimal control theory[J]. Transportation Research Part B:Methodological,1997,31(6): 425-440.
    [169]Hearn D W, Yildirim M B. A toll pricing framework for traffic assignment problems with elastic demand[J]. Current trends in transportation and network analysis,2002:135.
    [170]Huang H-J. Pricing and logit-based mode choice models of a transit and highway system with elastic demand[J]. European Journal of Operational Research,2002,140(3):562-570.
    [171]Verhoef E T. Second-best congestion pricing in general static transportation networks with elastic demands[J]. Regional Science and Urban Economics,2002,32(3):281-310.
    [172]Nicholson A, Du Z P. Degradable transportation systems:an integrated equilibrium model[J]. Transportation Research B,1997, (31):209-223.
    [173]Du Z P, Nicholson A. Degradable transportation systems:Sensitivity and reliability analysis[J]. Transportation Research B,1997, (31):225-237.
    [174]Lo H K, Tung Y K. Network with degradable links:capacity analysis and design[J]. Transportation Research B,2003, (37):345-363.
    [175]Lo H K, Luo X W, Siu W Y. Degradable transport network:travel time budget of travelers with heterogeneous risk aversion[J]. Transportation Research B,2006, (40):792-806.
    [176]黎茂盛,王炜,史峰.降级路网的认知及交通流平衡分析模型[J].中国公路学报,2006,19(6):87-91.
    [177]王殿海,曲昭伟.对交通流理论的再认识[J].交通运输工程学报,2001,1(4):55-59.
    [178]Meneguzzer C. An equilibrium route choice model with explicit treatment of the effect of intersections[J]. Transportation Research B,1995,29(5):329-356.
    [179]Ziliaskopoulos A K, Mahmassani H S. A note on least time path computation considering delays and prohibitions for intersection movements[J]. Transportation Research B,1996,30(5): 359-367.
    [180]任刚,王炜,邓卫.带转向延误和限制的最短路径问题及其求解方法[J].东南大学学报,2004,34(1):104-108.
    [181]王丰元,潘福全,张丽霞,等.基于交通限制的路网最优路径算法[J].交通运输工程学报,2005,5(1):92-95.
    [182]Button K. Transport, the environment and economic policy:Edward Elgar, Aldershot, UK,1993.
    [183]IPCC. Mitigation of Climate Change[C]//International panel on climate change (IPCC) Fourth Assessment Report, Working Group III Report 2007.
    [184]M·沃尔什.中国机动车污染控制:城市面临的挑战[C]//《中国城市交通发展战略》.北京:中国建筑工业出版社,1995.
    [185]Plaut P O. The Comparison and ranking of policies for abating mobile-source emissions[J]. Transportation Research Part D:Transport and Environment,1998,3(4):193-205.
    [186]Jansen H, Denis C. A welfare cost assessment of various policy measures to reduce pollutant emissions from passenger road vehicles[J]. Transportation Research Part D,1999,4(6):379-396.
    [187]Zhang S, Jiang K, Liu D. Passenger transport modal split based on budgets and implication for energy consumption:Approach and application in China[J]. Energy Policy,2007,35(9): 4434-4443.
    [188]Nagurney A. Alternative pollution permit systems for transportation networks based on origin/destination pairs and paths[J]. Transportation Research Part D:Transport and Environment,2000,5(1):37-58.
    [189]Nagurney A, Ramanujam P, Dhanda K K.A multimodal traffic network equilibrium model with emission pollution permits:compliance vs noncompliance[J]. Transportation Research Part D: Transport and Environment,1998,3(5):349-374.
    [190]Winston C, Maheshri V. On the social desirability of urban rail transit systems[J]. Journal of Urban Economics,2007,62(2):362-382.
    [191]张好智,高自友,张贝.环境目标下城市交通综合网络设计的优化模型及求解算法[J].土术工程学报,2006,39(11):114-119.
    [192]Levinson D. Perspectives on efficiency in transportation[J]. International Journal of Transport Management,2003,1(3):145-155.
    [193]吕晓明.解决城市交通问题的可持续发展思想[J].城市规划汇刊,1997,2:61-64.
    [194]Porta S, Crucitti P, Latora V. The network analysis of urban streets:a dual approach[J]. Physica A:Statistical Mechanics and its Applications,2006,369(2):853-866.
    [195]Porta S, Crucitti P, Latora V. The network analysis of urban streets:a primal approach[J]. arxiv. org preprint physics/0506009,2005.
    [196]Rosvall M, Trusina A, Minnhagen P, et al. Networks and cities:an information perspective[J]. Phys. Rev. Lett.,2005, (94):028701.
    [197]von Ferber C, Holovatch T, Holovatch Y, et al. Network harness:Metropolis public transport[J]. Physica A:Statistical Mechanics and its Applications,2007,380:585-591.
    [198]Newman M E J. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality[J]. Physical Review E,2001,64(1):016132-016138.
