用户名: 密码: 验证码:
聚合物薄膜修饰电极的制备及在电化学分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学修饰电极(CMEs)是通过人为地对电极表面进行分子设计,将具有优良化学性质的分子、离子和聚合物等固定在电极表面,使电极具有特定的化学和电化学性质,以便在其上进行所期望的反应。CMEs丰富了电化学的电极材料,扩展了电化学的应用范围,是目前最活跃的电化学和电分析化学的研究领域之一。
     本研究的目的在于发展和完善CMEs,寻找新的修饰剂,研究新技术和新方法,探索聚合物薄膜CMEs在分析领域的应用,提高其检测的灵敏度和选择性,建立可应用于实际样品的检测技术。本研究工作的创新点是利用电化学聚合法制备了聚氨基黑10B修饰电极、聚铬黑T修饰电极及聚谷氨酸修饰电极,并成功地应用于一些电活性物质的快速、简便、经济的检测。本研究主要内容表现在以下几个方面:
     1.聚氨基黑lOB/Nafion修饰电极的制备及对多巴胺的检测
     弱酸性染料氨基黑10B的结构中含有大的共轭芳香环,通过π-π键作用可使其在玻碳电极表面有一定程度的物理吸附,但这一过程吸附量少且易受环境影响,难以控制。以玻碳电极为基底,首次采用电化学聚合的方法将氨基黑10B染料分子非共价修饰到玻碳电极表面,然后滴加Nafion,制备了聚氨基黑10B/Nafion修饰电极。该电极制作过程非常简单,修饰量可以通过电化学聚合圈数进行控制,同时具有良好的稳定性和重现性。利用SEM和AFM可以观察到聚氨基黑10B薄膜紧密均匀地附着在玻碳电极表面。通过对修饰电极进行电化学阻抗谱实验和电化学表征,表明该修饰电极具有更快的电子转移速度和更大的有效电活性表面积。该修饰电极不仅对多巴胺有良好的电催化作用,而且有效地排除了抗坏血酸的干扰,提高了选择性。该电极可用于多巴胺盐酸注射液和小牛血清中多巴胺的测定,为药剂中多巴胺的测定提供了一种新方法。
     2.聚氨基黑10B修饰玻碳电极检测维生素B6
     利用电化学聚合的方法将氨基黑10B染料分子修饰到玻碳电极表面,制备的聚氨基黑10B修饰电极稳定性和重复性较好,克服了碳电极暴露面敏感的缺点。计时库仑实验结果表明该修饰电极正逆反应均可在瞬间反应完毕,电极表面的氧化还原反应及膜与裸电极的电子交换速率均很快。该修饰电极对维生素B6的氧化有明显的电催化作用。利用微分脉冲伏安和安培检测技术分析维生素B6,线性范围宽,检测限低(5.0×10-8mol/L),低于已报道的其他方法。而且,该修饰电极具有制备简单、响应快、稳定、重现性好等优点。该电极用于药物制剂中维生素B6浓度的测定,获得了满意的结果。聚氨基黑10B修饰电极有望应用于药物分析领域。
     3.聚铬黑T修饰电极检测亚硝酸盐
     铬黑T是一种常见的酸碱指示剂,其分子中含有多个共轭体系,可能起到媒介体作用,但以此物质作为电极修饰剂的研究报道很少。利用电化学聚合法将铬黑T修饰到玻碳电极表面,得到聚铬黑T修饰电极。铬黑T在玻碳电极上的电化学聚合过程属于自由基引发电化学聚合过程。聚铬黑T修饰电极对亚硝酸盐的还原有较强的电催化作用,这种催化作用主要是由于聚铬黑T薄膜与带负电荷的亚硝酸盐离子的静电相互作用,导致亚硝酸盐离子富集在电极表面/溶液界面,从而提高检测的灵敏度。通过优化亚硝酸盐电化学响应的实验参数,该修饰电极可用于亚硝酸盐的安培检测,线性范围跨越6个数量级,检测限达到1.0×10-8mol/L。同时,该修饰电极制备简单,重现性和稳定性良好,可以连续使用两周而信号无明显降低。将该修饰电极用于泡菜中亚硝酸盐的测定,获得了满意的结果。
     4.聚谷氨酸修饰电极的制备及同时检测对苯二酚和邻苯二酚
     利用电化学聚合的方法制备得到聚谷氨酸修饰玻碳电极。AFM结果表明聚谷氨酸在玻碳电极表面上以类似纳米纤维状的形式存在,多个聚谷氨酸链凝聚呈现出聚合网状结构,这种结构有利于检测物与聚合物膜内带相反电荷离子的相互作用。该修饰电极对对苯二酚和邻苯二酚的电化学氧化还原显示出很高的催化能力,显著降低了二者的氧化电位,改善了二者的电化学可逆性,同时增强了二者的氧化还原峰电流。利用循环伏安和微分脉冲伏安技术,实现了对苯二酚和邻苯二酚的同时检测,并且具有较高的灵敏度。此外,我们将聚谷氨酸修饰电极用于实际废水中对苯二酚和邻苯二酚的测定,得到了满意的结果,有一定的潜在应用价值。
The aim of chemically modified electrodes (CMEs) is to carry out the molecular design on the electrode surface. In other words, to immobilize molecular, ion and polymer on the electrode surface and make the electrode specially chemical and electrochemical properties, so anticipant reactions can occur on its surface. CMEs make the electrode material abundant and enlarge its application in electrochemistry. Now, it has been of most active fields in electrochemistry and electroanalysis chemistry.
