用户名: 密码: 验证码:
碳纳米管复合材料修饰电极的制备及其分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,运用纳米材料、特别是碳纳米管及其复合材料作为化学修饰电极新的修饰材料是化学修饰电极新的发展方向。这对于建立新的高灵敏度、高选择性的分析方法有重要意义。
     本文采取多种方法制备了几种新型的碳纳米管复合材料修饰电极,结合各种表征手段对其进行了研究。提出了几种运用碳纳米管复合材料修饰电极对环境,生命科学等领域物质的分析方法。具体地说,本论文主要开展了以下几方面的创新研究工作:
     1、首次通过电聚合酸性铬蓝K于多壁碳纳米管修饰的玻碳电极上制备了Poly-ACBK/MWNTs/GC电极。运用SEM及循环伏安法等方法研究了修饰电极的性能。考察了苯二酚异构体在Poly-ACBK/MWNTs/GC电极上的电化学表现,结果表明Poly-ACBK/MWNTs/GC电极对苯二酚异构体的氧化表现出优异的电催化性能和选择性能。在1×10-6-1×10-4mol·L-1的范围内,苯二酚异构体的阳极峰电流与其浓度有线性关系。依此发展了一种运用Poly-ACBK/MWNTs/GC电极同时伏安分析苯二酚三种异构体的方法。
     2、首次通过电聚合溴酚蓝于多壁碳纳米管修饰的玻碳电极上制备了Poly-BPB/MWNTs/GC电极。运用SEM及循环伏安法等方法研究了修饰电极的性能。考察了苯二酚异构体在Poly-BPB/MWNTs/GC电极上的电化学表现,结果表明Poly-BPB/MWNTs/GC电极对苯二酚异构体的氧化表现出优异的电催化性能和选择性能。在1×10-6-1×10-4mol·L-1的范围内,三种苯二酚异构体的阳极峰电流与其浓度有线性关系。依此发展了一种运用Poly-BPB/MWNTs/GC电极同时伏安分析苯二酚三种异构体的方法。
     3、制备了一种新的纳米银覆盖多壁碳纳米管复合材料修饰电极(nano-Ag/MWNTs/GC电极)。第一次提出了利用nano-Ag/MWNTs/GC电极对痕量硫氰酸根的测定的方法。运用扫描电镜方法(SEM)与X衍射测试方法(XRD)对纳米银覆盖多壁碳纳米管复合材料进行表征。采用循环伏安法研究了硫氰酸根在nano-Ag/MWNTs/GC电极的电化学表现。结果发现:随着硫氰酸根的加入,阳极峰电流逐渐降低。在2.5×10?9-5×10?8mol·L-1及5×10?8-1×10?6mol·L-1之间,阳极峰电流的降低与硫氰酸根浓度成正比,检测限为1×10?9mol·L-1(S/N=3)。提出方法的检测限优于其他测定硫氰酸根浓度的方法。同时,提出的方法对实际生物样品人唾沫与人尿中的硫氰酸根进行了测定并获得了良好的结果。
     4、利用电吸附血红蛋白(Hb)于Ag/CNT/GC电极上,制作了Hb/Ag/CNT/GC电极。循环伏安法研究了该修饰电极的电化学性质,发现对氧气还原有明显的电催化作用。在一定的范围内,还原峰电流的大小与通入的空气量成正比。据此提出了一种可以测定水中的含氧量的电化学方法。
     5、采用纳米银覆盖多壁碳纳米管复合材料制作了纳米-Ag/MWNTs/GC电极,用(XRD)和循环伏安法对修饰电极进行了表征。研究发现修饰电极对过氧化氢还原有催化作用。修饰电极可用来直接测定过氧化氢。在3.5×10-4-5.5×10-3 mol·L-1与5.5×10-3-1.5×10-2 mol·L-1范围内,阴极微分脉冲峰电流与过氧化氢浓度成正比,检测限为2×10-4 mol·L-1。对实际样品进行测定,获得较好的结果。
     6、利用纳米银覆盖多壁碳纳米管复合材料制备了修饰电极。循环伏安法研究了氯离子在纳米银覆盖多壁碳纳米管修饰玻碳电极的电化学表现。结果发现:随着高浓度氯离子的加入,阳极峰电流逐渐降低。在8×10?3-0.1 mol·L-1之间,阳极峰电流的降低与氯离子浓度成正比。因此,发展了一种修饰电极测定高浓度氯离子的方法。采用提出的方法对自来水中高浓度氯离子含量进行测定。
     7、建立了一种新型聚亚甲基蓝/单壁碳纳米管修饰玻碳电极,成功的应用于NADH的测定。研究了修饰电极对NADH的协同催化作用,结果发现在5.0×10-6- 7.0×10-4 mol·L-1浓度范围内,氧化峰电流与加入的NADH量有良好的线性关系。
At present, the application of nano-materials, especially carbon nanotubes and its composites as new chemically modified materials is a new direction in the field of chemically modified electrodes. It is important to establish new analytical methods with high-sensitivity and selectivity.
     In this paper, a variety of new carbon nanotubes composites modified electrodes were proposed. The properties of the carbon nanotubes composites modified electrodes were characterizd by several methods. Several methods for analyzing substances in environmental sciences and life sciences have been developed. The main works of this thesis are summarized as follows:
     1. A novel modified electrode was fabricated by electropolymerization of acid chrome blue K at a glassy carbon electrode modified with multi-walled carbon nanotubes and used for simultaneous voltammetric determination of dihydroxybenzene isomers. The Poly-ACBK/MWNTs/GC electrode was characterized with scanning electron microscopy (SEM) and cyclic voltammetry(CV). The electrochemical performance of dihydroxybenzene at the Poly-ACBK/MWNTs/GC electrode has been investigated by cyclic voltammetry. It was found that Poly-ACBK/MWNTs/GC electrode has excellent electrocatalyse and selectivity toward oxidation of dihydroxybenzene. A linear relationship between anodal peak current and concentration of hydroquinone, catechol and resorcinol was obtained in the range of 1×10-6~(-1)×10~(-4) mol·L~(-1).
     2. A novel modified electrode was fabricated by electropolymerization of bromophenol blue at a glassy carbon electrode modified with multi-walled carbon nanotubes and used for simultaneous voltammetric determination of dihydroxybenzene isomers. The Poly-BPB/MWNTs/GC electrode was characterized with SEM and CV. The electrochemical performance of dihydroxybenzene at the Poly-BPB/MWNTs/GC electrode has been investigated by CV. It was found that Poly-BPB/MWNTs/GC electrode has excellent electrocatalyse and selectivity toward oxidation of dihydroxybenzene. A linear relationship between anodal peak current and concentration of hydroquinone, catechol and resorcinol was obtained in the range of 1×10-6~(-1)×10~(-4) mol·L~(-1).
     3. A novel nano-silver coated multi-walled carbon nanotubes composites modified electrode was prepared. The application of the modified electrode for determination of trace thiocyanate is demonstrated for the first time. The property of nano-silver coated multi-walled carbon nanotubes composites was characterized with SEM, X-ray powder diffraction (XRD) and CV. The electrochemical behaviour of thiocyanate at the nano-Ag/MWNTs/GC electrode was investigated by CV. It was found that there was a linear relationship at the range 2.5×10?9 to 5×10?8 mol·L-1 and 5×10?8 to 1×10?6 mol·L-1 of thiocyanate with the decrement of anodal DPV peak currents. The limit of detection was 1×10?9 mol·L-1(S/N=3)and is better than the other thiocyanate-determination methods. Actual urine and saliva samples of smoker and non-smoker were analyzed and satisfactory results were obtained.
     4. A novel modified electrode was fabricated by electro-absorbption of hemoglobin (Hb) at Ag/CNT/GC electrode. The electrochemical properties of the modified electrode were investigated by CV. It was found that the modified electrode has obvious electrocatalysis toward the reduction of oxygen. There was a linear relationship between the currents of reduced peak with the volume of pumped air. An ectrochemical method for the determination of oxygen in water has developed.
     5. The nano-Ag/MWNTs/GC electrode has been fabricated with nano-silver coated multi-walled carbon nanotubes composites. The modified electrode was characterized with SEM and CV. It was found that the modified electrode has electrocatalysis toward the reduction of hydrogen peroxide. The modified electrode could be used to direct determination of hydrogen peroxide. There were linear relationships in the range 3.5×10-4~5.5×10-3 mol·L-1 and 5.5×10-3~ 1.5×10-2 mol·L-1of hydrogen peroxide, respectively, with the of cathodic differential pulse voltammetric peak currents. The limit of detection was 2×10-4 mol·L-1. Actual samples were analyzed and satisfactory results were obtained.
     6. A nano-Ag/MWNTs/GC electrode has been fabricated with nano-silver coated multi-walled carbon nanotubes composites. The electrochemical properties of chloride ion at the modified electrode were investigated by CV. It is found that the differential pulse voltammetry (DPV) currents of anode peak decreased with the addition of high concentration chloride ion. There was a linear relationship at the range 8×10?3-0.1 mol·L-1 with the decrement of anodic DPV peak currents. The application of the modified electrode for determination of high concentration chloride ion has developed. Actual tap water samples were analyzed by this method.
     7. A new poly-methylene blue/single-wall carbon nanotubes modified glassy carbon electrode was proposed and applied to detect NADH successfully. The synergistic electrocatalytic effect of the modified electrode toward oxidation of NADH has been investigated. It was found that there was a linear relationship at the range 5.0×10-6- 7.0×10-4 mol·L-1with the anodal peak currents and the concentration of NADH.
引文
[1] Watkins B F, Behling J R, Kariv E, et al. Chiral electrode[J]. Journal of the American Chemical Society, 1975, 97(12): 3549-3550
    [2] Moses P R, Wier L, Murray R W. Chemically modified tin oxide electrode [J]. Analytical Chemistry, 1975, 47(12): 1882-1886
    [3] 董绍俊,车广礼,谢远武.化学修饰电极(修订版)[M].北京:科学出版社,2003
    [4] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001
    [5] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58.
