用户名: 密码: 验证码:
复杂网络拓扑特征的理论研究及仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂网络能够描述自然和社会中的非常广泛的系统,近年来已成为国际上一个十分引人瞩目的新兴研究领域.本论文主要从概率论、图论和统计物理角度出发,系统研究了复杂网络的一些重要拓扑特征.
     本文的主要研究工作如下:
     第一章中,介绍了本论文的研究背景、预备知识及本文所作的主要工作.
     第二章中,从概率论角度出发,讨论了复杂网络稳态度分布的存在性及相关问题.根据复杂网络的定义和性质建立网络马氏链,进而利用马氏链理论中首达概率的方法和技巧为增长网络稳态度分布的存在性提供严格证明.
     文中首先分析了一类允许重连的经典模型——DMS模型,为该网络稳态度分布的存在性提供了严格证明.另外,文中进一步探讨了一类一般的网络模型——修正Cooper-Frieze模型.我们证明了该模型稳态度分布的存在性,并通过数值仿真,将该模型的度分布及聚集性与BA模型进行了对比分析.
     第三章中,主要研究了群体择优模型的一些重要拓扑特征及相应的仿真分析.群体择优模型为复杂网络研究引进了一种新的择优思想——群体择优思想.文中着重讨论了两类群体择优模型-无权群体择优模型和加权群体择优模型的拓扑特征及同步分析.
     首先,对无权群体择优模型,我们利用率方程方法着重分析了其度分布、度相关性和聚集性.并且在文中我们为该模型提供了广泛的仿真分析,且得出仿真结果与解析结果完全吻合.其次,对加权群体择优模型,我们主要分析了其度分布、点权及边权分布,研究了群体择优思想在演化过程中对加权网络拓扑结构的影响,并将其结果与BBV模型作了比较分析.另外,我们还进一步对群体择优模型作了同步分析,并讨论了网络在随机故障和恶意攻击情形下的同步能力.
     在文章最后两章中,主要利用复杂网络的研究方法,对社会网络及自然网络作了一些应用分析.
     其中在第四章中,我们研究了财富网络模型的拓扑结构及财富分布.根据社会个体和组织之间经济关系的特点,通过考虑财富重分和择优机制等因素对网络结构的影响,我们建立了对应的财富网络模型.文中着重考虑了两类财富网络模型,其中主要对模型的度分布及其他一些重要拓扑特征作了理论研究和仿真分析.
     在第五章中,我们研究了一类生物网络模型的拓扑结构及功能.通过引进新的择优思想和演化机制,我们提出了一类新的蛋白质结构域相互作用网络模型.同时,主要研究了该类蛋白质结构域相互作用网络的一些重要拓扑特征,如度分布、聚集性以及最短路径长度等等.
Complex network has become a very hot field of research in recent years, which can describe very broad systems both in nature and society. In this paper, we systematically study the topological characteristic of complex networks by using Markov chain theory, knowledge of Graph theory and Statistical Physics. The paper is organized as follows.
     In chapter 1, we introduce the research background of this paper, some basic con-cepts and theories, and our main work in this paper.
     In chapter 2, from the point of Probability theory, we study the existence of steady-state degree distribution of complex networks. Based on the definition and properties of complex network, we first construct network Markov chain. Then by using the first passage probability in probability theory, we provide a strict proof for the existence of the degree distribution of growing networks. In this chapter, we firstly consider a classical model, the DMS model, and provide a strict proof for the existence of the degree distribution.
     Besides, we further study a more general model, the modified Cooper-Frieze model. We prove the existence of the degree distribution, a comparison with the BA model on degree distribution and clustering is also provided.
     In chapter 3, we discuss some important topological characteristics of Group models, and the corresponding simulations are also provided. In the Group models, it introduces a new concept to realize the preferential attachment in the research of complex network, and it is a holistic approach. In this chapter, we discuss two kinds of Group models, un-weighted and weighted.
