用户名: 密码: 验证码:
基于物联网的热计量关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高热计量工作的智能管理水平,构建了热计量表物联网。对于该物联网底层的热计量数据传输,将一个楼宇单元内所有的热计量表组成热计量ZigBee网络,采用ZigBee技术进行近距离传输,然后数据汇集节点使用GPRS技术进行远距离传输。构建热计量对象名解析服务系统,保存热计量表电子产品编码与对应的热计量表信息服务地址之间的映射数据,向中间件提供快速的热计量表电子产品编码查询响应服务。构建热计量表电子产品编码信息服务系统,保存与热计量表电子产品编码相关的数据信息,提供热计量表相关的数据捕获和数据查询服务,实时监控热计量表的供应链信息。在热计量表物联网的应用层,对热计量高维数据进行聚类操作,可以得到有用的知识以帮助制定决策。
     本课题的研究工作主要可以分为以下四个方面。
     首先,为了延长热计量ZigBee网络的生存时间,提出一种基于能量均衡的ZigBee网络路由算法。将热计量物联网底层的单个热计量表视为ZigBee网络节点,将处于可达范围内的目标节点的数据包直接完成传输。对于相邻的可达范围内的节点使用能量较大的节点作为数据包的转发节点。实验结果表明,该算法能够有效地增加热计量ZigBee网络的生存时间。
     其次,为了提高热计量物联网中对象名解析服务系统响应海量请求的负载能力,提出多对象名解析服务器结构和负载调度算法。周期性地更新各个服务器的服务状态,然后将请求任务移动到可用的服务器上。实验结果表明,这种使用了负载调度算法的多对象名解析服务器能够快速地响应查询请求。
     再次,为了减少热计量物联网中电子产品编码信息服务的响应时间,提出包含代理服务器的电子产品编码信息服务系统的体系结构,并提出一种代理服务器缓存置换算法。在靠近查询请求方的网络处,建立多台代理服务器,将最近请求的数据对象保存到代理服务器的缓存中。实验结果表明,新的电子产品编码信息服务系统能够缩短查询响应时间。
     最后,为了获得热计量高维数据背后的知识以便帮助进行决策分析,提出一种基于超图分割的高维数据聚类算法。将热计量高维数据集中的所有数据记录转化为超图结构。然后对原始超图进行初始分割。最后,在提高优化增益的前提下,对初始的超图分割结果进行优化。实验结果表明,新的热计量高维数据聚类算法能够高效地进行聚类分析操作。
To improve the management level of heat metering, the Internet of heat meter is built.The underlying data is transferred by ZigBee and GPRS respectively. The ONS is built tostore the mapping information between EPC and EPCIS, and fast query response serviceis provided. The EPCIS system is built to store the information of EPC. Data capture andquery service is provided to monitor the supply chain. On the application layer, the dataset is clustered to get useful knowledge.
     The innovation can be divided into the following four aspects.
     Firstly, an energy-efficient routing algorithm of ZigBee network is proposed toprolong the network’s survival time. In the algorithm, the node’s boundary is defined.Firstly, all the information for node’s boundary is stored when zigbee network is built.Then, the packet between the nodes which are in the node’s boundary is transferreddirectly. The packet between the nodes whose boundaries are adjacent is transferredthrough the node with maximum energy. The exprimental results show that the newalgorithm can efficiently extend the lifetime of zigbee network.
     Secondly, the multi-servers ons system is proposed to improve the load capacity.Firstly, the CPU utilization rate and memory utilization of a single server is computed. Ifboth of them are less than a given threshold, the status of the server is set to available.Then the given threshold is changed according to the redundancy. The status of theunavailable server is updated periodically. Finally, the query is transferred to the availableserver by task scheduling policy. The exprimental results show that the new ons systemcan efficiently provide consulting services.
     Thirdly, the architecture of EPCIS with proxy server is proposed to reduce theresponse time. And a new cache replacement algorithm is proposed. Proxy servers arebuilt to store the information which is queried recently. Then attention rate is defined.When the replacement is needed in the proxy server, data object with low attention rate isselected to shift out the cache. The exprimental results show that the new EPCIS systemcan efficiently shorten the query time.