     This dissertation was concentrated on the use of various polymer materials and modification methods to prepare polymer modified electrodes and investigate their characterization and analytical application. The preparations of poly(amino black 10B) modified electrode, poly(eriochrome black T) modified electrode and poly(glutamic acid) modified electrode have been evaluated. Their micrographs, structure, properties and applications have been investigated by scanning electron microscopy (SEM), atomic force microscope (AFM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse votammetry (DPV) and amperometric detection (AD). The main points of this dissertation are summarized as follows:
     1. Determination of dopamine on a poly(amino black 10B)/Nafion modified electrode
     Amino black 10B is a weak acid dye with a large conjugate aroma ring, so it can be adsorbed physically on the surface of glass carbon electrode (GCE) byπ-πaction. But the capacity of physical adsorption is too hard to be controlled due to its poor adsorption and inherent unstable. To solve this problem, we prepared a modified electrode by electrochemical polymerization of amino black 10B on GCE, and covered by a film by Nafion. This poly(amino black 10B)/Nafion modified electrode is very sensitive and stable. The modification thickness can be controlled by electrochemical polymerization circles. The poly(amino black 10B) film was characterized by SEM, AFM and EIS. The electrode developed showed an excellent electrocatalytic ability towards dopamine oxidation. The redox peak current of dopamine increased linearly with the concentration in the range of 2.0×10-7~3.0×10-5 mol/L, and the detection limit (S/N=3) was 1.0×10-7 mol/L. Moreover, the modified electrode avoided the interference of ascorbic acid and exhibited good reproducibility. The modified electrode can be used for the determination of dopamine in the injections and serum with good recovery and reproducibility.
     2. Determination of vitamin B6 on a poly(amino black 10B) modified electrode
     A poly(amino black 10B) modified electrode was fabricated by electrochemical polymerization of amino black 10B on GCE. The modified electrode shows good electrocatalytic activity to the oxidation of vitamin B6. DPV and AD were developed for the direct measurement of vitamin B6 with high sensitivity (5.0×10-8 mol/L). The modified electrode has many advantages such as fast response, good reproducibility, low cost and fabrication simplicity. The practical application of this modified electrode was demonstrated with vitamin B6 drugs determination
     3. Determination of nitrite on a poly(eriochrome black T) modified electrode
     A poly(eriochrome black T) modified electrode was fabricated by electrochemical polymerization and was used to electrochemically determine nitrite. Due to the electrostatic interaction between the negatively-charged nitrite ions and poly(eriochrome black T) film, the poly(eriochrome black T) modified electrode exhibited enhanced electrocatalytic properties towards the reduction of nitrite, observing an improved peak current. The electron transfer coefficient is 0.735. The poly(eriochrome black T) modified electrode exhibited fast response towards nitrite with a detection limit of 1.0×10-8 mol/L and a linear range of 1.0×10-8~1.0×10-3 mol/L. The possible interferences from several common ions were tested. The developed modified electrode was also successfully applied to the determination of nitrite in pickle sample.
     4. Simultaneous determination of hydroquinone and catechol with poly(glutamic acid) modified electrode
     GCE was modified with poly(glutamic acid) films by electrochemical polymerization of glutamic acid monomer. Poly(glutamic acid) films showed good adherence to the electrode surface. AFM images showed a fibres polymeric network film, allowing a high electron transfer. The performance of the modified electrode was characterized by CV and EIS. Poly(glutamic acid) modified electrode showed an excellent electrocatalytic ability towards the redox of hydroquinone and catechol, and a decrease of the overpotential and the improvement of the redox peak current was observed. Hydroquinone and catechol could be simultaneously analyzed on the modified electrode by CV and DPV techniques. Moreover, the modified electrode exhibited good reproducibility and long-time stability. It was successfully used to analyze hydroquinone and catechol in waste water samples.
引文
[1]董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社,2003
    [2]Moses P R, Wier L, Murray R W. Chemically modified tin oxide electrode. Anal. Chem.,1975,47:1882-1886
    [3]Watkins B F, Behling J R, Kariv E, et al. Chiral electrode. J. Am. Chem. Soc.,1975,97:3549-3550
    [4]Untereker D E, Lennox J C, Wier L M, et al. Chemically modified electrodes:Part Ⅳ Evidence for formation of monolayers of bonded organosilane reagents. J. Electroanal. Chem.,1977,81(2):349-318.