     For the first kind of model, we consider the two-node correlation and three-node correlation by using the rate equation. And all analytical solutions are successfully contrasted with computer simulations.
     What's more, we mainly research the degree distribution, weight distribution for the weighted Group model. The influence of group preference mechanism on weighted network is also studied. Besides, we study the synchronization phenomenon for both these two models, and discuss the influence of random removal of nodes and special removal of the most highly connected nodes on the synchronizability of the two Group models.
     Chapter 4 and 5 are mainly the application of complex networks in real social and natural networks.
     In chapter 4, we consider the topological structure in wealth network. Wealth is the main target of the economic activities of individuals and agents, and is also one of the most powerful motives for human relationship in a society. Based on the economic relations between the agents and organizations, we propose a general wealth model, which permits local preferential attachment and local redistribution of wealth. We research the degree distribution and wealth distribution, and simulations for some important properties are also provided.
     And in chapter 5, the analysis of the topological structure and function for biology network is provided. By introducing of new ideas and evolving mechanism, we propose a new kind of the protein domain network. We mainly consider the topological properties of the protein domain network, such as degree distribution, clustering and the shortest path problem.
引文
[1]Solomonoff R and Rapoport A. Connectivity of random nets. Bulletin of Math. Biophys., 1951,13:107-117
    [2]Travers J, Milgram S. An experiment study of the small world problem. Sociometry,1969, 32:425-443
    [3]Strogatz S H. Exploring complex networks. Nature,2001,410:268-276
    [4]Watts D J and Strogatz S.H. Collective dynamics of small-world networks. Nature,1998, 393:440-442
    [5]Barabasi A L, Albert R. Emergence of Scaling in Random Networks. Scence,1999,286: 509-512
    [6]Barabasi A L. Scale-free networks:a decade and beyond. Science.2009,325:412-413
    [7]Albert R, Jeong H and Barabasi A L. Diameter of the world-wide web. Nature,1999,401: 130-131
    [8]Barabasi A L, Albert R. and Jeong H. Mean-field theory for scale-free random networks. Physica A,1999,272:173-187
    [9]Watts D J. The 'new' science of networks. Annual Review of Sociology,2004,410:268-276
    [10]Alebert R and Barabasi A L. Statical mechanics of complex networks. Rev. Mod. Phys., 2002,74(1):47-97
    [11]Barabasi A L. Linked:The new science of networks. Cambridge, MA:Perseus Publishing, 2002
    [12]Redner S. How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B,1998,4:131-134
    [13]Amaral L, Scala A, et al. Classes of small-world networks. Proc. Natl. Acad. Sci. U.S.A., 2000,97:11149
    [14]Bullmore E T, Sporns O. Complex brain networks:graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci.,2009,10:186
    [15]Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks. Phys. Rev. Lett.,2001,86:3200
    [16]Cohen R, Reez K, et al. Resilence of the Internet to random breakdowns. Phys. Rev. Lett, 2000,85:4626-4628
    [17]Motter A E. Cascade control and defense in complex networks. Phys. Rev. Lett.,2004,93: 098701
    [18]Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science, 2002,296:910-913
    [19]Newman M E J. The physics of networks. Phys. Today,2008,61:33
    [20]Palla G, Derenyi I, et al. Uncovering the overlapping community structure of complex networks in nature and society. Nature,2005,435:814-818
    [21]Reichardt J, Bornholdt S. Statistical mechanics of community detection. Phys. Rev. E,2006, 74(1):016110
    [22]Newman M E J. The structure and function of complex networks. SIAM. Rev.,2003,45: 167-256.