     Fourthly, a high dimensional data clustering algorithm based on hypergraph isproposed to obtain knowledge. Firstly, the records in the dataset are mapped to the verticesof hypergraph, the hyperedges of hypergraph are composed of the vertices which have thesame value on one of the attributes. Then a multilevel hypergraph partitioning algorithm isused to find k parts of the hypergraph. Finally, the clusters with good quality are choosedout by computing the value of cluster’s validity. The experimental results show that thenew algorithm can efficiently construct high quality clusters.
引文
[1] Cha H. Practical Localization System for Consumer Devices using Zigbee Networks[J]. IEEETransactions on Consumer Electronics,2010,56(3):1562-1569.
    [2] Huang L. A ZigBee-based Monitoring and Protection System for Building Electrical Safety[J].Energy and Buildings,2011,43(6):1418-1426.
    [3]周怡,凌志浩,吴勤勤. ZigBee无线通信技术及其应用探讨[J].自动化仪表,2005,26(6):5-9.
    [4] Baker N. ZigBee and Bluetooth Strengths and Weaknesses for Industrial Applications[J].Computing Control Engineering Journal,2005,16(2):20-25.
    [5] Ding G, Sahinoglu Z. Reliable Broadcast in ZigBee Networks[J]. IEEE Communication,2005,2(1):1-11.
    [6] Ramon S. ZigBee Specification[J]. ZigBee Alliance,2005,2(1):1-7.
    [7] Alliance Z. ZigBee-2006Specification[J]. ZigBee Alliance,2006,2(1):1-15.
    [8] Alliance Z. ZigBee-2007Specification[J]. ZigBee Alliance,2007,1(1):1-8.
    [9] Petr J, Anis K, Ricardo S, Mario Al, Eduardo T. Dimensioning and Worst-case Analysis ofCluster-tree Sensor Networks[J]. ACM Transactions on Sensor Networks,2010,7(2):1-47.
    [10] Mare S, Cvetan G. Localization Estimation System Using Measurement of Rssi Based onZigBee Standard [J]. Computing Control Engineering Journal,2008,16(2):10-35.
    [11] Francesca C, Anna A, Emanuele C. Cross-layer Network Formation for Energy-efficient IEEE802.15.4/ZigBee Wireless Sensor Networks[J]. Ad Hoc Networks,2011,11(1):517-553.
    [12] Mario D, Giuseppe A, Marco C. Reliability and Energy-efficiency in IEEE802.15.4/ZigbeeSensor Networks: An Adaptive and Cross-layer Approach[J]. IEEE Journal on Selected Areas inCommunications,2011,29(8):1-18.
    [13] Guicheng S, Bingwu L. Research on Application of Internet of Things in ElectronicCommerce[J]. Electronic Commerce and Security,2010,2(1):13-16.
    [14] Luigi A, Antonio I, Giacomo M. The Internet of Things: A survey[J]. Computer Networks,2010,54(15):2787-2805.
    [15] Yu L, Xiang F. A Kind of ONS Parse Method Based on Address Aggregation in Internet ofThings[J]. Advanced Materials and Computer Science,2011,474(1):898-902.
    [16] Wang Q. Research on Architecture of Internet of Things and Construction of Its SimulationExperiment Platform[J]. Experimental Technology and Management,2010,1(1):1-10.
    [17] Marcelo D, Serge F, Nathalie M. Distributed Planetary Object Name Service: Issues and DesignPrinciples[J]. Control Engineering Journal,2009,1(1):1-25.
    [18] Sergei E, Benjamin F, Oliver G. Multipolarity for The Object Naming Service[J]. Lecture Notesin Computer Science,2008,49(1):1-18.
    [19]韦元华,舟子.条形码技术与应用[M].北京:中国纺织出版社,2003,1-101.
    [20] Harrison M. EPC Information Service[J]. Auto-ID Labs Research Workshop,2004,1(1):1-15.
    [21] Harrison M, McFarlane D. Development of a Prototype PML Server for an Auto-ID EnabledRobotic Manufacturing Environment[J]. Auto-ID Centre,2003,1(1):1-5.
    [22] Harrison M, Moran H, Brusey J. PML Server Developments[J]. Cambridge Workshop,2003,1(1):1-25.
    [23] Baudin M, Rao A. RFID Applications in Manufacturing[J]. Palo Alto Communication,2005,1(1):1-8.
    [24] Harrison M. Guidelines for Lifecycle ID&Data Management[J]. AUTO-ID Lab,2007,1(1):1-11.