    [6] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature, 1993, 363(6430): 603-605
    [7] Bethune D S, Klang C H, Devries M S, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls [J]. Nature, 1993, 363(6430): 605-607
    [8] Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature [J]. Science, 1999, 286(5442): 1127-1129
    [9] Rusling J F. Variations in electron-transfer rate at polished glassy carbon electrodes exposed to air [J]. Analytical Chemistry, 1984, 56(3): 575 – 578
    [10] Adams R N. Electrochemistry at solid electrode [M]. New York: Marcel Dekker, 1969
    [11] Feng J X, Brazell M, Renner K, et al. Electrochemical pretreatment of carbon fibers for in vivo electrochemistry: effects on sensitivity and response time [J]. Analytical Chemistry, 1987, 59(14): 1863-1867
    [12] Mattusch J, Hallmeier K H, Stulik K, et al. Pretreatment of glassy carbon electrodes by anodic galvanostatic pulses with a large amplitude [J]. Electroanalysis, 1989, 1(5): 405-412
    [13] Lane R F, Hubbard A T. Electrochemistry of chemisorbed molecules. I. Reactants connected to electrodes through olefinic substituents [J]. Journal of Physic Chemistry, 1973, 77(11): 1401 – 1410
    [14] Lane R F, Hubbard A T. Electrochemistry of chemisorbed molecules. II. Influence of charged chemisorbed molecules on the electrode reactions of platinum complexes [J]. Journal of Physic Chemistry, 1973, 77(11): 1411 – 1421
    [15] Pletcher D, Solis V. A further investigation of the catalysis by lead ad-atoms of formic acid oxidation at a platinum anode [J]. Journal of ElectroanalyticalChemistry, 1982, 131:309-323
    [16] 叶淑玉,郭渡,陆天虹,等.LB膜修饰电极[J].分析化学,1991,19(5):612-617
    [17] Sagiv J. Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces [J]. Journal of the American Chemical Society, 1980, 102(1): 92 - 98
    [18] Imisides M D, John R, Riley P J, et al. The use of electropolymerization to produce new sensing surfaces: A review emphasizing electrode position of heteroaromatic compounds [J]. Electroanalysis, 1991, 3(9): 879-889
    [19] Lu Z L, Dong S J. Researches on chemically modified electrodes: Part XXIV. Preparation and characterization of nafion polymer film modified electrodes containing Fe(II)-phen complex [J]. Journal of Electroanalytical Chemistry, 1987, 233(1-2): 19-27
    [20] Kalcher K. Chemically modified carbon paste electrodes in voltammetric analysis [J]. Electroanalysis, 1990, 2(6): 419-433
    [21] Lenhard J R, Murray R W. Chemically modified electrodes. 13. Monolayer/multilayer coverage, decay kinetics, and solvent and interaction effects for ferrocenes covalently linked to platinum electrodes [J]. Journal of the American Chemical Society, 1978, 100(25): 7870 – 7875
    [22] Oyama N, Anson F C. Factors Affecting the Electrochemical Responses of Metal Complexes at Pyrolytic Graphite Electrodes Coated with Films of Poly(4-Vinylpyridine) [J]. J. Electrochem. Soc., 1980, 127(3): 640-647
    [23] Brown A P, Anson F C. Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface[J]. Anal. Chem., 1977, 49(11): 1589 - 1595
    [24] Contamin O, Levart E, Magner G, et al. Restricted diffusion impedance: Theory and application to the reaction of oxygen on a hydrogen phthalocyanine film[J]. J. Electroanal. Chem., 1984, 179(1-2): 41-52
    [25] 谢远武,董绍俊.光谱电化学方法-理论与应用.长春:吉林科学技术出版社,1993
    [26] Albery W J, Compton R G, Jones C C. A novel electrode for electrochemical ESR and its application to modified electrodes[J]. J. Am. Chem. Soc., 1984, 106(3): 469 - 473
    [27] Dong S J, Lian G H. Redox reactions of Fe(CN)3?/4?6 in polypyrrole films : accumulation and removal of cations[J]. J. Electroanal. Chem., 1990, 291(1-2): 23-39
    [28] Ward M D, Buttry D A. In situ interfacial mass detection with piezoelectric transducers[J]. Science, 1990, 249(4972): 1000 - 1007
    [29] Buttry D A, Ward M D. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance[J]. Chem. Rev., 1992, 92(6): 1355 - 1379
    [30] Brezina M, Khalil W, Koryta J, et al. Electroreduction of oxygen and hydrogen peroxide catalyzed by hemine and phthalocyanines[J]. J. Electroanal. Chem., 1977, 77(2): 237-244
    [31] Anson F C,黄慰曾编译.电化学和电分析化学.北京:北京大学出版社,1983
    [32] Wrighton M S. Surface Functionalization of Electrodes with Molecular Reagents[J]. Science, 1986, 231(4733): 32 - 37
    [33] Itaya K, Shibayama K, Akahoshi H, et al. Prussian-blue-modified electrodes: An application for a stable electrochromic display device[J]. J. Appl. Phys., 1982, 53(1): 804-805
    [34] White H S, Kittlesen G P, Wrighton M S. Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor[J]. J. Am. Chem. Soc., 1984, 106(18): 5375 - 5377
    [35] Miller L L, Zhou X Q. Poly(N-methylpyrrolylium) poly(styrenesulfonate) - a conductive, electrically switchable cation exchanger that cathodically binds and anodically releases dopamine[J]. Macromolecules, 1987, 20(7): 1594 - 1597
    [36] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications (2nd Edition). New York: John Wiley & Sons, 2000
    [37] Mirsky V M. Ultrathin Electrochemical Chemo- and Biosensors: Technology and Performance (Springer Series on Chemical Sensors and Biosensors, Wolfbeis O S. Edited). Berlin, Heidelberg: Springer-Verlag, 2004
    [38] Janata J, Josowicz M, Vanysek P, et al. Chemical sensors[J]. Anal. Chem., 1998, 70 (12): 179 -208
    [39] Bakker E, Telting-Diaz M. Electrochemical sensors[J]. Analy. Chem., 2002, 74(12): 2781-2800
    [40] Mintmire J W, Dunlap B I, White C T. Are fullerene tubules metallic[J]. Phys. Rev. Lett., 1992, 68(5): 631-634
    [41] Hamada N, Sawada S I, Oshiyama A. New one-dimensional conductors: Graphitic microtubules[J]. Phys. Rev. Lett., 1992, 68(10): 1579-1581
    [42] Kiang C H, Goddard W A, Beyers R, et al. Carbon nanotubes with single-layer walls[J]. Carbon, 1995, 33(7): 903-914
    [43] Ajayan P M, Ebbesen T W. Nanometer-size tubes of carbon[J]. Rep. Prog. Phys., 1997, 60(10): 1025-1062
    [44] Henning T, Salama F. Carbon in the universe[J]. Science, 1998, 282(5397): 2204-2210
    [45] Ye Y, Ahn C C, Witham C, et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes[J]. Appl. Phys. Lett., 1999, 74: 2307-2309
    [46] Ajayan P M. Nanotubes from carbon[J]. Chemical Reviews, 1999, 99(7): 1787-1800
    [47] Ebbesen T W. Carbon nanotubes: preparation and properties[J]. Boca Raton FL: CRC Press, 1997
    [48] Saito R, Dresselhaus G, Dresselhaus M S. Physical and properties of carbon nanotubes[M]. New York: World Scientific Publishing Company, 1998
    [49] Dresselhaus M S, Dresselhaus G, Eklund P C. Science of fullerenes and carbon nanotubes: their properties and applications[M]. San Diego: Academic Press, 1996
    [50] Dresselhaus M S, Dresselhaus G, Avouris P. Carbon nanotubes[M]. Berlin: Springer, 2001
    [51] 朱宏伟,吴德海,徐才录.碳纳米管[M].北京:机械工业出版社,2003
    [52] 成会明.纳米碳管:制备、结构、物性及应用[M].北京:化学工业出版社,2002
    [53] Special issue on carbon nanotubes[J]. Carbon, 1995, 33(7): 873-1006
    [54] Special issue on carbon nanotubes[J]. Appl. Phys. A: Materials Science & Processing, 1998, 67(1): 1-124
    [55] Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes[J]. Nature, 1992, 358(6383): 220-222
    [56] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes[J]. Science, 1996, 273(5274): 483-487
    [57] Kong J, Cassell A M, Dai H J. Chemical vapor deposition of methane for single-walled carbon nanotubes[J]. Chem. Phys. Lett., 1998, 292(4-6): 567-574
    [58] Pan Z W, Xie S S, Chang B H, et al. Very long carbon nanotubes[J]. Nature, 1998, 394(6694): 631-632
    [59] Britto P J, Santhanam K V, Rubio A, et al. Improved charge transfer at carbon nanotube electrodes[J]. Adv. Mater., 1998, 11(2): 154-157
    [60] Dresselhaus M S, Dresselhaus G, Saito R. Physics of carbon nanotubes[J]. Carbon, 1995, 33(7): 883-891
    [61] Yakabson B I, Brabec C J, Bernholc J. Nanomechanics of carbon tubes:instabilities beyond linear response[J]. Phys. Rev. Lett., 1996, 76(14): 2511-2514
    [62] Treacy M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381(6584): 678-680
    [63] Ball P. Roll up for the revolution. Nature, 2001, 414(6860): 142-144
    [64] Tsang S C, Harris P J F, Green M L H. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide[J]. Nature, 1993, 362(6420): 520-522
    [65] Ebbesen T W, Ajayan P M, Hiura H, et al. Purification of nanotubes[J]. Nature, 1994, 367(6463): 519
    [66] Chiang I W, Brinson B E, Smalley R E, et al. Purification and characterization of single-wall carbon nanotubes[J]. J. Phys. Chem. B, 2001, 105(6): 1157-1161
    [67] Ajayan P M, Ebbesen T W, Ichihashi T, et al. Opening carbon nanotubes with oxygen and implications for filling[J]. Nature, 1993, 362(6420): 522-525