    [5]Mark S W, Michael C P, Andrew B B, et al. Preparation of chemically derivatized platinum and gold electrode surfaces:synthesis, characterization, and surface attachment of trichlorosilylferrocene, (1,1'-ferroeenediyl)diehlorosilane and 1,1'-bis(triethoxysilyl)ferrocene. J. Am. Chem. Soc.,1978,100(23):7264-7271.
    [6]董绍俊.一种新型有序超薄有机膜--自组膜.化学通报,1995,10:1-18.
    [7]Li Y, Huang X, Chen Y, et al. Simultaneous determination of dopamine and serotonin by use of covalent modification of 5-hydroxytryptophan on glassy carbon electrode. Microchim Acta,2009,164:107-112
    [8]Lenhard J R, Murray R W. Chemically modified electrodes:Part Ⅶ. Covalent bonding of a reversible electrode reactant to Pt electrodes using an organosilane reagent. J. Electroanal. Chem.,1979,78:195
    [9]Fox M A, Nobs F J, Voynick T A. Covalent attachment of arenes to tin oxide (SnO2)-semiconductor electrodes. J. Am. Chem. Soc.,1980,102(12):4029
    [10]Fujihira M, Ohishi N, Osa T. Photocell using covalently-bound dyes on semiconductor surfaces. Nature,1977,268: 226-228
    [11]Wrighton M S. Surface functionalization of electrodes with molecular reagents. Sciences,1986,231:32-37
    [12]Shepard V R, Armstrong N R. Electrochemical and photoelectrochemical studies of copper and cobalt phthalocyanine-tin oxide electrodes. J. Phys. Chem.,1979,83(10):1268-1276
    [13]Millan K. M, Mikkelsen S R. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal. Chem.,1993,65(17):2317-2323
    [14]Yoon H C, Kim H S. Multilayered assembly of dendrimers with enzymes on gold:thickness-controlled biosensing interface. Anal. Chem.,2000,72(5):922-926
    [15]Barbier B, Pinson J, Desarmot G, et al. Electrochemical bonding of amines to carbon fiber surfaces toward improved carbon-epoxy composites. J. Electrochem. Soc.,1990,137:1757-1764
    [16]Rubinstein I, Steinberg S, Tor Y, et al. Ionic recognition and selective response in self-assembling monolayer membrane on electrodes. Nature,1988,332:426-429
    [17]Delamar M, Hitmi R, Pinson J, et al. Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J. Am. Chem. Soc.,1992,114:5883-5884
    [18]Andrieux C P, Gonzalez F, Saveant J M, Derivatization of carbon surfaces by anodic oxidation of arylacetates. Electrochemical manipulation of the grafted films. J. Am. Chem. Soc.,1997,119:4292-4300
    [19]Ingersoll D, Kulesza P J, Faulkner L R, Polyoxometalate-based layered composite films on electrodes. J. Electrochem. Soc.,1994,141:140-147
    [20]Jin G P, Lin X Q. The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine. Electrochem. Commun.,2004,6,454-460
    [21]Maeda H, Yamauchi Y, Hosoe M, et al. Direct covalent modification of glassy-carbon surfaces with 1-alkanols by electrochemical oxidation. Chem. & Pharm. Bull.,1994,42:1870-1873
    [22]Adenier A, Cabet-Deliry E, Chausse A, et al. Grafting of nitrophenyl groups on carbon and metallic surfaces without electrochemical induction. Chem. Mater.,2005,17:491-501
    [23]刘有芹,颜芸,沈含熙.化学修饰电极的研究及其分析应用.化学研究与应用,2006,18(4):337-343
    [24]Lane R F, Hubbard A T. Electrochemistry of chemisorbed molecules I. Reactants connected to electrodes through olefinic substituents. J. Phys. Chem.1973,77(11):1401
    [25]Bockris J O'M, Jeng K T. In-situ studies of adsorption of organic compounds on platinum electrodes. J. Electroanal. Chem.,1992,330:541
    [26]Brown A P, Anson F C. Electron transfer kinetics with both reactant and product attached to the electrode surface. J. Electroanal. Chem.,1978,92:133
    [27]Brown A P, Koval C, Anson F C. Illustrative electrochemical behavior of reactants irreversibly adsorbed on graphite electrode surfaces. J. Electroanal. Chem.,1976,72:379
    [28]Palecek E, Jelen F, Teifeiro C, et al. Biopolymer-modified electrodes in the voltammetric determination of nucleic acids and proteins at the submicrogram level. Anal. Chim. Acta,1993,273:175
    [29]Wang J, Cai X H, Rivas Q et al. DNA electrochemical biosensor for the detection of short DNA sequences related to human immunodeficiency virus. Anal.Chem.,1996,68(15):2629-2634
    [30]Palecek E, Fojta M. Differential pulsed voltammetric determination of RNA at the picomole level in the presence of DNA and nucleic acid components. Anal. Chem.,1994,66(9):1566-1571
    [31]Marraza Q Chianella I, Mascini M. Disposable DNA electrochemical sensor for hybridization detection. Biosens. Bioelectron.,1999,14(1):43-51
    [32]Moser I, Schalkhammer T, Pittner F, et al. Surface techniques for an electrochemical DNA biosensor. Biosens. Bioelectron.,1997,12(8):729-737
    [33]刘有芹,沈含熙.氯化血红素修饰玻碳电极的制备及其作用机理.分析化学,2004,32(1):41-45
    [34]Kolb D M. Advances in Electrochemistry and Electrochemical Engineering (Gerischer H, Tobias C W. Eds.). New York:John Wiley,1978,11:125
    [35]Sayed S M, Juttner K. Electrocatalysis of oxygen and hydrogen peroxide reduction by UPD of bismuth on poly-and mono-crystalline gold electrodes in acid solutions Electrochim Acta,1983,28:1635.