    [23]Wang X F and Chen G R. Complex Networks:Small-World, Scale-Free and Beyond. IEEE circuits and systems magazine,2003,1:6-20
    [24]Wasserman Sand Faust K. Social Network Analysis. Cambridge University Press,1996
    [25]Moreno J L. Who Shall Survive? Beacon House,1934
    [26]RaPoPort A and Horvath W J. A study of large sociogram. Behavioral Science,1961,6: 279-291
    [27]Galaskiewicz J. Social organization of an Urban Grants Economy. Academic Press,1985
    [28]Galaskiewicz J and Marsden P V. Social Science Research,1978,7:89
    [29]Mariolis P. Interlocking directorates and control of corporations. Social Science Quarterly, 1975,56:425
    [30]Mizruchi M S. The American Corporate Network,1904-1974. Beverly Hills, Sage,1982
    [31]Adamic L A and Huberman B A. Scaling behavior of the world wide web. Science,2000, 287:2115
    [32]Amaral L A N, Barthelemy A and Stanley H E. Classes of Small-World. Networks. Proe. Nat. Acad. Sci. USA,2000,97:11149
    [33]Newman M E J. The structure of scientific collaboration-networks. Proc. Natl. Acad. Sci. USA,2001,98:404-409
    [34]Newman M E J. Scientific collaboration networks:Ⅰ. Network construction and fundamental results. Phys. Rev. E.,2001,64:016131
    [35]Newman M E J. Scientific collaboration networks:Ⅱ. Shortest paths, weighted networks, and centrality. Phys. Rev. E.,2001.64:016132
    [36]Newman M E J, Forrest S, Balthrop J. Email networks and the spread of computer viruses. Phys. Rev. E,2002,66:035101
    [37]Egghe L and Rousseau R.Introduction to Informetrics. Quantitative Methods in Library. Documentation and Information Science, Elsevier.1990
    [38]Dorogovtsev S N and Mendes J F F. Language as an evolving word web. Proc. R. Soc. London B,2001,268:2603-2606
    [39]Wagner A and Fell D. The small world inside large metabolic networks. Proc. Roy. Soc. London Seirese B,2001,268:1803-1810
    [40]Pimm S L. Food Webs. University of Chicago Press,2002
    [41]Bader G D, Donaldson I, et al. The Biomolecular Interaction Network Database. Nucl. Acids. Res.,2001,29:242-245
    [42]Banavar J R, Maritan A and Rinaldo A. Size and form in efficient transportation networks. Nature,1999,399:130-132
    [43]West G B, Brown J H and Enquist B J. A general model for the origin of allometric scaling laws in biology. Science,1997,276:122-126
    [44]Dorogovtsev S N, Mendes J F F. Effect of the accelerating growth of communications net-works on their structure. Physical Review E,2001,025101
    [45]Liu Z H, Lai Y C, et. al. Connectivity distribution and attack tolerance of general networks with both preferential and random attachments. Phys. Lett. A,2002,303:337-344
    [46]Li X, Chen G R. A local world evolving network model. Physica A,2003,328:274
    [47]Fan Z P, Chen G R, Zhang Y N. A comprehensive multi-local-world model for complex networks. Phys. Lett. A,2009,373:1601-1605
    [48]Albert R and Barabasi A L. Topology of evoolving networks:local events and university. Phys. Rev. Lett.,2000,85:5234-5237
    [49]Fan Y, Li M, et al. Network of Econophysicists:A Weighted Network to Investigate the Development of Econophysics. Int. J. Mod. Phys. B,2004.18:2505-2511
    [50]Li M, Fan Y, et al. Weighted networks of scientific communication:the measurement and topological role of weight. Physica A,2005; 350:643-656
    [51]Kong X, Tong J and Hou Z. Scale-free network with variable scaling exponent. Physica A, 2009, submitted.