    [199]Yang H, Meng Q. A note on "highway pricing and capacity choice in a road network under a build-operate-transfer scheme"[J]. Transportation Research Part A:Policy and Practice,2002, 36(7):659-663.
    [200]Mohring H, Harwitz M. Highway Benefits:An analytical framework[M]. Northwestern University Press, Evanston, IL,1962.
    [201]隽志才,罗清玉,傅忠宁,等.拥挤收费对城市道路资源配置公平性的影响研究[J].交通运输系统工程与信息,2008,8(1):74-79.
    [202]陈彦光,周一星.基于三角点阵模型的自组织城市网络探讨[J].北京大学学报(自然科学版),2005,41(2):258-264.
    [203]谭跃进,吴俊.网络结构熵及其在非标度网络中的应用[J].系统工程理论与实践,2004, 24(6):1-3.
    [204]刘灿齐.交通网络设计问题的模型与算法的研究[J].公路交通科技,2003,20(2):57-63.
    [205]Lozano A, Storchi G. Shortest viable path algorithm in multimodal networks[J]. Transportation Research Part A,2001,35(3):225-241.
    [206]Bielli M, Boulmakoul A, Mouncif H. Object modeling and path computation for multimodal travel systems[J]. European Journal of Operational Research,2006,175(3):1705-1730.
    [207]Jansen B, Swinkels P C J, Teeuwen G J A, et al. Operational planning of a large-scale multi-modal transportation system[J]. European Journal of Operational Research,2004,156(1): 41-53.
    [208]Garcia R, Marin A. Network equilibrium with combined modes:models and solution algorithms[J]. Transportation Research Part B:Methodological,2005,39(3):223-254.
    [209]Schonharting J, Schmidt A, Frank A, et al. Towards the multimodal transport of people and freight:interconnective networks in the RheinRuhr Metropolis[J]. Journal of Transport Geography,2003,11(3):193-203.
    [210]Nijkamp P, Reggiani A, Tsang W F. Comparative modelling of interregional transport flows: Applications to multimodal European freight transport[J]. European Journal of Operational Research,2004,155(3):584-602.
    [211]Si B, Gao Z. Optimal model for passenger transport pricing under the condition of market competition[J]. Journal of Transportation Systems Engineering and Information Technology, 2007,7(1):72-78.
    [212]何宇强,毛保华,陈团生,等.高速客运专线客流分担率模型及其应用研究[J].铁道学报,2006,28(3):18-21.
    [213]Harker P T, Pang J S. Finite-dimensional variational inequality and nonlinear complementarity problems:a survey of theory, algorithms and applications[J]. Mathematical Programming,1990, 48(1):161-220.
    [214]Shaprio R D, James L H. Logistics strategy:cases and concepts[M]. New York:West Publishing, 1985.
    [215]李尔涛,唐孝飞,胡思继.一个物流网络的双层规划模型[J].系统工程学报,2004,19(1):8-13.
    [216]Syarif A, Yun Y S, Gen M. Study on multi-stage logistic chain network:a spanning tree-based genetic algorithm approach[J]. Computers & Industrial Engineering,2002,43(1-2):299-314.
    [217]Du F, Evans G W. A bi-objective reverse logistics network analysis for post-sale service[J]. Computers and Operations Research,2008,35(8):2617-2634.
    [218]Frota Neto J Q, Bloemhof-Ruwaard J M, van Nunen J A E E, et al. Designing and evaluating sustainable logistics networks[J]. International Journal of Production Economics,2008,111(2): 195-208.
    [219]四兵锋,高自友.多模式交通条件下合理制定旅客票价的优化模型及算法[J].中国管理科学,2000,(04).
    [220]Rockafellar R T. A dual approach to solving nonlinear programming problems by unconstrained optimization[J]. Mathematical Programming,1973,5(1):354-373.
    [221]曾明华.遗传算法和神经网络在布局子问题中的应用[D].大连:大连理工大学硕十学位论文,2005.
    [222]Barbosa H J C, Lemonge A C C. A new adaptive penalty scheme for genetic algorithms[J]. Information Sciences,2003,156(3-4):215-251.
    [223]Nanakorn P, Meesomklin K. An adaptive penalty function in genetic algorithms for structural design optimization[J]. Computers and structures,2001,79(29-30):2527-2539.
    [224]Ishibuchi H, Yoshida T, Murata T. Balance between genetic search and local search in mimetic algorithms for multi-objective permutation flow-shop scheduling[J]. IEEE Transactions on Evolutionary Computation,2003,7(2):204-223.
    [225]Kim K, Yun Y, Yoon J, et al. Hybrid genetic algorithm with adaptive abilities for resource-constrained multiple project scheduling[J]. Computers in Industry,2005,56(2): 143-160.
    [226]Hakimi-Asiabar M, Ghodsypour S H, Kerachian R. Multi-objective genetic local search algorithm using Kohonen's neural map[J]. Computers & Industrial Engineering,2009,56(4): 1566-1576.