    [36]佘春兴,王小聪,任斌等.Pt—-Ru电极上的CH3OH吸附和氧化的电化学拉曼光谱研究.复旦学报(自然科学版),2002,41(3):280-285
    [37]王红森.毗啶吸附对Pt(111)电极上Cu欠电位沉积的影响.北京师范大学学报(自然科学版),2002,13(5):655-660
    [38]魏子栋,三木敦史,大森唯义等.甲醇在欠电位沉积Sn/Pt电极上催化氧化.物理化学学报,2002,18(12):1120-1124
    [39]Friedrich K A, Geyzers K P, Linke U, et al. CO adsorption and oxidation on a Pt(111) electrode modified by ruthenium deposition:an IR spectroscopic study. J. Electroanal. Chem.,1996,402:123
    [40]欧阳健明.LB膜原理与应用.广州:暨南大学出版社,1999
    [41]欧阳健明.LB膜材料及其应用.化学世界,2001(6):330-333
    [42]Ouynag J, Li L, Tai Z, et al. Organic electroluminescent devices with Langmuir-Blodgett films of an amphiphilic complex with an 8-hydroxyquinoline as an emitter. Chem.Commun.,1997:815-816
    [43]欧阳健明,郑文杰,黄宁兴等.8-羟基喹啉两亲配合物的LB膜及其电致发光器件研究.化学学报,1999,57:333-338
    [44]Ouyang J, Li C, Li Y, et al. Monolayer and Langmuir-Blodgett films of bilirubin dihexadecyl ester. Thin Solid Films, 1999,348:242-247
    [45]Munger Q Leblance R M, Zelent B, et al. Characterization of monolayers and Langmuir-Blodgett films of dry and wet chlorophyll. Thin Solid Films,1992,210-211:739-742
    [46]Maliszewskyj N C, Heiney P A, Jones D R, et al. Langmuir films of fullerene C60, fullerene epoxide C60O, and dihydofulleroid C61H2. Langmuir,1993,9:1439-1441
    [47]Lukes P J, Petty M C, Yarwood J. An infrared study of the incorporation of ion channel forming peptides into Langmuir-Blodgett films of phosphatidic acid. Langmuir.,1992,8:3043-3050
    [48]李薇,王海水,席时权等.酞氰LB膜气敏性的研究进展.化学通报.1996,11:5-9
    [49]Ouyang J, Zhang Z, Hunag C, et al. Properties of mixed monolayer and LB films of chiral amino acid porphyrin. Colloids Surf. A,2000,175:99-104
    [50]叶玉汉,肖玉方.1,3,6,11,13,18,28,31-八澳富勒烯-C60LB膜特性及导电性的研究.高等学校化学学报.1996,17:300-302
    [51]Laschewsky A, Ringsdorf H, Schmidt G, et al. Self-organization of Polymeric lipids with hydrophilic spacers in side groups and main chain:investigation in monolayers and multilayers. J. Am. Chem. Soc.,1987,109:788-796
    [52]Kuhn H, Mobius D, Bucher H, Physical Methods of Chemistry (Weissberger A, Rossiter B W. Eds.). New York: Wiley,1972, Ch.7
    [53]Moody G J, Saad B B, Thomas J D R. The development of polymer matrix membranes for ion-selective electrodes. Sel. Electrode Rev.,1988,10:71.