    [52]Hu H B, Wang X F. Evolution of a large online social network. Phys. Lett. A,2009,373: 1105
    [53]Hu H B, Wang X F. Disassortative mixing in online social networks. Europhys. Lett.,2009, 86:18003
    [54]Xiao W K, Ren J, et al. Empirical study on clique-degree distribution of networks. Phys. Rev. E,2007,76:037102
    [55]Zhang G Q, et al. Evolution of the Internet and its cores. New J. Phys.,2008,10:123027
    [56]Motter A E, Zhou CS,Kurths J. Network synchronization, diffusion, and the paradox of heterogeneity. Phys. Rev. E,2005,71:016116
    [57]Zhou C S, Motter A E, Kurths J. Universality in the synchronization of weighted random networks. Phys. Rev. Lett.,2006,96:034101
    [58]Zhou C S, Kurths J. Dynamical weights and enhanced synchronization in adaptive complex networks. Phys. Rev. Lett.,2006,96:164102
    [59]Wang X F, Chen G R. Synchronization in small-world dynamical networks. Int. J. Bifuration and Chaos.2002,12:187-192
    [60]Wang X F, Chen G R. Synchronization in scale-free dynamical networks:robustness and fragility. IEEE Trans. Circuits and Systems-I,2002,49:54-62
    [61]Li C G, Chen G R. Synchronization in general complex dynamical networks with coupling delays. Physica A,2004,343:263-278
    [62]Zhao M, Zhou T, et al. Enhancing the network synchronizability. Front. Phys. China,2007, 2:460-468
    [63]Chen G R, Zhao M, et al. Synchronization Phenomena in Networks, in R. A. Meyers (ed.). Encyclopedia of Complexity and Systems Science, Springer,2009.
    [64]Yan G, Zhou T, et al. Efficient Routing on Complex Networks. Phys. Rev. E,2006.73: 046108
    [65]Krapivsky P L, Rendner S and Leyvraz F. Connectivity of growing random networks. Phys. Rev. Lett.2000,85:4629-4632
    [66]Dorogovtsev S N, Mendes J F F, Samukhin A N. Structure of Growing Networks with Preferential Linking. Phys Rev Lett,2000, 85:4633-4636
    [67]杨波,段文奇,陈忠.抽样对复杂网络多重结构特征的影响.上海交通大学学报,2007,41:1979-1984
    [68]杨波,陈忠,段文奇.复杂网络幂律函数标度指数的估计与检验.上海交通大学学报,2007,41:1066-1068
    [69]Shi D H, Chen Q H, Liu L M. Markov chain-based numerical method for degree distributions of growing networks. Phys Rev E,2005,71:036140-036149
    [70]Shi D H, Liu L M, et al. Degree distributions of evolving networks. Europhys Lett,2006, 76:731-737
    [71]Zhou T, Yan G, Wang B H. Maximal planar networks with large clustering coefficient and power-law degree distribution. Phys. Rev. E,2005,71:046141
    [72]Guo J L. The classification and analysis of dynamic networks. Chin. Phys.,2007,16:1239-1245
    [73]Guo J L, Bai Y Q. A Note on mean-field theory for scale-free random networks. Dynamics of Continuous. Discrete and Impulsive Systems B,2006,13:523-531
    [74]Barrat A, Barthelemy M, et al. The architecture of complex weighted networks. Proc. Natl. Acad. Sci.2004,101:3747
    [75]Xiang B, Chen EH, Zhou T. Finding Community Structure Based on Subgraph Similarity. Studies in Computational Intelligence, arXiv:0902.2425.
    [76]Zhang Y C, Medo M, et al. Recommendation model based on opinion diffusion. Europhys. Lett.,2007,80:68003
    [77]Zhou T, Ren J, et al. Bipartite network projection and personal recommendation. Phys. Rev. E,2007,76:046115
    [78]Zhou T, Jiang L L, et al. Effect of initial configuration on network-based recommendation. Europhys. Lett.,2008,81:58004
    [79]Hou Z, Kong X, et al. Degree-distribution stability of scale-free networks. e-print cond-mat/08051434v1
    [80]Hou Z, Kong X. Exact solution of the degree distribution for an evolving network. Acta Mathematica Scientia,2009
    [81]Tong J, Hou Z. Markov chain-based analysis of a modified Cooper-Frieze model. Appl. Math. Mech.,2009,30(6):1-8
    [82]Zhang P, et al. The analysis and dissimilarity comparison of community structure. Physica A,2006,367:577-585
    [83]Fan Y, Li M H, et al. Accuracy and precision of methods for community identification in weighted networks. Physica A.2007,377:363-372
    [84]Hu Y Q, Li M H, et al. Community detection by signaling on complex networks. Phys. Rev. E,2008,78:016115
    [85]Hu Y Q, Chen Ⅱ B, et al. Comparative definition of community and corresponding identi-fying algorithm. Phys. Rev. E,2008,78:026121
    [86]Bateman A, Birney E, et al. The Pfam contribution to the annual NAR database issue. Nucleic Acids Res.,2000,28:263-266
    [87]Cooper C, Frieze A. A general model of web graphs. Random Structures and Algorithms, 2003,22:311-335
    [88]Kong X, Tong J and Hou Z. Scale-free network with variable scaling exponent. J. Math. Phys.,2008, submitted
    [89]Strogatz S H. Exploring complex networks. Nature,2001,410:268-276
    [90]汪小帆,李翔,陈关荣.复杂网络理论及其应用.清华大学出版社,北京,2006.