    [68] Kajiura H, Tsutsui S, Huang H J, et al. High-quality single-walled carbon nanotubes from arc-produced soot[J]. Chem. Phys. Lett., 2002, 364(5-6): 586-592
    [69] Bonard J M, Stora T, Salvetat J P, et al. Purification and size-selection of carbon nanotubes[J]. Adv. Mater., 1997, 9(10): 827-831
    [70] Duesberg G S, Blau W, Byrne H J, et al. Chromatography of carbon nanotubes[J]. Synthetic Metals, 1999, 103(1-3): 2484-2485
    [71] Niyogi S, Hu H, Hamon M A, et al. Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTs) [J]. J. Am. Chem. Soc., 2001, 123(4): 733-734
    [72] Zhao B, Hu H, Niyogi S, et al. Chromatographic purification and properties of soluble single-walled carbon nanotubes [J]. J. Am. Chem. Soc., 2001, 123(47): 11673-11677
    [73] Ago H, Kugler T, Cacialli F, et al. Work functions and surface functional groups of multiwall carbon nanotubes [J]. J. Phys. Chem. B, 1999, 103(38): 8116-8121
    [74] Rao C N R, Govindaraj A, Satishkumar B C. Functionalised carbon nanotubes from solutions [J]. Chem. Commun., 1996(13): 1525-1526
    [75] Sumanasekera G U, Allen J L, Fang S L, et al. Electrochemical oxidation of single wall carbon nanotube bundles in sulfuric acid [J]. J. Phys. Chem. B, 1999, 103(21): 4292-4297
    [76] Barisci J N, Wallace G G, Baughman R H. Electrochemical characterization of single-walled carbon nanotube electrodes [J]. J. Electrochem. Soc., 2000, 147(12): 4580-4583
    [77] Wang J X, Li M X, Shi Z J, et al. Direct electrochemistry of cytochrome c at aglassy carbon electrode modified with single-wall carbon nanotubes [J]. Anal. Chem., 2002, 74(9): 1993-1997
    [78] Luo H X, Shi Z J, Li N Q, et al. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode [J]. Anal. Chem., 2001, 73(5): 915-920
    [79] Zhao Q, Gan Z H, Zhuang Q K. Electrochemical sensors based on carbon nanotubes [J]. Electroanalysis, 2002, 14(23): 1609-1613
    [80] Sherigara B S, Kutner W, Souza F D. Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes [J]. Electroanalysis, 2003, 15(9): 753-772
    [81] 王 宗 花 , 罗 国 安 . 碳 纳 米 管 在 分 析 化 学 领 域 的 研 究 进 展 [J]. 分 析 化学,2003,31(8):1004-1009
    [82] 蔡 称 心 ,陈 静 ,包 建 春 , 等 . 碳 纳 米 管 在 分 析 化 学 中 的 应 用 [J].分 析 化学,2004,32(3):381-387
    [83] Wang J. Carbon-nanotube based electrochemical biosensors: a review [J]. Electroanalysis, 2005, 17(1): 7-14
    [84] Gooding J J. Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing [J]. Electrochim. Acta, 2005, 50(15): 3049–3060
    [85] Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors [J]. Science, 2000, 287(5453): 622-625
    [86] Collins P G, Bradley K, Ishigami M, et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J]. Science, 2000, 287(5459): 1801-1804
    [87] Ong K G, Zeng K F, Grimes C A. A wireless, passive carbon nanotube-based gas sensor [J]. Sensors J, IEEE, 2002, 2(2): 82-88
    [88] Goldoni A, Larciprete R, Petaccia L, et al. Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring [J]. J. Am. Chem. Soc., 2003, 125(37): 11329-11333
    [89] Cantalini C, Valentini L, Armentano I, et al. Sensitivity to NO2 and cross-sensitivity analysis to NH3, ethanol and humidity of carbon nanotubes thin film prepared by PECVD [J]. Sens. Actuat. B, 2003, 95(1-3): 195–202
    [90] Wei B Y, Hsu M C, Su P G, et al. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature [J]. Sens. Actuat. B, 2004, 101(1-2): 81–89
    [91] Jang Y T, Moon S I, Ahn J H, et al. A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes [J]. Sens. Actuat. B, 2004, 99(1): 118–122
    [92] Suehiro J, Zhou G B, Imakiire H, et al. Controlled fabrication of carbon nanotube NO2 gas sensor using dielectrophoretic impedance measurement [J]. Sens. Actuat. B, 2005, 108(1-2): 398–403
    [93] Britto P J, Santhanam K S V, Ajayan P M. Carbon nanotube electrode for oxidation of dopamine [J]. Bioelectrochem. Bioenerg., 1996, 41(1): 121-125
    [94] Davis J J, Coles R J, Allen H, et al. Protein electrochemistry at carbon nanotube electrodes [J]. J. Electroanal. Chem., 1997, 440(1-2):279-282
    [95] Zhao Y D, Zhang W D, Chen H, et al. Anodic oxidation of hydrazine at carbon nanotube powder microelectrode and its detection [J]. Talanta, 2002, 58(3): 529-534
    [96] Liu P F, Hu J H. Carbon nanotube powder microelectrodes for nitrite detection [J]. Sens. Actuat. B, 2002, 84(2-3): 194-199
    [97] Zhao Y D, Zhang W D, Chen H, et al. Electrocatalytic oxidation of cysteine at carbon nanotube powder microelectrode and its detection [J]. Sens. Actuat. B, 2003, 92(3): 279–285
    [98] Wei Y L, Ji X B, Dang X P, et al. Studies on electrochemical properties and scavenge of superoxide anion in aprotic media by using carbon nanotubes powder microelectrode [J]. Bioelectrochemistry, 2003, 61(1-2): 51–56
    [99] Valentini F, Amine A, Orlanducci S, et al. Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes [J]. Anal. Chem., 2003, 75(20): 5413-5421
    [100] Rubianes M D, Rivas G A. Carbon nanotubes paste electrode [J]. Electrochem. Commun., 2003, 5(8): 689–694
    [101] Zhao Y D, Zhang W D, Luo Q M, et al. The oxidation and reduction behavior of nitrite at carbon nanotube powder microelectrodes [J]. Microchem. J., 2003, 75(3): 189–198
    [102] He J B, Chen C L, Liu J H. Study of multi-wall carbon nanotubes self-assembled electrode and its application to the determination of carbon monoxide [J]. Sens. Actuat. B, 2004, 99(1): 1–5
    [103] Lawrence N S, Deo R P, Wang J. Detection of homocysteine at carbon nanotube paste electrodes [J]. Talanta, 2004, 63(2): 443–449
    [104] Valentini F, Orlanducci S, Terranova M L, et al. Carbon nanotubes as electrodematerials for the assembling of new electrochemical biosensors [J]. Sens. Actuat. B, 2004, 100(1-2): 117–125
    [105] Pedano M L, Rivas G A. Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes [J]. Electrochem. Commun., 2004, 6(1): 10–16
    [106] Rubianes M D, Rivas G A. Enzymatic biosensors based on carbon nanotubes paste electrodes [J]. Electroanalysis, 2005, 17(1): 73-78
    [107] 罗红霞,施祖进,李南强,等.羧基化单层碳纳米管修饰电极的电化学表征及其电催化作用[J].高等学校化学学报.2000,21(9):1372-1374
    [108] Wang J X, Li M X, Shi Z J, et al. Electrocatalytic oxidation of 3,4- dihydroxyphenylacetic acid at a glassy carbon electrode modified with single-wall carbon nanotubes [J]. Electrochim. Acta, 2001, 47(4): 651-657
    [109] Wang J X, Li M X, Shi Z J, et al. Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes [J]. Electroanalysis, 2002, 14(3): 225-230
    [110] Wang J X, Li M X, Shi Z J, et al. Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode [J]. Microchem. J., 2002, 73(3): 325-333
    [111] Musameh M, Wang J, Merkoci A, et al. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes [J]. Electrochem. Commun., 2002, 4(10): 743-746
    [112] Wu F H, Zhao G C, Wei X W. Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode [J]. Electrochem. Commun., 2002, 4(9): 690–694
    [113] 王宗花,刘军,颜流水,等.羧基化碳纳米管嵌入石墨修饰电极对多巴胺和抗坏血酸的电催化[J].分析化学,2002,30(9):1053-1057
    [114] Wang Z H, Wang Y M, Luo G A. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid [J]. Analyst, 2002, 127(5): 653-658
    [115] Cheng F L, Tu S, Jin B K. Electorchemical studies of cytochrome c on electodes modified by single-wall carbon naotubes [J]. Chinese J. Chem., 2003, 21(4): 436-441
    [116] 王宗花,刘军,颜流水,等.碳纳米管修饰电极的孔性界面对电分离多巴胺和抗坏血酸的影响[J].高等学校化学学报,2003,24(2):236-240
    [117] Wang Z H, Liang Q L, Wang Y M, et al. Carbon nanotube-intercalated graphiteelectrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid [J]. J. Electroanal. Chem., 2003, 540: 129-134
    [118] Wu K B, Hu S S, Fei J J, et al. Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes [J]. Anal. Chim. Acta, 2003, 489(2): 215–221
    [119] Wu K B, Fei J J, Hu S S. Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes [J]. Anal. Biochem., 2003, 318(1): 100–106
    [120] Chen R S , Huang W H, Tong H, et al. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes [J]. Anal. Chem., 2003, 75(22): 6341-6345
    [121] Ye J S, Wen Y, Zhang W D, et al. Selective voltammetric detection of uric acid in the presence of ascorbic acid at well-aligned carbon nanotube electrode [J]. Electroanalysis, 2003, 15(21): 1693-1698
    [122] Zhao G, Liu K Z, Lin S, et al. Application of a carbon nanotube modified electrode in anodic stripping voltammetry for determination of trace amounts of 6-benzylaminopurine [J]. Microchim. Acta, 2003, 143(4): 255–260
    [123] Yi H C. Anodic stripping voltammetric determination of mercury using multi-walled carbon nanotubes film coated glassy carbon electrode [J]. Anal. Bioanal. Chem., 2003, 377(4): 770–774
    [124] Wu K B, Fei J J, Bai W, et al. Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode [J]. Anal. Bioanal. Chem., 2003, 376(2): 205–209