    [54]毕亚东,韩恩山,张西慧.LB膜技术的应用研究进展.化工进展,2002,21(12):894-902
    [55]柯善明,刘来君,唐波等.LB薄膜技术在尖端材料制备中的应用.材料导报,2005,19(1):6-20
    [56]华炳增,胡文云,陈衍珍等.硬脂酸镍L-B膜对甲醇的电催化氧化.电化学,1997,3(3):282-286
    [57]Fujihria M, Poosittisak S. Electrocatalysis by electrode posited Pt from PtCl62- Confined in a Langmuir-Blodgett film on a glassy carton electrode. Electroanal. Chem.1986,199(2):481-484
    [58]刘玉文,赵玉娥,王立波等.长脂肪碳链卟啉的合成及其LB膜的制备和气敏性质研究.高等学校化学学报,1997,18(5):682-684
    [59]董慧民,郑浩,王淑洁等.杯芳烃LB膜修饰电极及其识别性能.化学通报,2006,2,127-129
    [60]徐常龙,曹小华,柳闽生等.自组装单层膜的研究.江西师范大学学报(自然科学版),2009,33(2):170-174
    [61]杨生荣,任嗣利,张俊彦等,自组装单分子膜的结构及其自组装机理.高等学校化学学报.2010,22(3):470-476
    [62]Shipway A N, Willner I. Nanoparticles as structural and functional units in surface-confined architectures. Chem. Commun.,2001,2035-2045
    [63]Chailapakul O, Sun L, Xu C, et al. Interactions between organized, surface-confined monolayers and vapor-phase probe molecules.7. Comparison of self-assembling n-alkanethiol monolayers deposited on gold from liquid and vapor phases. J. Am. Chem. Soc.,1993,115:12459-12467
    [64]李景虹,程广金,董绍俊.自组装膜技术在电分析化学中的研究与应用.分析化学,1996,24(9):1093-1099
    [65]崔晓丽.十二烷基硫醇自组装膜膜电阻与过电位的关系.复旦大学学报(自然科学版),2002,41(3):339
    [66]薛中华.巯基卟啉自组装膜修饰电极的制备、表征及其电化学研究.[硕士学位论文].西北师范大学,2004
    [67]Turyan I, Mandler D. Selective determination of Cr(Ⅵ) by a self-assembled monolayer-based electrode. Anal. Chem.,1997,69:894-897
    [68]周翠凤,李红,李伟善.6-巯基嘌呤自组装膜的制备及其电化学行为表征.传感技术学报,2002(4):302-306
    [69]Fujii S, Akiba U, Fujihira M. A self-assembled monolayer of a disulfide with a pair of bicyclo[2.2.2]octane moieties on Au(111) investigated by non-contact atomic force microscopy. Appl. Sur. Sci.,2003,210:79-83
    [70]吴涛,张希.自组装超薄膜:从纳米层状构筑到功能组装.高等学校化学学报,2001,22(6):1057-1065
    [71]Ulman A. An Introduction to Ultrathin Films from Langmuir Blodgett to Self-Assembly. San Diego:Academic Press, 1991
    [72]廖文利.化学修饰电极的制备及其应用研究.[硕士学位论文].西南大学,2009
    [73]钟燕,周洁丹,刘英菊等.新型巯基化合物自组装膜修饰电极对铜离子的检测.分析测试学报,2009,28(9):1031-1034
    [74]胡文英,孙向英,何燕芳.铜铁氰自组装多层膜修饰电极的制备及性能.华侨大学学报(自然科学版),2008,29(2):30-35
    [75]孙长青,刘国晶,张鸿安.钒氧酞菁分子沉积自组膜电极的组装及其对肼的电催化研究.高等学校化学学报,1998,19(3):382
    [76]贾莉,雷秋芬,张修华等.邻氨基硫酚自组装膜修饰电极测定多巴胺.应用化学,2002,2:172-175
    [77]徐静娟,方惠群,陈洪渊.硫堇衍生化自组装膜修饰金电极的电化学性质及其对抗坏血酸的电催化氧化.高等学校化学学报,1997,5:706
    [78]孙乔玉,张校刚,李晓红等.溶剂对自组装单分子膜电化学行为的影响.高等学校化学学报,2001,10:1693
    [79]刘斌,孙向英,徐金瑞.含硼酸基的自组装膜对糖的电化学识别.分析化学,2004,32(5):601-605
    [80]方程,周性尧.自组装膜研究进展及其在传感器技术中的应用.分析科学学报,2003,2(19):81-85.
    [81]Jung S K, Wilson G S. Polymeric mercaptosilane-modified platinum electrodes for elimination of interferants in glucose biosensors. Anal. Chem.,1996,68:591.
    [82]孙灏,王洪恩.硫醇/金自组装膜上组装葡萄糖氧化酶及其应用.济宁医学院学报,1999,22(1):4-7.
    [83]Xu X H, Bard A J. Immobilization and hybridization of DNA on an aluminum(Ⅲ) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection. J. Am. Chem. Soc.,1995,117(9):2627-2631.
    [84]Wang H S, Huang D Q, Liu R M. Study on the electrochemical behavior epinephrine at a poly(3-methylthiophene)-modified of glassy carbon electrode. J. Electroanal. Chem.,2004,570:83-90
    [85]Miller L L, Mark M R. Immobilization and hybridization of DNA on an aluminum(Ⅲ) alkanebisphosphonate thin film with electrogenerated chemiluminescent. detection J. Am. Chem. Soc.,1978,100(2):639-640.