    [91]Onnela J P, Jari Saram Aaki, et. al. Intensity and coherence of motifs in weighted complex networks. Phys Rev E,2005,71:065103
    [92]Erdos P, Renyi P. On random graphs I. Debrecen:Publications Mathematicae,1959
    [93]Bollobas B. Random Graphs. London:Academic Press,1985
    [94]Aiello W, Chung F and Lu L. Random evolution in massive graphs.in Handbook of massive data sets, Kluwer Academic Publishers,2002,97-122
    [95]Boccaletti S, Latora V, et al. Complex networks:Structure and dynamics. Phys Reports, 2006,424:175-308
    [96]Bollobds B, Riordan 0 M, et al. The degree sequence of a scale-free random graph process. Random Structures and Algorithms,2001,18:279-290
    [97]Stolz O. Vorlesungen uber allgemeine Arithmetic. Teubner:Leipzig,1886
    [98]Alebert R, Jeong H and Barabdsi A L. Statical mechanics of complex networks. Nature, 1999,401:103
    [99]Faloutsos M, Faloutsos P and Faloutsos C. Statical mechanics of complex networks. Comput Commun Rev.,1999,29:251
    [100]Alebert R and Barabasi A L. Statical mechanics of complex networks. Rev. Mod. Phys., 2002,74:47
    [101]Bollobas B,Riordan O M, Spencer J and Tusnady G. The degree sequence of a scale-free random graph process. Random Structures and Algorithms,2001,18:279
    [102]Newman M E J. Assortative mixing in networks. Phys. Rev. Lett.,2002,89:208701-208704
    [103]Maslov S and Sneppen K. Specificity and stability in topology of protein networks. Science, 2002,296:910-913
    [104]Barabasi A L and Oltvai Z N. Network biology:understanding the cell's functional orga-nization. Nat. Rev. Genet.,2004,5:101-113
    [105]Newman M E J. Mixing patterns in networks. Phys. Rev. E,2003,67:026126-026138
    [106]Pastor-Satorras R, Vazquez A and Vespignani A. Dynamical and Correlation Properties of the Internet. Phys. Rev. lett.,2001,87:258701-258704
    [107]Barrat A and Pastor-Satorras R. Rate equation approach for correlations in growing net-work models. Phys. Rev. E,2005,71:036127-036139,
    [108]Garcia-Domingo J L, David Juher and Joan Saldana. Degree correlations in growing net-works with deletion of nodes. Physica D,2008,237:640-651
    [109]Neda Z, Ravasz E, Vicsek T, et al. The sound of many hands clapping. Nature,2000, 403:849-850
    [110]Winfree A T. Biological rhythms and the behavior of populations of coupled oscillators. J. Theo. Biol., 1967,16:15-42
    [111]Kuramoto Y. Chemical Oscillations, Waves and Turbulence. Springer-Verlag,1984
    [112]XF Wang, G Chen. Synchronization in scale-free dynamical networks:robustness and fragility. IEEE Trans. Circuits Syst. Ⅰ,49:54,2002
    [113]Y. Chen, G. Rangarajan, and M. Ding. General stability analysis of synchronized dynamics in coupled systems. Physical Review E,67:026209-026212,2003
    [114]Louis M. Pecora and Thomas L. Carroll. Master Stability Functions for Synchronized Cou-pled Systems. PHYS. REV. LETT.,80(10):2109-2112.1998
    [115]赵明,汪秉宏等,复杂网络上动力学系统同步的研究进展.物理学进展,25(3):273-295,2005
    [116]Yook S H, Jeong H, et al. Weighted evolving networks. Phys Rev Lett,2001,86(25): 5835-838