    [125] Sun Y Y, Wu K B, Hu S S. Fabrication of a multi-wall carbon nanotubes modified glassy carbon electrode and its catalytic effect on the oxidation of estradiol, estrone and estriol [J]. Microchim. Acta, 2003, 142(1-2): 49–53
    [126] Sun Y Y,Fei J J,Wu K B,et al. Simultaneous electrochemical determination of xanthine and uric acid at a nanoparticle film electrode [J]. Anal. Bioanal. Chem., 2003, 375(4): 544–549
    [127] Wang J, Musameh M. Electrochemical detection of trace insulin at carbon-nanotube-modified electrodes [J]. Anal. Chim. Acta, 2004, 511(1): 33–36
    [128] Chen J, Bao J C, Cai C X, et al. Electrocatalytic oxidation of NADH at an ordered carbon nanotubes modified glassy carbon electrode [J]. Anal. Chim. Acta, 2004, 516(1-2): 29–34
    [129] Chen J, Cai C X. Direct electrochemical oxidation of NADPH at a low potential on the carbon nanotube modified glassy carbon electrode [J]. Chinese J. Chem.,2004, 22(2): 167-171
    [130] Lu S F, Wu K B, Dang X P, et al. Electrochemical reduction and voltammetric determination of metronidazole at a nanomaterial thin film coated glassy carbon electrode [J]. Talanta, 2004, 63(3): 653–657
    [131] Gan Z H, Zhao Q, Gu Z N, et al. Electrochemical studies of single-wall carbon nanotubes as nanometer-sized activators in enzyme-catalyzed reaction [J]. Anal. Chim. Acta, 2004, 511(2): 239–247
    [132] Zhang H M, Wang X B, Wan L J, et al. Electrochemical behavior of multi-wall carbon nanotubes and electrocatalysis of toluene-filled nanotube film on gold electrode [J]. Electrochim. Acta, 2004, 49(5): 715–719
    [133] Ye J S, Wen Y, Zhang W D, et al. Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes [J]. Electrochem. Commun., 2004, 6(1): 66–70
    [134] Yan X X, Pang D W, Lu Z X, et al. Electrochemical behavior of L-dopa at single-wall carbon nanotube-modified glassy carbon electrodes [J]. J. Electroanal. Chem., 2004, 569(1): 47–52
    [135] Wang J, Hocevar S B, Ogorevc B. Carbon nanotube-modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2, 4, 6-trinitrotoluene [J]. Electrochem. Commun., 2004, 6(2): 176–179
    [136] Lawrence N S, Deo R P, Wang J. Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes [J]. Anal. Chim. Acta, 2004, 517(1-2): 131–137
    [137] Wang J, Deo R P, Musameh M. Stable and sensitive electrochemical detection of phenolic compounds at carbon nanotube modified glassy carbon electrodes [J]. Electroanalysis, 2003, 15(23-24): 1830-1834
    [138] Zhao G, Liu K Z, Lin S, et al. Electrocatalytic reduction of nitrite Using a carbon nanotube electrode in the presence of cupric ions [J]. Microchim. Acta, 2004, 144(1-3): 75–80
    [139] Wang L, Wang J X, Zhou F M. Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes [J]. Electroanalysis, 2004, 16(8): 627-632
    [140] Xu Z A, Chen X, Qu X H, et al. Electrocatalytic oxidation of catechol at multi-walled carbon nanotubes modified electrode [J]. Electroanalysis, 2004, 16(8):684-687
    [141] Deo R P, Wang J. Electrochemical detection of carbohydrates at carbon-nanotubemodified glassy-carbon electrodes. Electrochem. Commun., 2004, 6(3): 284–287
    [142] Zhang H J. Fabrication of a single-walled carbon nanotube-modified glassy carbon electrode and its application in the electrochemical determination of epirubicin. J. Nanoparticle Res., 2004, 6(6): 665-669
    [143] Valentini F, Orlanducci S, Tamburri E, et al. Single-walled carbon nanotubes on tungsten wires: a new class of microelectrochemical sensors. Electroanalysis, 2005, 17(1): 28-37
    [144] Tu Y, Lin Y H, Yantasee W, et al. Carbon nanotubes based nanoelectrode arrays: fabrication, evaluation, and application in voltammetric analysis. Electroanalysis, 2005, 17(1): 79-84
    [145] Wang Y Z, Li Q, Hu S S. A multiwall carbon nanotubes film-modified carbon fiber ultramicroelectrode for the determination of nitric oxide radical in liver mitochondria. Bioelectrochemistry, 2005, 65(2): 135-142
    [146] Lu S F. Electrochemical determination of tannins using multiwall carbon nanotubes modified glassy carbon electrode. Russian J. Electrochem., 2004, 40(7): 750-754
    [147] 李权龙,袁东星.多壁碳纳米管作为气相色谱固定相的性能研究.化学学报,2002,60(10):1876-1882
    [148] Cai Y Q, Jiang G B, Liu J F, et al. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol. Anal. Chem., 2003, 75(10): 2517-2521
    [149] Xu J M, Wang Y P, Xian Y Z, et al. Preparation of multiwall carbon nanotubes film modified electrode and its application to simultaneous determination of oxidizable amino acids in ion chromatography. Talanta, 2003, 60(6): 1123-1130
    [150] Cao X N, Lin L, Xian Y Z, et al. In vivo monitoring of the thiols in rat striatum by liquid chromatography with amperometric detection at a functionalized multi-wall carbon nanotubes modified electrode. Electroanalysis, 2003, 15(10): 892-897
    [151] Cao X N, Lin L, Zhou Y Y, et al. Amperometric determination of 6-mercaptopurine on functionalized multi-wall carbon nanotubes modified electrode by liquid chromatography coupled with microdialysis and its application to pharmacokinetics in rabbit. Talanta, 2003, 60(5): 1063-1070
    [152] Zhang W, Xie Y F, Ai S Y, et al. Liquid chromatography with amperometric detection using functionalized multi-wall carbon nanotube modified electrode for the determination of monoamine neurotransmitters and their metabolites. J.Chromatogr. B, 2003, 791(1): 217–225
    [153] 林丽,孙哲,仇佩虹,等.微渗析取样-羧基化多壁碳纳米管修饰电极色谱电化学用于活体检测的研究.分析测试学报,2003,22(5):6-9
    [154] Zhang W, Wan F L, Xie Y F, et al. Amperometric determination of (R)-salsolinol, (R)-N-methylsalsolinol and monoamine neurotransmitters with liquid chromatography using functionalized multi-wall carbon nanotube modified electrode in Parkinson’s patients’ cerebrospinal fluid. Anal. Chim. Acta, 2004, 512(2): 207–214
    [155] Wang J, Chen G, Chatrathi M P, et al. Capillary Electrophoresis Microchip with a Carbon Nanotube-Modified Electrochemical Detector. Anal. Chem., 2004, 76(2): 298-302
    [156] Chen G, Zhang L Y, Wang J. Miniaturized capillary electrophoresis system with a carbon nanotube microelectrode for rapid separation and detection of thiols. Talanta, 2004, 64(4): 1018–1023
    [157] Cao X N, Li J H, Xu H H, et al. Simultaneous determination of aromatic amines by liquid chromatography coupled with carbon nanotubes/poly (3-methylthiophene) modified dual-electrode. Chromatographia, 2004, 59(3-4): 167–172
    [158] Chicharro M, Sanchez A, Bermejo E, et al. Carbon nanotubes paste electrodes as new detectors for capillary electrophoresis. Anal. Chim. Acta, 2005, 543(1-2): 84–91
    [159] Ajayan P M, Stephan O, Colliex C, et al. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science, 1994, 265(5176): 1212-1214
    [160] 邱桂花,夏和生,王琪.聚合物/碳纳米管复合材料研究进展.高分子材料科学与工程,2002,18(6):20-23
    [161] Ajayan P M, Lijima S. Capillarity-induced filling of carbon nanotubes. Nature,1993, 361(6410): 333-334
    [162] Zhang Z L, Li B, Shi Z J, et al. Filling of single-walled carbon nanotubes with silver. J. Mat. Res., 2000, 15(12): 2658-2661
    [163] Liu S W, Zhu J J, Mastai Y, et al. Preparation and characteristics of carbon nanotubes filled with cobalt. Chem. Mater., 2000, 12(8): 2205-2211
    [164] Gao Y, Liu J, Shi M, et al. Dense arrays of well-aligned carbon nanotubes completely filled with single crystalline titanium carbide wires on titanium substrates. Appl. Phys. Lett., 1999, 74(24): 3642~3644
    [165] Dravid V P, Host J J, Teng M H, et al. Controlled-size nanocapsules. Nature, 1995, 374(6523): 602
    [166] Setlur A A , Lauerhaas J M, Dai J Y , et al. A method for synthesizing large quantities of carbon nanotubes and encapsulated copper nanowires. Appl. Phys. Lett., 1996, 69(3):345-347
    [167] Li Q Q, Fan S S, Han W Q, et al. Coating of carbon nanotube with nickel by electroless plating method. Jpn. J. Appl. Phys., 1997, 36(4B): L501-L503
    [168] Zhang Y J, Zhang Q, Li Y B, et al. Coating of carbon nanotubes with tungsten by physical vapor deposition. Sol. Stat. Commun., 2000, 115(1): 51-55
    [169] 张继红,魏秉庆,梁吉,等.激光熔覆巴基管/球墨铸铁的研究.金属学报,1996,32(9):980-984
    [170] 马仁志,朱艳秋,魏秉庆,等.铁-巴基管复合材料的研究.复合材料学报,1997,14(2):92-96
    [171] 董树荣,张孝彬.纳米碳管增强铜基复合材料的滑动磨损特性研究.磨擦学学报,1999,19(1):1-6
    [172] Dong S R, Tu J P, Zhang X B. An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes. Mat. Sci. Eng. A, 2001, 313(1-2): 83-87
    [173] Wu H P, Wu X J, Ge M Y, et al. Properties investigation on isotropical conductive adhesives filled with silver coated carbon nanotubes. Compos. Sci. Tech., 2007, 67(6): 1182-1186
    [174] Ning J W, Zhang J J, Pan Y B, et al. Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube. Mat. Sci. Eng. A, 2003, 357(1-2): 392-396