    [86]Daum P, Murray R W. Charge-transfer diffusion rates and activity relationships during oxidation and reduction of plasma-polymerized vinylferrocene films. J. Phys. Chem.,1981,85(4):389
    [87]Dicu D, Muresan L, Popescu I C. Modified electrodes with new phenothiazine derivatives for electrocatyltic oxidation of NADH. Electrochimica Acta,2000,45:3951-3957
    [88]Peerce P J, Bard A J. Polymer films on electrodes:Part Ⅲ. Digital simulation model for cyclic voltammetry of electroactive polymer film and electrochemistry of poly(vinylferrocene) on platinum. J. Electroanal. Chem.,1980,114: 89
    [89]蒋伟春.电化学聚合研究进展.上海化工,2004,3:32-35
    [90]孙元喜.导电聚合物膜修饰电极及其应用.武陵学刊,1997,18(3):40-46
    [91]于黄中,陈明光,贝承训等.导电聚苯胺的特性,应用及进展.高分子材料科学与工程,2003,19(4):18-26
    [92]Karyakin A A, Strakhovu A K, Yatsimirsky A K. Self-doped polyanilines electrochemically active in neutral and basic aqueous solutions:Electropolymerization of substituted anilines. J. Electroanal. Chem.,1994,371(1-2):259-265
    [93]马爱莲.聚邻苯二胺修饰电极的制备及性能的研究.[硕士学位论文].辽宁师范大学,2006
    [94]罗敏,李辉,曹旭妮等.Pt/PolyCuTAPc/Nafion修饰电极及其应用的研究.华东师范大学学报,2000,3:74-78
    [95]Carquigny S, Sanchez J B, Berger F,. et al. Ammonia gas sensor based on electrosynthesized polypyrrole films. Talanta,2009,78:199-206
    [96]Huang J X, Virji S, Weiller B H, et al. Polyaniline nanofibers:Facile synthesis and chemical sensors. J. Am. Chem. Soc.,2003,125(2):314-315
    [97]Wu L, McIntosh M, Zhang X, et al. Amperometric sensor for ethanol based on one-step electropolymerization of thionine-carbon nanofiber nanocomposite containing alcohol oxidase. Talanta,2007,74:387-392
    [98]Zhang Y Z, Zhao H, Yuan Z. Electrodeposition of rhein and its electrocatalytic activity toward hemoglobin reduction. Electroanalysis,2002,14(5):382-386
    [99]Zhang Y Z, Zhao H, Yuan Z. Preperation of poly(ferulic acid)glassy carbon modified electrode and its electrocatalytic oxidation of NADH. Chemical Journal of Chinese Universities,2003,24(10):1765-1769
    [100]靳桂英,张玉忠,杨周生.聚氨基磺酸修饰电极在抗坏血酸共存时测定肾上腺素.分析化学,2005,33(1):83-86
    [101]孙登明,顾海鹰,俞爱民等.聚碱性品红修饰电极的制备及应用.高等学校化学学报,1997,18(3):376-380
    [102]赵红,张玉忠,袁倬斌.多巴胺在聚异烟酸修饰玻碳电极上的电化学行为.药学学报,2002,37(6):454-457
    [103]冷宗周,胡效亚.阿米替林选择性铂丝涂膜电极的研究.药物分析杂志,1989,9(5):278-281
    [104]张晓敏,任春生,应敏.聚四氨基钻酞菁膜修饰电极对甲巯咪唑的电催化氧化.分析测试学报,2005,24(3):28-33
    [105]杨涛,焦奎,杨婕等.聚邻氨基酚/Ni2+修饰碳糊电极的制备及其对葡萄糖的电催化氧化.分析化学,2006,34(10):1415-1418
    [106]Liu H, Wang G, Chen D, et al. Fabrication of polythionine/NPAu/MWNTs modified electrode for simultaneous determination of adenine and guanine in DNA. Sensors and Actuators B,2008,128:414-421
    [107]Mao L Q, Yamamoto K. Glucose and choline on-line biosensors based on electropolymerized Meldola's blue. Talanta,2000,51(1):187-195
    [108]陈凌霞,李凤菊,谷如驹.聚合物膜修饰电极在分析化学中的应用.河南教育学院学报,2000,9(3):35-38
    [109]卢小泉,张焱,康敬万等.分析化学中的化学修饰碳糊电极.分析测试学报,2001,20(4):88-93
    [110]徐桂英,王凤平,唐丽娜.碳糊电极和化学修饰碳糊电极的制备及性能综述.化学研究,2008,19(3):108-112
    [111]郑若谷,陈亚胜,陈吉伟等.EDTA修饰碳糊电极测定铜离子.暨南大学学报,2009,30(1):89-91.
    [112]孙伟,韩军英,尚智美等.蛋白质的电化学分析研究进展.化学研究与应用,2005,17(2):151-153.