    [227]陈彦光,刘继生.区域交通网络分形的DBM特征——交通网络Laplacian分形性质的实证研究[J].地理科学,1999,19(2):114-118.
    [228]曾明华,李夏苗,刘大鹏.城市群交通网络特性研究[J].系统工程,2009,27(3):10-15.
    [229]王炜,项乔君,常玉林,等.城市交通系统能源消耗与环境影响分析方法[M].北京:科学出版社,2002.
    [230]陆建.城市交通系统可持续发展规划理论与方法[D].南京:东南大学博士学位论文,2003.
    [231]朱海清.城市常规公交线路优化方法研究[D].南京:东南大学硕士学位论文,2006.
    [232]翟何舟.城市公共交通不同层次整合研究[D].成都:西南交通大学硕士学位论文,2006,p.39-41.
    [233]王炜,杨新苗,陈学武.城市公共交通系统规划方法与管理技术[M].北京:科学出版社,2002.
    [234]东南大学交通学院.蚌埠市综合交通规划研究报告[R].南京:东南大学交通学院,2002.
    [235]季令,张国宝.城市轨道交通运营组织[M].北京:中国铁道出版社,1998.
    [236]孙小年.广东省公路运输枢纽层次划分和布局研究[J].广东公路交通,2001,(4):27-31.
    [237]覃商.轨道交通枢纽规划与设计理论研究[D].上海:同济大学博士学位论文,2002.
    [238]上海市城市规划设计院.上海市综合客运交通枢纽布局规划[R].上海市城市规划设计院,2006.
    [239]吕慎,田锋,李旭宏.组团式大城市客运综合换乘枢纽布局规划方法[J].交通运输工程学报,2007,7(4):98-103.
    [240]易浩.城市客运交通枢纽的层次化布局研究[D].北京:北京交通大学硕士学位论文,2007.
    [241]刘金玲,曾学贵.基于定量分析的城市轨道交通与土地利用一体规划研究[J].铁道学报,2004,26(3):13-19.
    [242]杨明,曲大义,王炜,等.城市士地利用与交通需求相关关系模型研究[J].公路交通科技,2002,19(1):72-75.
    [243]石飞,江薇,王炜,等.基于土地利用形态的交通生成预测理论方法研究[J].土木工程学报,2005,38(3):115-118.
    [244]刘海旭,蒲云.基于行程质量的随机用户平衡分配模型[J].中国公路学报,2004,17(4):93-95.
    [245]Damberg O, Lundgren J, Patriksson M. An algorithm for the stochastic user equilibrium problem[J]. Transportation Research Part B,1996,30(2):115-131.
    [246]王炜,徐吉谦,杨涛,等.城市交通规划理论及其应用[M].南京:东南大学出版社,1998.
    [247]Kirby R F, Potts R B. The minimum route problem for networks with turn penalties and prohibitions[J]. Transportation Research,1969,3(4):397-408.
    [248]陆化普,黄海军.交通规划理论研究前沿[M].北京:清华大学出版社,2007.
    [249]Zhou S, Mondragon R J. The rich-club phenomenon in the Internet topology[J]. IEEE Comm. Lett.,2004,8(3):180-182.
    [250]Colizza V, Flammini A, Serrano M A, et al. Detecting rich-club ordering in complex networks[J]. Nature Phys.,2006, (2):110-115.
    [251]Serrano M A. Rich-club vs rich-multipolarization phenomena in weighted networks[J]. Physical Review E,2008,78(2):026101.
    [252]Zhao H, Gao Z Y. Organizations of rich nodes in complex networks[J]. Physica A:Statistical and Theoretical Physics,2007,381(15):473-481.
    [253]Guo R-Y, Huang H-J. Chaos and bifurcation in dynamical evolution process of traffic assignment with flow "mutation"[J]. Chaos, Solitons & Fractals,2008,41(3):1150-1157.
    [254]Pautasso M, Jeger M J. Epidemic threshold and network structure:The interplay of probability of transmission and of persistence in small-size directed networks[J]. Ecological Complexity, 2008,5(1):1-8.
    [255]Boel R, Mihaylova L. A compositional stochastic model for real time freeway traffic simulation[J]. Transportation Research Part B:Methodological,2006,40(4):319-334.
    [256]Hanaura H, Nagatani T, Tanaka K. Jam formation in traffic flow on a highway with some slowdown sections[J]. Physica A:Statistical Mechanics and its Applications,2007,374(1): 419-430.
    [257]Mori F, Odagaki T. Synchronization of coupled oscillators on small-world networks[J]. Physica D:Nonlinear Phenomena,2009,238(14):1180-1185.
    [258]Li X. Phase synchronization in complex networks with decayed long-range interactions[J]. Physica D:Nonlinear Phenomena,2006,223(2):242-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700