    [175] Kónya B, Z, Wéber F, et al. Preparation and characterization of carbon nanotube reinforced silicon nitride composites. Mat. Sci. Eng.: C, 2003, 23(6-8): 1133-1137
    [176] Peigney A, Laurent C, Flahaut E, et al. Carbon nanotubes in novel ceramic matrix nanocomposites. Ceramics International, 2000, 26(6): 677-683
    [177] Kamalakaran R, Lupo F, Grobert N, et al. Microstructural characterization of C–SiC–carbon nanotube composite flakes. Carbon, 2004, 42(1): 1-4
    [178] Sun J, Gao L. Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation. Carbon, 2003, 41(5): 1063-1068
    [179] Ning J W,Zhang J J,Pan Y B,et al. Fabrication and thermal property of carbon nanotube/SiO2 composites. J. Mater. Sci. Lett., 2003, 22(14): 1019-1021
    [180] Romero D B, Carrard M, Heer W D, et al. A carbon nanotube/organic semiconducting polymer heterojunction. Adv. Mater., 1996, 8(11): 899-902
    [181] Bower C, Rosen R, Jin L, et al. Deformation of carbon nanotubes in nanotube–polymer composites. Appl. Phys. Lett., 1999, 74(22): 3317-3319
    [182] Fan J H, Wan M X, Zhu D B, et al. Synthesis, characterizations, and physical properties of carbon nanotubes coated by conducting polypyrrole. J. Appl. Polym. Sci., 1999, 74(11): 2605-2610
    [183] Lefrant S, Baltog I, Chapelle M L, et al. Studies by sers spectroscopy of the structural properties of conducting polymers and carbon nanotubes. Synt. Met., 1999, 101(1): 184-187
    [184] Woo H S, Czerw R, Webster S, et al. Hole blocking in carbon nanotube–polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2,5-dioctoxy-p-phenylene vinylene). Appl. Phys. Lett., 2000, 77(9): 1393-1395
    [185] Musa I, Baxendale M, Amaratunga G A J, et al. Properties of regioregular poly(3-octylthiophene)/multi-wall carbon nanotube composites. Synt. Met., 1999, 102(1-3): 1250
    [186] Jin Z X, Pramoda K P, Xu G Q, et al. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chem. Phys. Lett., 2001, 337(1-3): 43-47
    [187] Jia Z J, Wang Z Y, Xu C L, et al. Study on poly(methyl methacrylate)/carbon nanotube composites. Mat. Sci. Eng. A, 1999, 271(1-2): 395-400
    [188] 贾志杰,王正元,梁吉,等.PA6/碳纳米管复合材料的复合方法的研究.材料工程,1998,6(9):3-7
    [189] 贾志杰,王正元,徐才录,等.碳纳米管的加入对 PMMA 强度和导电性能的影响.材料开发与应用,1998,13(6):22-26
    [190] Hamon M A, Chen J, Hu H, et al. Dissolution of single-walled carbon nanotubes. Adv. Mater., 1999, 11(10): 834-840
    [191] Hiura H, Ebbesen T W, Tanigaki K. Opening and purification of carbon nanotubes in high yields. Adv. Mater., 1995, 7(3): 275-276
    [192] Jin Z X, Sun X, Xu G Q, et al. Nonlinear optical properties of some polymer/multi-walled carbon nanotube composites. Chem. Phys. Lett., 2000, 318(6): 505-510
    [193] Satishkumar B C , Vogl E M , Govindaraj A , et al. The decoration of carbon nanotubes by metal nanoparticles. J. Phys. D: Appl. Phys. 1996, 29(12):3173-3176
    [194] Yu R Q, Chen L W, Liu Q P, et al. Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater., 1998, 10(3): 718-722
    [195] Che G L, Lakshmi B B, Martin C R, et al. Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production. Langmuir, 1999, 15(3): 750-758
    [196] Ebbesen T W, Hiura H, Bisher M E, et al. Decoration of carbon nanotubes. Adv. Mater., 1996, 8(2): 155-157
    [197] Mu Y Y, Liang H P, Hu J S, et al. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct ethanol fuel cells. J. Phys. Chem. B, 2005, 109(47): 22212-22216
    [198] Chen J H, Huang Z P, Wang D Z, et al. Electrochemical synthesis of polypyrrole/carbon nanotube nanoscale composites using well-aligned carbon nanotube arrays. Appl. Phys. A, 2001, 73(2): 129-131
    [199] Quinn B M, Dekker C, Lemay S G. Electrodeposition of noble metal nanoparticles on carbon nanotubes. J. Am. Chem. Soc., 2005, 127(17): 6146-6147
    [200] Tang H, Chen J H, Yao S Z, et al. Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Anal. Biochem., 2004(1), 331: 89–97
    [201] Tang H, Chen J H, Yao S Z, et al. Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube (CNT) arrays for methanol oxidation. Mater. Chem. Phys., 2005, 92(2-3): 548–553
    [202] Yang M H, Yang Y H, Liu Y L, et al. Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens. Bioelectron., 2006, 21(7): 1125-1131
    [203] Han L, Wu W, Kirk F L, et al. A direct route toward assembly of nanoparticle- carbon nanotube composite materials. Langmuir, 2004, 20(14): 6019-6025
    [204] Zanella R, Basiuk E V, Santiago P, et al. Deposition of gold nanoparticles onto thiol-functionalized multiwalled carbon nanotubes. J. Phys. Chem. B, 2005, 109(34): 16290-16295
    [205] Ou Y Y, Huang M H. High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker. J. Phys. Chem. B, 2006, 110(5): 2031-2036
    [206] Yang M H, Jiang J H, Yang Y H, et al. Carbon nanotube/cobalt hexacyanoferratenanoparticle-biopolymer system for the fabrication of biosensors. Biosens. Bioelectron., 2006, 21(9): 1791-1797
    [207] Zhai X R, Wei W Z, Zeng J X, et al. New nanocomposite based on prussian blue nanoparticles/carbon nanotubes/chitosan and its application for assembling of amperometric glucose biosensor. Anal. Lett., 2006, 39(5): 913-926
    [208] Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett., 2000, 76(20): 2868-2870
    [209] Andrews R, Jacques D, Rao A M, et al. Nanotube composite carbon fibers. Appl. Phys. Lett., 1999, 75(9): 1329-1331
    [210] Sandler J, Shaffer M S P, Prasse T, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, 1999, 40(21): 5967-5971
    [211] 李宏建,彭景翠,陈小华,等.填充碳纳米管/石墨的复合型电磁波屏蔽膜.化学物理学报,2001,14(2):211-215
    [212] Grimes C A, Mungle C, Kouzoudis D, et al. The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem. Phys. Lett., 2000, 319(5-6): 460-464
    [213] Ago H, Petritsch K, Shaffer M S P, et al. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv. Mater., 1999, 11(15): 1281-1285
    [214] Jin Z X, Huang L, Goh S H, et al. Characterization and nonlinear optical properties of a poly(acrylic acid)–surfactant–multi-walled carbon nanotube complex. Chem. Phys. Lett., 2000, 332(5-6): 461-466
    [215] Xu C L, Wei B Q, Ma R Z, et al. Fabrication of alminum-carbon nanotube composites and their electrical properties. Carbon, 1999, 37(5): 855-861
    [216] Li Y B, Xu C L, Wei B Q, et a1. Physical properties of Fe80P20-carbon nanotubes composites. J. Mater. Sci., 1999, 34(21): 5281-5284
    [217] Zhan G D, Kuntz J D, Wan J L, et al. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nature Materials, 2003, 2: 38-42
    [218] Siegel R W, Chang S K, Ash B J, et al. Mechanical behavior of polymer and ceramic matrix nanocomposites. Scripta Materialia, 2001, 44(8-9): 2061-2064
    [219] Zhan G D, Kuntz J D, Garay J E, et al. Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes. Appl. Phys. Lett., 2003,83(6): 1228-1230
    [220] Flahaut E, Peigney A, Laurent C, et al. Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Materialia, 2000, 48(14): 3803-3812
    [221] Zhao Y D, Zhang W D, Chen H, et al. Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sens. Actuat. B, 2002, 87(1): 168–172
    [222] Wang S G, Zhang Q, Wang R L, et al. Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors. Electrochem. Commun., 2003, 5(9): 800–803
    [223] Zhao G C, Zhang L, Wei X W, et al. Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis. Electrochem. Commun., 2003, 5(9): 825–829
    [224] Wang S G, Zhang Q, Wang R L, et al. A novel multi-walled carbon nanotube-based biosensor for glucose detection. Biochem. Biophys. Res. Commun., 2003, 311(3): 572–576
    [225] Xu J Z, Zhu J J, Wu Q, et al. An amperometric biosensor based on the coimmobilization of horseradish peroxidase and methylene blue on a carbon nanotubes modified electrode. Electroanalysis, 2003, 15(3): 219-224
    [226] Cai H, Xu Y, He P G, et al. Indicator free DNA hybridization detection by impedance measurement based on the DNA-doped conducting polymer film formed on the carbon nanotube modified electrode. Electroanalysis, 2003, 15(23-24): 1864-1870
    [227] Gao M, Dai L M, Wallace G G. Biosensors based on aligned carbon nanotubes coated with inherently conducting polymers. Electroanalysis, 2003, 15(13): 1089-1094
    [228] Sotiropoulou S, Chaniotakis N A. Carbon nanotube array-based biosensor. Anal. Bioanal. Chem., 2003, 375(1): 103–105
    [229] Wang J, Liu G D, Jan M R, et al. Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem. Commun., 2003, 5(12): 1000–1004
    [230] Cai H, Cao X N, Jiang Y, et al. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal. Bioanal. Chem., 2003, 375(2): 287–293
    [231] Yu X, Chattopadhyay D, Galeska I, et al. Peroxidase activity of enzymes boundto the ends of single-wall carbon nanotube forest electrodes. Electrochem. Commun., 2003, 5(5): 408–411