    [113]Zou Y D, Mo J Y. The 2.5th order differential voltammetric determination of phenol with a composite carbon paste/polyamide electrode. Anal Chim Acta,1997,353(1):71-78.
    [114]邹永德,王进,莫金垣等.用碳糊修饰电极测定氨基酸的伏安法研究Ⅱ.组氨酸在氧化铝修饰碳糊电极上的电化学行为.分析测试学报,1999,18(3):47-49.
    [115]Hu S S, Liu C C. Development of a hypoxanthine biosensor based on immobilized xanthine oxidase chemically modified electrode. Electroanalysis,1997,9(5):372-377.
    [116]樊雪梅,王书民,董文举.聚对氨基苯磺酸修饰电极测定对苯二酚.商洛学院学报,2009,23(2):46-48.
    [117]郑莉.洛哌丁胺在碳纳米管碳糊电极上的伏安行为及测定.分析测试学报,2009,28(1):93-95.
    [118]顾玲,李素敏,彭莉等.维生素E在碳糊电极上催化伏安法的研究.陕西科技大学学报,2008,26(3):68-71.
    [119]夏娇云,严规有.碳糊修饰电极吸附伏安法测定食品中的锑.分析试验室,2004,23(7):13-15.
    [120]黎国兰,李松,杨葵华等.CTAB/蒙脱石修饰碳糊电极伏安法测定废水中的苯酚.绵阳师范学院学报,2008,27(8):54-57.
    [121]李茂.循环伏安法在有机发光材料制备及分析中的应用.[博士学位论文].吉林大学,2007
    [122]王宁,丁克强,童汝亭等.席夫碱自组装单分子膜的电化学行为.物理化学学报,2002,18(9):846-849
    [123]曾鑫华.若干硒芳香杂环化合物的谱学、电化学和自组装膜.[硕士学位论文].暨南大学,2002
    [124]董慧民,郑浩,王淑洁等.杯芳烃LB膜修饰电极及其识别性能.化学通报,2006(2):127-129
    [125]Wan Q J, Yang N J, Zhang H L, et al. Erratum to "Voltammetric behavior of vitamin B2 on the gold electrode modified with a self-assembled monolayer of L-cysteine and its application for the determination of vitamin B2 using linear sweep stripping voltammetry" [Talanta 55 (2001) 459-467]. Talanta,2002,56(6):1167
    [126]Zhang H M, Zhou X L, Hui R T, et al. Studies of the electrochemical behavior of epinephrine at a homocysteine self-assembled electrode. Talanta,2002,56:1081-1088
    [127]田昭武.电化学研究方法.北京:科学出版社,1984:310-312
    [128]崔晓莉,江志裕.交流阻抗谱的表示及应用.上海师范大学学报(自然科学版),2001,30(4):53-61
    [129]Wang J, Zeng B Z, Fang C, Zhou X Y. Electrochemical characteristic of 2-mercaptobenzothiazole self-assembled monolayer on gold. Anal. Sci.,2000,16:457-461
    [130]孙乔玉,张校刚,李晓红等.溶剂对自组装单分子膜电化学行为的影响.高等学校化学学报,2001,22(10):1693-1696
    [131]丁克强,王庆飞,贾振斌等.Schiff碱在金电极上的自组装膜.电化学,2002,8(2):219-223
    [132]景蔚萱,蒋庄德,朱明智.用循环伏安法和交流阻抗法表征Au环微电极.中国科技论文在线.2009,4(8):587-591
    [133]Agnieszka Z, Pawel K, Zenon L. Electrochemical studies of blocking properties of solid tethered lipid membranes on gold. Bioelectrochemistry,2002,56:179-184
    [134]Gau J J, Lan E H, Dunn B, et al. A MEMS based amperometric detector for E. Coli bacteria using self-assembled monolayers. Biosensors and Bioelectronics,2001,16:745-755
    [135]董飒英,王洪仁,罗国安.自组装金电极的电化学测试及其FTIR和AFM分析.分析科学学报,2002,18(5):357-360
    [136]邓文礼,杨大本.硫醇在Au表面的SA膜的AFM观察.电子科技大学学报,1995,24(6):601-603
    [137]Sato F, Okui H, Akiba U, et al. A study of topographic effects on chemical force microscopy using adhesive force mapping. Ultramicroscopy,2003,97:303-314
    [138]陈挺,谢远武,董绍俊.染料修饰电极加速氧化还原蛋白质的电化学反应.电化学,1995,1(2):125-135
    [139]Bremle G, Persson B, Gorton L. An amperometric glucose electrode based on carbon paste, chemically modified with glucose dehydrogenase, nicotinamide adenine dinuclcotide, and a phenoxazine mediator, coated with a poly(ester sulfonic acid) cation exchanger. Electroanalysis,1991,3:77