    [25] Huber B, Puffitsch W. Worst-case Execution Time Analysis-Driven Object Cache Design[J].Concurrency and Computation: Practice and Experience,2012,24(8):10-23.
    [26]肖侬,赵英杰,刘芳,陈志广.基于顺序检测的双队列缓存替换算法[J].中国科学,2011,2(1):2-3.
    [27]林永旺. Web缓存的一种新的替换算法[J].软件学报,2011,12(11):1710-1715.
    [28]司成祥,孟晓烜,许鲁.一种针对websearch应用的缓存替换算法[J].电子学报,2011,9(3):5-9.
    [29] Kushwah J. Modified Algorithm to Implement Proxy Server with Caching Policies[J].International Journal of Computer Science Issues,2011,8(6):352-358.
    [30] Altmeyer S, Davis R, Maiza C. Cache Related Pre-emption Delay Aware Response TimeAnalysis for Fixed Priority Pre-emptive Systems [J]. Real-Time Systems,2011,5(1):9-11.
    [31] Bouakaz A, Puaut I, Rohou E. Predictable Binary Code Cache: A First Step TowardsReconciling Predictability and Just-In-Time Compilation[J]. Real-Time and Embedded System,2011,3(4):1-11.
    [32] Chen Y, Zhang D, Wang Z. Static Analysis of Run-Time Inter-Core Interferences for Programsin Shared Cache Multicore Architectures[J]. Applied Mechanics and Materials,2012,2(4):5-11.
    [33] Wallenta C, Kim J, Bentley P. Detecting Interest Cache Poisoning in Sensor Networks Using anArtificial Immune Algorithm[J]. Applied Intelligence,2010,4(1):9-19.
    [34] Min J. An Effective Query Result Cache for Distributed Storage Systems[J]. Journal ofComputer Science and Technology,2010,25(5):933-944.
    [35]刘超,杨金民,张大方.基于服务替换的Web Services容错方法[J].计算机研究与发展,2010,2(1):1-3.
    [36]狄刚. HTTP实现代理服务器及缓存替换算法的研究[D].吉林:吉林大学学位论文,2010:6-30.
    [37] Messaoud S. An Analytical Model for the Performance Evaluation of Stack-based Web CacheReplacement Algorithms [J]. International Journal of Communication Systems,2010,23(1):1-22.
    [38] Jaleel A, Theobald K. High Performance Cache Replacement Using Re-reference IntervalPrediction [J]. ACM SIGARCH Computer,2010,2(1):1-11.
    [39] West R, Zaroo P. Online Cache Modeling for Commodity Multi Processors [J]. ACM SIGOPSOperating,2010,8(1):1-7.
    [40]罗治国,孙巍,王行刚.一种基于传输成本的流媒体缓存替换算法及其性能评价[J].通信学报,2004,25(2):61-67.
    [41]夏琰,王嵩,安然,谢铁兵.一种根据实际用户行为分析的大容量缓存算法[J].小型微型计算机系统,2012,2(1):1-2.
    [42]林隽民.一种基于重用距离预测与流检测的高速缓存替换算法[J].计算机研究与发展,2012,49(5):1049-1060.
    [43]林永旺,张大江,钱华林. Web缓存的一种新的替换算法[J].软件学报,2001,4(3):3-6.
    [44] Koo S. Reducing Cache Misses through Cache Line Overlapping [J]. Electronics Letters,2006,42(10):569-571.
    [45]周振. WWW缓存技术的研究与实现[D].辽宁:大连海事大学学位论文,2004:5-10.
    [46] Romano S. A Neural Network Proxy Cache Replacement Strategy and its Implementation in theSquid Proxy Server [J]. Neural Computing and Applications,2011,20(1):59-78.
    [47] Shi X, Shi L, Wei K. Streaming Media Cache Algorithm Based on Knapsack Theory[J].Computer Engineering,2010,13(4):67-73.
    [48] Chen X, Yang L. C-pack: A High-performance Microprocessor Cache CompressionAlgorithm[J]. Very Large Scale Integration Systems,2010,23(6):42-55.
    [49] Gao Y, Zhang Y. A Cache Management Strategy for Transparent Computing Storage System[J].Trustworthy Computing and Services,2013,33(6):3-7.