    [232] Cai C X,Chen J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal. Biochem., 2004, 325(2): 285–292
    [233] Zhao Q, Gu Z N, Zhuang Q K. Electrochemical study of tetra-phenyl-porphyrin on the SWNTs film modified glassy carbon electrode. Electrochem. Commun., 2004, 6(1): 83–86
    [234] Xu Y, Jiang Y, Cai H, et al. Electrochemical impedance detection of DNA hybridization based on the formation of M-DNA on polypyrrole/carbon nanotube modified electrode. Anal. Chim. Acta, 2004, 516(1-2): 19–27
    [235] Male K B, Hrapovic S, Liu Y L, et al. Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal. Chim. Acta, 2004, 516(1-2): 35–41
    [236] Gavalas V G, Law S A, Ball J C, et al. Carbon nanotube aqueous sol-gel composites: enzyme-friendly platforms for the development of stable biosensors. Anal. Biochem., 2004, 329(2): 247–252
    [237] Zhang M G, Smith A, Gorski W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem., 2004, 76(17):5045-5050
    [238] Luong J H T, Hrapovic S, Wang D S, et al. Solubilization of Multiwall Carbon Nanotubes by 3-Aminopropyltriethoxysilane towards the Fabrication of Electrochemical Biosensors with Promoted Electron Transfer. Electroanalysis, 2004, 16(1-2): 132-139
    [239] Dai Y Q, Shiu K K. Glucose biosensor based on multi-walled carbon nanotube modified glassy carbon electrode. Electroanalysis, 2004, 16(20): 1697-1703
    [240] Ye J S, Wen Y, Zhang W D, et al. Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution. J. Electroanal. Chem., 2004, 562(2): 241–246
    [241] Star A, Han T R, Joshi V, et al. Sensing with nafion coated carbon nanotube field-effect transistors. Electroanalysis, 2004, 16(1-2): 108-112
    [242] Wang J,Musameh M. Carbon nanotube screen-printed electrochemical sensors. Analyst, 2004, 129(1): 1–2
    [243] Lin Y H, Lu F, Wang J. Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis, 2004, 16(1-2): 145-149
    [244] Kerman K, Morita Y, Takamura Y, et al. DNA-directed attachment of carbon nanotubes for enhanced kabel-free electrochemical detection of DNA hybridization. Electroanalysis, 2004, 16(20): 1667-1672
    [245] Guo M L, Chen J H, Li J, et al. Carbon nanotubes-based amperometric cholesterol biosensor fabricated through layer-by-layer technique. Electroanalysis, 2004, 16(23): 1992-1998
    [246] Antiochia R, Lavagnini I, Pastore P, et al. A comparison between the use of a redox mediator in solution and of surface modified electrodes in the electrocatalytic oxidation of nicotinamide adenine dinucleotide. Bioelectrochem., 2004, 64(2): 157–163
    [247] Zhao G C, Zhang L, Wei X W. An unmediated H2O2 biosensor based on the enzyme-like activity of myoglobin on multi-walled carbon nanotubes. Anal. Biochem., 2004, 329(1): 160–161
    [248] Wang J, Kawde A N, Jan M R. Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization. Biosens. Bioelectro., 2004, 20(5): 995–1000
    [249] Salimia A, Comptonb R G, Hallaj R. Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. Anal. Biochem., 2004, 333(1): 49–56
    [250] Luong J H T, Hrapovic S, Wang D S. Multiwall carbon nanotube (MWCNT) based electrochemical biosensors for mediatorless detection of putrescine. Electroanalysis, 2005, 17(1): 47-53
    [251] Zhao Q, Guan L H, Gu Z N, et al. Determination of phenolic compounds based on the tyrosinase-single walled carbon nanotubes sensor. Electroanalysis, 2005, 17(1): 85-88
    [252] Ye J S, Wen Y, Zhang W D, et al. Electrochemical biosensing platforms using phthalocyanine-functionalized carbon nanotube electrode. Electroanalysis, 2005, 17(1): 89-96
    [253] Lim S H, Wei J, Lin J Y, et al. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Biosens. Bioelectron., 2005, 20(11): 2341–2346
    [254] Cheng G F, Zhao J, Tu Y H, et al. A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole. Anal. Chim. Acta, 2005, 533(1): 11–16
    [255] Takeda S, Sbagyo A, Sakoda Y, et al. Application of carbon nanotubes fordetecting anti-hemagglutinins based on antigen–antibody interaction. Biosens. Bioelectro., 2005, 21(1): 201–205
    [256] Wang J, Musaeh M. Carbon-nanotubes doped polypyrrole glucose biosensor. Anal. Chim. Acta, 2005, 539(1-2): 209–213
    [257] Deo R P, Wang J, Block I, et al. Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal. Chim. Acta, 2005, 530(2): 185–189
    [258] Zhao G C, Yin Z Z, Zhang L, et al. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2. Electrochem. Commun., 2005, 7(3): 256–260
    [259] Wang M K, Shen Y, Liu Y, et al. Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes. J. Electroanal. Chem., 2005, 578(1): 121–127
    [260] Wang M K, Zhao F, Liu Y, et al. Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes. Biosens. Bioelectron., 2005, 21(1): 159–166
    [261] Liu Y, Wang M K, Zhao F, et al. Direct electron transfer and electrocatalysis of microperoxidase immobilized on nanohybrid film. J. Electroanal. Chem., 2005, 581(1): 1–10
    [262] Zhu N N, Chang Z, He P G, et al. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes. Anal. Chim. Acta, 2005, 545(1): 21–26
    [263] Kerman K, Morita Y, Takamura Y, et al. Escherichia coli single-strand binding protein–DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor. Anal. Bioanal. Chem., 2005, 381(6): 1114–1121
    [264] Zhao Y D, Bi Y H, Zhang W D, et al. The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2. Talanta, 2005, 65(2): 489–494
    [265] Wang Z H, Wang Y M, Luo G A. A selective voltammetric method for uric acid detection at β-cyclodextrin modified electrode incorporating carbon nanotubes. Analyst, 2002, 127(10): 1353-1358
    [266] Wang G, Xu J J, Chen H Y. Interfacing cytochrome c to electrodes with a DNA–carbon nanotube composite film. Electrochem. Commun., 2002, 4(6): 506–509
    [267] Wang J, Musameh M. Carbon nanotube/Teflon composite electrochemicalsensors and biosensors. Anal. Chem., 2003, 75(9): 2075-2079
    [268] Huang W S, Hu W B, Song J C. Adsorptive stripping voltammetric determination of 4-aminophenol at a single-wall carbon nanotubes film coated Electrode. Talanta, 2003, 61(3): 411-416
    [269] Wang Z H, Wang Y M, Luo G A. The electrocatalytic oxidation of thymine at α-cyclodextrin incorporated carbon nanotube-coated electrode. Electroanalysis, 2003, 15(13): 1129-1133
    [270] Huang W S, Yang C H, Zhang S H. Simultaneous determination of 2-nitrophenol and 4-nitrophenol based on the multi-wall carbon nanotubes Nafion-modified electrode. Anal. Bioanal. Chem., 2003, 375(5): 703–707
    [271] Wang G Y, Liu X J, Yu B, et al, Electrocatalytic response of norepinephrine at a b-cyclodextrin incorporated carbon nanotube modified electrode. J. Electroanal. Chem., 2004, 567(2): 227–231
    [272] Hrapovic S, Liu Y L, Male K B, et al. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem., 2004, 76(4): 1083-1088
    [273] Guo Z H,Dong S J. Electrogenerated chemiluminescence from Ru(Bpy)32+ ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films. Anal. Chem., 2004, 76(10): 2683-2688
    [274] Wang J, Liu G D, Jan M R. Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc., 2004, 126(10): 3010-3011
    [275] Wu Y H, Ji X B, Hu S S. Studies on electrochemical oxidation of azithromycin and its interaction with bovine serum albumin. Bioelectrochem., 2004, 64(1): 91– 97
    [276] Qu J Y, Shen Y, Qu X H, et al. Electrocatalytic reduction of oxygen at Multi-walled carbon nanotubes and cobalt porphyrin modified glassy carbon electrode. Electroanalysis, 2004, 16(17): 1444-1450
    [277] Wu K B, Hu S S. Electrochemical study and selective determination of dopamine at a Multi-wall carbon nanotube-Nafion film coated glassy carbon electrode. Microchim. Acta, 2004, 144(1-3): 131–137
    [278] Tsai Y C, Chen J M, Li S C, et al. Electroanalytical thin film electrodes based on a NafionTM-multi-walled carbon nanotube composite. Electrochem. Commun., 2004, 6(9): 917–922
    [279] Guo D J, Li H L. High dispersion and electrocatalytic properties of Ptnanoparticles on SWNT bundles. J. Electroanal. Chem., 2004, 573(1): 197–202
    [280] Gong K P, Dong Y, Xiong S X, et al. Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes. Biosens. Bioelectron., 2004, 20(2): 253–259
    [281] Liu J Q, Chou A, Rahmat W, et al. Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis, 2005, 17(1): 38-46
    [282] Zhang M N, Gong K P, Zhang H W, et al. Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. Biosens. Bioelectron., 2005, 20(7): 1270–1276
    [283] Rochette J F, Sacher E, Meunier M, et al. A mediatorless biosensor for putrescine using multiwalled carbon nanotubes. Anal. Biochem., 2005, 336(2): 305–311