    [117]Pianegonda S, Iglesias J R, etc. Wealth redistribution with conservative exchanges. Physica A,2003,322:667-675
    [118]Iglesias J R, Goncalves S, etc. Wealth redistribution in our small world. Physica A,2003, 327:12-17
    [119]Iglesias J R, Goncalves S, Vega J L, Abramson G. Correlation between risk aversion and wealth distribution. Physica A,2004,342:186-192
    [120]Lee G, Kim G I. Degree and wealth distribution in a network induced by wealth. Physica A,2007,383:677-686
    [121]Kim S, Kim G I, Lee G. Wealth networks with local redistribution. Physica A,2008,387: 4973-4981
    [122]Gardenes J, Moreno Y. From scale-free to Erdos-Renyi networks. Physical Review E,2006, 73:056124-056130
    [123]Laguna M F, Risau-Gusman S, Iglesias J R. Economic exchanges in a stratified society: End of the middle class? Physica A,2005,356:107-113
    [124]Slanina F. Inelastically scattering particles and wealth distribution in an open economy. Physical Review E,2004,69:046102-046108
    [125]Barabdsi A, Albert R, Jeong H. Mean-field theory for scale-free random networks. Physica A,1999,272:173-187
    [126]Koonin E V, Aravind L. Kondrashov A S. The impact of comparative genomics on our understanding of evolution. Cell,2000,101:573-576
    [127]Lander E S, Linton L M, et al. Initial sequencing and analysis of the human genome. Nature,2001,409:860-921
    [128]Dacks J B, Doolittle W F. Reconstructing/Deconstructing the Earliest Eukaryotes:How Comparative Genomics Can Help. Cell,2001,107:419-425
    [129]Chervitz S A,Aravind L, et al. Comparison of the Complete Protein Sets of Worm and Yeast:Orthology and Divergence. Science,1998,282:2022-2028
    [130]Rubin G M,Yandell M D, et al. The Genome Sequence of Drosophila melanogaster. Science, 2000,287:2185-2195
    [131]Chung F, Lu L, et al. Duplication Models for Biological Networks. J. Comput. Biol.,2003, 10:677-687
    [132]Sole R V, Pastor-Satorras R, et al. A model of large-scale proteome evolution. Advances in Complex Systems,2002,5:43-54
    [133]Vazquez F, Flamimi A, et al. Complexus Modeling of protein interaction networks.2003, 1:38-44
    [134]Wagner A. How the global structure of protein interaction networks evolves. Proc. R. Soc. London Ser. B,2003,270:457-466.
    [135]Varela F, Coutinho A. Second generation immune networks. Today,1991,12:159-165
    [136]Apweiler R, Attwood T K, et al. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res.,2001,29: 37-40
    [137]Dragulescu A, Yakovenko V M. Statistical mechanics of money. The European Physical Journal B-Condensed Matter,2000,17:723-729
    [138]Dragulescu A, Yakovenko V M. Evidence for the exponential distribution of income in the USA. The European Physical Journal B-Condensed Matter,2001,20:585-589
    [139]Dragulescu A, Yakovenko V M. Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States. Physica A,2001,299: 213-221
    [140]Barrat A, Barthelemy M, Vespignani A. Weighted evolving networks:coupling topology and weight dynamics. Phys. Rev. Lett.,2004,92:228701-228705,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700