    [50] Lo S, Lam K. An Effective Cache Scheduling Scheme for Improving the Performance inMulti-threaded Processors[J]. Journal of Systems Architecture,2012,6(9):2-16.
    [51] Kim C. A Spectrum of Policies that Subsumes the Least Recently Used and Least FrequentlyUsed Policies[J]. IEEE Transactions on Computers,2001,2(1):5-9.
    [52] Lee D, Choi J. On the Existence of a Spectrum of Policies that Subsumes the Least RecentlyUsed (LRU) and Least Frequently Used (LFU) Policies [J]. ACM SIGMETRICS,1999,1(1):2-7.
    [53] Verma M, Wehmeyer L, Marwedel P. Cache-Aware Scratchpad Allocation Algorithm[J]. IEEEComputer,2004,1(1):1-8.
    [54] Balamash A, Krunz M. An Overview of Web Caching Replacement Algorithms [J].Communications Surveys,2004,11(2):1-5.
    [55] Zheng D. A Rough K-mean Clustering Approach based on Hybrid Genetic Algorithm [J].Journal of Computational Information Systems,2012,8(5):2179-2186.
    [56] Laura M. K-mean Alignment for Curve Clustering [J]. Computational Statistics and DataAnalysis,2010,54(5):1219-1233.
    [57] Yedla M, Pathakota S. Enhancing K-means Clustering Algorithm with Improved InitialCenter[J]. International Journal of Computer,2010,3(7):1-3.
    [58] Krinidis S, Chatzis V. A Robust Fuzzy Local Information Clustering Algorithm[J]. ImageProcessing,2010,9(5):23-26.
    [59] Kwon Y, Nunley D. Scalable Clustering Algorithm for N-body Simulations in a Shared-nothingCluster[J]. Scientific and Statistical Database Management,2010,2(1):132-150.
    [60] Rao M, Damodaram A. Algorithm for Clustering with Intrusion Detection Using Modified andHashed K–Means Algorithms[J]. Advances in Computer Science,2012,33(7):621-633.
    [61] Deng S, He Z, Xu X. A Mutual Information Based Genetic Clustering Algorithm for CategoricalData[J]. Knowledge-Based Systems,2010,3(2):2-7.
    [62] Victor S, Peter S. A Novel Minimum Spanning Tree Based Clustering Algorithm for ImageMining[J]. Journal of Scientific Research,2010,33(10):222-236.
    [63] Lai J, Huang T. A Fast K-means Clustering Algorithm Using Cluster Center Displacement[J].Pattern Recognition,2009,9(3):22-26.
    [64] Park H, Jun C. A Simple and Fast Algorithm for K-medoids Clustering[J]. Expert Systems withApplications,2009,22(3):167-172.
    [65] Hartigan J, Wong M. A k-means Clustering Algorithm[J]. Journal of the Royal StatisticalSociety,1979,1(1):3-11.
    [66] Jiang H, Yi S. Ant Clustering Algorithm with Harmonic Means Clustering [J]. Expert Systemswith Applications,2010,11(7):251-266.
    [67] Jeng J, Chuang C. Interval Competitive Clustering Algorithm[J]. Expert Systems withApplications,2010,33(2):13-15.
    [68] Parmar D, Wu T. A Clustering Algorithm for Supplier Base Management[J]. InternationalJournal of Production Research,2010,48(13):55-70.
    [69] Zhang C, Ouyang D. An Artificial Bee Colony Approach for Clustering[J]. Expert Systems withApplications,2010,2(1):1-6.
    [70]刘少辉,胡斐,贾自艳,史忠植.一种基于Rough集的层次聚类算法[J].计算机研究与发展,2004,3(6):22-26.
    [71]淦文燕,李德毅,王建民.一种基于数据场的层次聚类方法[J].电子学报,2006,7(2):6-9.
    [72]刘志勇,邓贵仕.一种基于矩阵变换的层次聚类算法[J].郑州大学学报,2010,3(2):22-25.
    [73]李玲玲,方帅,辛浩.改进的基于层次聚类的模糊聚类算法[J].合肥工业大学学报,2010,6(2):20-23.
    [74]陈韬伟,金炜东,李杰.基于灰关联测度的分裂式层次聚类算法[J].西南交通大学学报,2010,3(5):256-260.
    [75]武佳薇,李雄飞,孙涛,李巍.邻域平衡密度聚类算法[J].计算机研究与发展,2010,6(7):33-36.