    [284] Tan X C, Li M J, Cai P X, et al. An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film. Anal. Biochem., 2005, 337(1): 111–120
    [285] Zhao F Q, Huang F, Yan Q P, et al. Characterization of dodecanethiol SAM and multi-walled carbon nanotube modified gold electrodes, and voltammetric determination of prochlorperazine. Microchim. Acta, 2005, 150(2): 179–185
    [286] Lin Y H, Cui X L, Ye X R. Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochem. Commun., 2005, 7(3): 267–274
    [287] Fei S D, Chen J H, Yao S Z, et al. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal. Biochem., 2005, 339(1): 29–35
    [288] Jiang L Y, Wang R X, Li X M, et al. Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochem. Commun., 2005, 7(6): 597–601
    [289] Wang F, Hu S S. Electrochemical reduction of dioxygen on carbon nanotubes–dihexadecyl phosphate film electrode. J. Electroanal. Chem., 2005, 580(1): 68–77
    [290] Guo M L, Chen J H, Li J, et al. Fabrication of polyaniline/carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite. Anal. Chim. Acta, 2005, 532(1): 71–77
    [291] Huang J E, Guo D J, Yao Y G, et al. High dispersion and electrocatalytic properties of platinum nanoparticles on surface-oxidized single-walled carbonnanotubes. J. Electroanal. Chem., 2005, 577(1): 93–97
    [292] Pan D W, Chen J H, Tao W Y, et al. Phosphopolyoxomolybdate absorbed on lipid membranes/carbon nanotube electrode. J. Electroanal. Chem., 2005, 579(1): 77–82
    [293] Zhao Y F, Gao Y Q, Zhan D P, et al. Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta, 2005, 66(1): 51–57
    [294] Chen H W, Wu R J, Chan K H, et al. The application of CNT/nafion composite material to low humidity sensing measurement. Sens. Actuat. B, 2005, 104(1): 80–84
    [295] Penner N A, Nesterenko P N, Rybalko M A. Use of hypercrosslinked polystyrene for the determination of pyrocatechol, resorcinol, and hydroquinone by reversed-phase HPLC with dynamic on-line preconcentration. J. Anal. Chem., 2001, 56(10): 934–939
    [296] Asan A, Isildak I. Determination of major phenolic compounds in water by reversed phase liquid chromatography after pre-column derivatization with benzoyl chloride. J. Chromatogra. A, 2003, 988(1): 145–149
    [297] Nagaraja P, Vasantha R A, Sunitha K R. A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations. Talanta, 2001, 55(6):1039–1046
    [298] Rosangela M, de Carvalho, Cesar Mello, Lauro T, et al. Simultaneous determination of phenol isomers in binary mixtures by differential pulse voltammetry using carbon fibre electrode and neural network with pruning as a multivariate calibration tool. Anal. Chim. Acta, 2000, 420((1): 109–121
    [299] Ding Y P, Liu W L, Wu Q S, et al. Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry. J. Electroanal. Chem., 2005, 575(2): 275–280
    [300] Bakker E. Electrochemical sensors. Anal. Chem., 2004, 76(12): 3285- 3298
    [301] Clement R E, Yang P W, Koester C J. Environmental analysis. Anal. Chem., 2001, 73(12): 2761-2790
    [302] Cai Q T, Khoo S B. Poly (3, 3'-diaminobenzidine) film on a gold electrode for selective preconcentration and stripping analysis of selenium (IV). Anal. Chem., 1994, 66(24): 4543-4550
    [303] Valentini F, Salis A, Curulli A, et al. Chemical reversibility and stable low-potential NADH detection with nonconventional conducting polymernanotubule modified glassy carbon electrodes. Anal. Chem., 2004, 76(11): 3244-3248
    [304] Wang H S, Huang D Q, Liu R M. Study on the electrochemical behavior of epinephrine at a poly(3-methylthiophene)-modified glassy carbon electrode. J. Electroanal. Chem., 2004, 570(1): 83-90
    [305] Li J N, Zhang J, Deng P H, et al. Carbon paste electrode for trace zirconium (IV) determination by adsorption voltammetry. Analyst, 2001, 126(11): 2032-2035
    [306] Mbindyo J, Zhou L P, Zhang Z, et al. Rusling detection of chemically induced DNA damage by derivative square wave voltammetry. Anal. Chem., 2000, 72(9): 2059-2065
    [307] Ma C Q, Li K A, Tong S Y. Enhancement of Rayleigh light scattering of acid chrome blue K by proteins and protein assay by the scattering technique. Analyst, 1997, 122(4): 361–364
    [308] Sun W, Han J Y, Jiao K, et al. Studies on the interaction of protein with acid chrome blue K by electrochemical method and its analytical application. Bioelectrochemistry, 2005, 68(1): 60–66
    [309] 张建明,宋远志.5种酚的电化学行为及其反应活性的理论计算.华中师范大学学报(自然科学版),2004,38(4):472-475
    [310] 陈伟,罗红斌,林新华.聚溴酚蓝修饰玻碳电极的制备及电化学性质.电化学,2005,11(1):92-95
    [311] Wei Y J, Li K A, Tong S Y. The interaction of bromophenol blue with proteins in acidic solution. Talanta, 1996, 43(1): 1-10
    [312] Ma C Q, Tong S Y, Li K A. Microdetermination of proteins by resonance light scattering spectroscopy with bromophenol blue. Anal. Biochem., 1996, 239(1): 86-91
    [313] Denson P M, Davodow B, Bass M E, et al. A chemical test for smoking exposure. Arch. Environ. Health, 1967, 14(6): 865-874
    [314] Glatz Z, Novakova S, Sterbova H. Analysis of thiocyanate in biological fluids by capillary zone electrophoresis. J. Chromatogra. A, 2001, 916(1-2): 273-277
    [315] Bendtsen A B, Hansen E H. Spectrophotometric flow injection determination of trace amounts of thiocyanate based on its reaction with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol and dichromate: assay of the thiocyanate level in saliva from smokers and non-smokers. Analyst, 1991, 116(6): 647-652
    [316] Afkhami A, Bahrami H. Kinetic-spectrophotometric determination of tracequantities of thiocyanate by inhibition of the redox reaction of ferroin with periodate. Anal. Lett., 1995, 28(10): 1785-1791
    [317] Pinillos S C, Vincente I S, Bernal J G, et al. Determination of thiocyanate by carbonyl sulphide (OCS) generation and gas-phase molecular absorption spectrometry. Anal. Chim. Acta, 1996, 318(3): 377-383
    [318] Staden J F, Botha A. Spectrophotometric determination of thiocyanate by sequential injection analysis. Anal. Chim. Acta, 2000, 403(1-2): 279-286
    [319] Ghasemi J, Amini R, Afkhami A. Kinetic spectrophotometric determination of thiocyanate based on its inhibitory effect on the oxidation of methyl red by bromate. Anal. Sci., 2001, 17(3): 435-438
    [320] Madrakian T, Esmaeili A, Abdolmaleki A. Kinetic-spectrophotometric determination of trace quantities of thiocyanate based on its Landolt effect on the reaction of bromate with hydrochloric acid. J. Anal. Chem., 2004, 59(1): 28-32
    [321] Shishebore M R, Nasirizadeh N, Kerdegari A A. Kinetic determination of thiocyanate on the basis of its catalytic effect on the oxidation of methylene blue with potassium bromate. Anal. Sci., 2005, 21(10): 1213-1216
    [322] Chamjangali M A, Bagherian G, Salek-Gilani N. Determination of trace amounts of thiocyanate by a new kinetic procedure based on an induction period. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2007, 67(5): 1252-1256
    [323] Ensafi A A, Khayamian T, Tabaraki R. Simultaneous kinetic determination of thiocyanate and sulfide using eigenvalue ranking and correlation ranking in principal component-wavelet neural network. Talanta, 2007, 71(5): 2021-2028
    [324] Tanaka A, Deguchi K, Deguchi T. Spectrofluorimetric determination of cyanide and thiocyanate based on a modified K?nig reaction in a flow-injection system. Anal. Chim. Acta, 1992, 261(3-4): 281-286
    [325] Gong B, Gong G. Fluorimetric method for the determination of thiocyanate with 2, 7- dichlorofluorescein and iodine. Anal. Chim. Acta, 1999, 394(2-3): 171–175
    [326] Cox J A, Gray T, Kulkarni K R. Stable modified electrodes for flow-injection amperometry: application to the determination of thiocyanate. Anal. Chem., 1988, 60(17): 1710-1713
    [327] Li L, Wang A, He P, et al. Photokinetic voltammetric method for the determination of thiocyanate. Fresenius J. Anal. Chem., 2000, 367(7): 649–652
    [328] Wang G F, Li M G, Gao Y C, et al. Amperometric sensor used for determination of thiocyanate with a silver nanoparticles modified electrode. Sensors, 2004, 4(9): 147-155
    [329] Ozoemena K I, Nyokong T. Surface electrochemistry of iron phthalocyanine axially ligated to 4-mercaptopyridine self-assembled monolayers at gold electrode: applications to electrocatalytic oxidation and detection of thiocyanate. J. Electroanal. Chem., 2005, 579(2): 283–289
    [330] Cai X H, Zhao Z F. Determination of trace thiocyanate by linear sweep polarography. Anal. Chim. Acta, 1988, 212: 43-48
    [331] Tanabe S, Kitahara M, Nawata N, et al. Determination of oxidizable inorganic anions by high-performance liquid chromatography with fluorescence detection and application to the determination of salivary nitrite and thiocyanate and serum thiocyanate. J. Chromatogra. B, 1988, 424: 29-37
    [332] Michigami Y, Fujii K, Ueda K, et al. Determination of thiocyanate in human saliva and urine by ion chromatography. Analyst, 1992, 117(12): 1855–1858
    [333] Connolly D, Barron L, Paull B. Determination of urinary thiocyanate and nitrate using fast ion-interaction chromatography. J. Chromatogra. B, 2002, 767(1): 175-180
    [334] Rong L, Lim L W, Takeuchi T. Determination of iodide and thiocyanate in seawater by liquid chromatography with poly(ethylene glycol) stationary phase. Chromatographia, 2005, 61(7-8): 371-374
    [335] Chinaka S, Takayama N, Michigami Y, et al. Simultaneous determination of cyanide and thiocyanate in blood by ion chromatography with fluorescence and ultraviolet detection. J. Chromatogra. B, 1998, 713(2): 353-359
    [336] Bjergegaard C, Moller P, Sorensen H. Determination of thiocyanate, iodide, nitrate and nitrite in biological samples by micellar electrokinetic capillary chromatography. J. Chromatogra. A, 1995, 717(1): 409-414
    [337] Tanakaa Y, Naruishia N, Fukuyaa H, et al. Simultaneous determination of nitrite, nitrate, thiocyanate and uric acid in human saliva by capillary zone electrophoresis and its application to the study of daily variations. J. Chromatogra. A, 2004, 1051(1-2): 193–197
    [338] Bakker E, Buhlmann P, Pretsch E. Carrier-based ion-selective electrodes and bulk optodes. Part 1. General characteristics. Chem. Rev., 1997, 97(8): 3083–3132
    [339] Buhlmann P, Pretsch E, Bakker E. Carrier-based ion-selective electrodes and bulk optodes. 2. ionophores for potentiometric and optical sensors. Chem. Rev., 1998, 98(4): 1593-1688
    [340] Daunert S, Wallare S, Florido A, et al. Anion-selective electrodes based onelectropolymerized porphyrin films. Anal. Chem., 1991, 63(17): 1676-1679
    [341] Brown D V, Chaniotakis N A, Lee I H, et al. Mn (III)-porphyrin-based thiocyanate-selective membrane electrodes: Characterization and application in flow injection determination of thiocyanate in saliva. Electroanalysis, 1989, 1(6): 477-484
    [342] Gao D, Li J Z, Yu R Q. Metalloporphyrin derivatives as neutral carriers for PVC membrane electrodes. Anal. Chem., 1994, 66(14): 2245-2249
    [343] Florido A, Bachas L G, Valiente M, et al. Anion-selective electrodes based on a gold(III)-triisobutylphosphine sulfide complex. Analyst, 1994, 119(11): 2421-2425
    [344] Gao D, Gu J, Yu R Q, et al. Substituted metalloporphyrin derivatives as anion carrier for PVC membrane electrodes. Anal. Chim. Acta, 1995, 302(2-3): 263-268
    [345] Ganjali M R, Poursaberi T, Basiripour F, et al. Highly selective thiocyanate poly(vinyl chloride) membrane electrode based on a cadmium-Schiff's base complex. Fresenius J. Anal. Chem., 2001, 370(8): 1091-1095
    [346] Shamsipur M, Khayatian G, Tangestaninejad S. Thiocyanate selective membrane electrode based on (octabromotetraphenylporphyinato) manganese(III) chloride. Electroanalysis, 1999, 11(18): 1340–1344
    [347] Amini M K, Shahrokhian S, Tangestaninejad S. PVC-based cobalt and manganese phthalocyanine coated graphite electrodes for determination of thiocyanate. Anal. Lett., 1999, 32(14): 2737–2750
    [348] Amini M K, Shahrokhian S, Tangestaninejad S. Thiocyanateselective electrodes based on nickel and iron phthalocyanines. Anal. Chim. Acta, 1999, 402(1): 137–143
    [349] Li Z Q, Wu Z Y, Yuan R, et al. Thiocyanate-selective PVC membrane electrodes based on Mn(II) complex of N,N'-bis-(4-phenylazosalicylidene) o-phenylene diamine as a neutral carrier. Electrochim. Acta, 1999, 44(15): 2543-2548
    [350] Sanchez P C, Ortuno J A, Martinez D. Anion selective polymeric membrane electrodes based on cyclopalladated amine complexes. Talanta, 1998, 47(2): 305-310
    [351] Poursaberi T, Salavati-Niasari M, Khodabakhsh S, et al. A selective membrane electrode for thiocyanate ion based on a copper-1,8-dimethyl-1,3,6,8,10,13- azacyclotetradecane complex as ionophore. Anal. Lett., 2001, 34(15): 2621-2632
    [352] Ganjali M R, Yousefi M, Javanbakht M, et al. Determination of SCN- in urineand saliva of smokers and non-smokers by SCN--selective polymeric membrane containing a nickel(II)-azamacrocycle complex coated on a graphite electrode. Anal. Sci., 2002, 18(8): 887-892
    [353] Ardakani M M, Ensafi A A, Salavati-Niasari M, et al. Selective thiocyanate poly(vinyl chloride) membrane based on a, 8-dibenzyl-1,3,6,8,10,13-hexaazacyclotetradecane–Ni(II)erchlorate. Anal. Chim. Acta, 2002, 462(1): 25-30
    [354] Khorasani J H, Amini M K, Tangestaninejad S, et al. Manganese porphyrin derivatives as ionophores for thiocyanate-selective electrodes: the influence of porphyrin substituents and additives on the response properties. Sens. Actuat. B, 2002, 87(3): 448-456
    [355] Abbaspour A, Kamyabi M A, Esmaeilbeig A R, et al. Thiocyanate-selective electrode based on unsymmetrical benzoN4 nickel(II) macrocyclic complexes. Talanta, 2002, 57(5): 859-867
    [356] Amini M K, Rafi A, Ghaedi M, et al. Bis(2-mercaptobenzoxazolato)mercury(II) and bis(2-pyridinethiolato)mercury(II) complexes as carriers for thiocyanate selective electrodes. Microchem. J., 2003, 75(1): 143–150
    [357] Saad S M, Hassan M H, Abou G, et al. Novel thiocyanate-selective membrane sensors based on di-, tetra-, and hexa-imidepyridine ionophores. Anal. Chim. Acta, 2003, 482(1): 9-18
    [358] Huang X, Chai Y, Yuan R, et al. Highly selective thiocyanate electrode based on bis-[N-(2-hydroxyethyl)salicylaldimino]copper(II) complex as a neutral carrier. Anal. Sci., 2004, 20(8): 1185-1188
    [359] Shamsipur M, Poursaberi T, Rezapour M, et al. [Cu(L)](NO3)2 (L=4,7-bis(3-aminopropyl)-1-thia-4,7-diazacyclononane) as a suitable ionophore for construction of thiocyanate-selective electrodes and their use in determination of urinary and salivary thiocyanate concentration. Electroanalysis, 2004, 16(16): 1336-1342
    [360] Mazloum M, Salavati-Niasari M, Sadeghi A. Novel selective thiocyanate PVC membrane electrode based on new Schiff base complex of 2.2-[(1,3-Dimethyl- 1,3-propanediylidene)dinitrilo]bis-benzenethiolato cadmium(II). New J. Chem., 2004, 28(5): 595-599
    [361] Ardakani M M, Sadeghi A, Salavati-Niasari M. Highly selective thiocyanate membrane electrode based on butane-2, 3-dione bis(salicylhydrazonato)zinc(II) complex. Talanta, 2005, 66(4): 837-843
    [362] Shamsipur M, Ershad S, Samadi N, et al. The first use of a Rh(III) complex as a novel ionophore for thiocyanate-selective polymeric membrane electrodes. Talanta, 2005, 65(4): 991-997
    [363] Chai Y Q, Dai J Y, Yuan R, et al. Highly thiocyanate-selective membrane electrodes based on the N,N'-bis-(benzaldehyde)-glycine copper(II) complex as a neutral carrier. Desalination, 2005, 180(1-3): 207-215
    [364] Zamani H A, Malekzadegan F, Ganjali M R. Highly selective and sensitive thiocyanate membrane electrode based on nickel(II)-1,4,8,11,15,18,22,25- octabutoxyphthalocyanine. Anal. Chim. Acta, 2006, 555(2): 336-340
    [365] Segu M J, Lizondo-Sabater J, Mart′?nez-M′a?nez R,et al. Linear polyamines as carriers in thiocyanate-selective membrane electrodes. Talanta, 2006, 68(4): 1182–1189
    [366] Arvand M, Zanjanchi M A, Heydari L. Novel thiocyanate-selective membrane sensor based on crown ether-cetyltrimethyl ammonium thiocyanate ion-pair as a suitable ionophore. Sens. Actuat. B, 2007, 122(1): 301-308
    [367] Dai J Y, Chai Y Q, Yuan R, et al. Thiocyanate-selective PVC membrane electrode based on tricoordinate Schiff base copper(II) complex. Chem. Lett., 2005, 34(1): 62-63
    [368] Raj C R, Okajima T, Ohsaka T. Gold nanoparticle arrays for the voltammetric sensing of dopamine. J. Electroanal. Chem., 2003, 543(2): 127-133
    [369] Leibowitz F L, Zheng W, Maye M M, et al. Structures and properties of nanoparticle thin films formed via a one-step exchange-cross-linking- precipitation route. Anal. Chem., 1999, 71(22): 5076-5083
    [370] Brown K R, Fox A P, Natan M J. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. J. Am. Chem. Soc., 1996, 118(5): 1154-1157
    [371] Pan D W, Chen J H, Tao W Y, et al. Polyoxometalate-modified carbon nanotubes: new catalyst support for methanol electro-oxidation. Langmuir, 2006, 22(13): 5872-5876
    [372] Guo D J, Li H L. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon, 2005, 43(6): 1259-1264
    [373] Markku L, Juhani V, Jari H. Spectrophotometric determination of thiocyanate in human saliva. J. Chem. Educ., 1999, 76(9): 1281-1282
    [374] 刘 颜,袁若,柴雅琴,等.聚亚甲基蓝和纳米金修饰玻碳电极的葡萄糖生物传感器.分析测试学报,2005,24(4):24-27
    [375] 冶保献,张娟,付守骏,等.聚亚甲基蓝修饰碳纤维微电极的性质及对多巴胺的电催化测定.天津师大学报(自然科学版),2000,20(4):10-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700