    [76]李霞,蒋盛益,张倩生.适用于大规模文本处理的动态密度聚类算法[J].北京大学学报,2013,49(1):133-139.
    [77]毛尚勤,黄心汉,王敏.基于密度聚类的彩色图像分割方法[J].华中科技大学学报,2011,39(1):116-119.
    [78]张海龙,王仁彪,聂俊.海量数据的网格启发信息密度聚类算法[J].吉林大学学报,2011,41(2):254-258.
    [79] Jia W. A Density-Based Clustering Algorithm Concerning Neighborhood Balance[J]. Journal ofComputer Research,2010,6(2):65-71.
    [80] Fahim A, Salem A. Scalable Varied Density Clustering Algorithm for Large Datasets[J]. Journalof Software,2010,3(6):33-35.
    [81]陈宁,陈安,周龙骧.基于密度的增量式网格聚类算法[J].软件学报,2002,13(1):1-6.
    [82] Shan D, Yang Z. Hierarchical Clustering Analysis Method Based on the Grid with ObstacleSpace [J]. Journal of Digital Information Management,2013,11(1):76-82.
    [83]贾世杰,黄青松,马世霞.基于网格聚类的案例检索策略[J].软件学报,2009,6(5):7-9.
    [84]张磊,张公让,张金广.一种网格化聚类算法的MapReduce并行化研究[J].计算机研究与发展,2013,6(2):156-170.
    [85]余灿玲,王丽,张元武.基于网格密度方向的聚类簇边缘精度加强算法[J].计算机研究与发展,2010,5(6):3-6.
    [86]毛国君,王欣,竹翠.基于网格结构的数据流在线快速聚类算法[J].北京工业大学学报,2011,3(6):7-9.
    [87]邱保志,宋晓军.基于相交划分的动态网格聚类算法[J].计算机应用研究,2009,10(3):102-113.
    [88]贾佳.基于网格密度的带有层次因子的聚类算法[J].计算机研究与发展,2012,4(5):66-72.
    [89] Yue S. An Unsupervised Grid-based Approach for Clustering Analysis [J]. Information Sciences,2010,7(6):22-25.
    [90] Faro A, Giordano D. Mining Massive Datasets by an Unsupervised Parallel Clustering on aGRID: Novel Algorithms and Case Study[J]. Future Generation Computer Systems,2011,6(3):2-6.
    [91]余敦辉,何克清,李兵.基于模型聚类算法的领域问题本体构建[J].小型微型计算机系统,2013,3(6):15-31.
    [92]张晨,金澈清,周傲英.一种不确定数据流聚类算法[J].软件学报,2010,5(6):7-9.
    [93] McNicholas P, Murphy T. Model-based Clustering of Microarray Expression Data via LatentGaussian Mixture Models[J]. Bioinformatics,2010,4(3):6-8.
    [94] Datta A, Larmore L, Vemula P. A Self-stabilizing Clustering Algorithm[J]. The ComputerJournal,2010,6(7):22-25.
    [95] Fu H, Liu X. Clustering Algorithm Based on Fuzzy Evaluation[J]. International Review onComputers and Software,2012,7(5):2603-2607.
    [96] Wang B, Ding J. Two Improved Clustering Algorithms [J]. Transactions of Nanjing Universityof Aeronautics and Astronautics,2012,29(3):263-272.
    [97] Journee M, Nesterov Y, Richtarik P, Sepulchre R. Generalized Power Method for SparsePrincipal Component Analysis[J]. The Journal of Machine Learning Research,2010,11(1):517-553.
    [98] Buja A, Swayne D, Littman M, Dean H, Hofmann H, Chen H. Data Visualization withMultidimensional Scaling[J]. Journal of Computational and Graphical Statistics,2008,17(2):444-472.
    [99] Shen L, Chen Y. Web Services Dynamic Discovery Based on Modified Clique Algorithm [J].Intelligent Information Technology Application Workshops,2008,1(1):379-382.
    [100] Aggarwal C, Wolf J. Fast Algorithms for Projected Clustering[J]. Management of Data,1999,28(2):61-72.
    [101] Kriegel H, Kroger P, Zimek A. Clustering High-dimensional Data [J]. ACM Transactions onKnowledge Discovery from Data,2009,3(1):1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700