    [140]Song S, Zhang W, Dong S. Electrocatalysis of polypyrrole-methylene blue film modified electrode for direct redox reaction of cytochrome c. Chin. Sci. Bill.,1990,35:1961
    [141]Adhikari B, Majumdar S. Polymers in sensor applications. Progress in Polymer Science,2004,29(7):699-766
    [142]Albery W J, Foulds A W, Hall K J, et al. Thionine coated electrode for photogalvanic cells. Nature,1979,282(5741): 793-797
    [143]Cosnier S, Innocent C, Moutet J C. Electrochemically controlled release of chemicals from redox-active polymer films. J Electroanal. Chem.,1994,375:233-241
    [144]崔敏慧,余学海.多功能性紫精聚合物.功能高分子学报,1997,10(2):281-288
    [145]孙登明,顾海鹰,俞爱民等.聚碱性品红修饰电极的制备及应用.高等学校化学学报,1997,18(3):376-380
    [146]汪云,周东美,陈刚等.亚甲紫的电化学聚合和亚硝酸根的电催化还原.高等学校化学学报,1997,18(6):864-868
    [147]Cai C X, Xue K H. Electrocatalysis of NADH oxidation with electropolymerized film of nile blue A. Analytica Chimica Acta,1997,343:67-69
    [148]Cai C X, Xue K H. Electrocatalytic oxidation of NADH at glassy carton electrodes modified with an electropolymerized film of nile blue A. Chinese Journal of Chemistry,2000,18(2):182-187
    [149]Cai C X, Xue K H. Electrochemical characterization of electropolymerized film of naphthol green B and its electrocatalytic activity toward NADH oxidation. Microchem J.,1998,58:197-208
    [150]孙元喜.聚中性红薄膜修饰电极的研制及应用.武陵学刊,1998,19(6):33-36
    [151]靳保辉,夏萍,杨冉等.聚亮甲酚蓝修饰碳纤维微电极及催化性能研究.郑州大学学报(自然科学版),2000,32(4):65-69
    [152]刘莉,吴宝璋,吴辉煌.麦尔多拉蓝的氧化电沉积及生成膜的电化学性质.厦门大学学报(自然科学版),2000,39(2):196-199
    [153]万其进,喻玖宏,王刚等.聚茜素红膜修饰电极控制电位扫描法分别测定多巴胺和抗坏血酸.高等学校化学学报,2000,21(11):1651-1654
    [154]汪振辉,张永花,周漱萍.聚吖啶橙修饰电极的电化学行为及其对肾上腺素的电催化性能.分析化学,2001,29(12):1384-1388
    [155]易求实,万其进,喻玖宏等.聚甲基红膜修饰电极的电化学性质及其对维生素B6的伏安测定.分析科学学报,2001,17(5):379-382
    [156]张岩.聚吡啰红Y修饰电极上多巴胺的电化学行为及其伏安法检测.平顶山师专学报,2001,16(4):15-17
    [157]袁倬斌,张玉忠,赵红.聚天青Ⅰ玻碳修饰电极对血红蛋白催化还原.分析化学,2001,29(11):1332-1335
    [158]邹欣平,喻玖宏,杨年俊等.聚酸性铬蓝K修饰电极的电化学性质及其对多巴胺的电催化氧化.湖北化工,2001(4):41-43
    [159]杨秋霞,李国宝,王雪琳.聚核黄素膜修饰电极的制备及催化作用.济南大学学报(自然科学版),2002,16(3):221-224
    [160]万其进,喻玖宏,杨年俊等.聚溴甲酚绿膜修饰电极示差脉冲溶出伏安法测定叶酸.分析科学学报,2002,18(2):174
    [161]焦奎,罗细亮,孙伟等.聚天青A膜修饰电极的电化学特性及其对亚硝酸根的电催化性能.分析测试学报,2002,21(3):4-6
    [162]Liu L F, Song Q V, Xoa P, et al. Simultaneously determining of dopamine and ascorbic acid at poly(methylene blue) coated carbon fiber microelectrodes. Journal of Changde Teachers University (Natural Science Edition),2002,14(3): 43-48
    [163]周谷珍,孙元喜,邓欢梅.聚结晶紫薄膜修饰电极的制备条件研究.湖南文理学院学报(自然科学版),2003,15(4):25-28
    [164]罗济文,李家洲,李家贵等.聚灿烂甲酚蓝修饰玻碳电极的制备及电化学性质.化学研究,2003,14(1):18-22
    [165]Selvaraju T, Ramaraj R. Simultaneous determination of ascorbic acid, dopamine and serotonin at poly(phenosafranine) modified electrode. Electrochem. Comm.,2003,5:667-672
    [166]Chen S M, Fa Y H. The electropolymerization and electrocatalytic properties of polymerized new fuchsin film modified electrodes. J Electroanal. Chem.,2003,553:63-75
    [167]孙登明,陈宁生,冷艳芳.聚甲基蓝修饰电极的制备及对多巴胺的测定.分析试验室,2004,23(5):41-43
    [168]靳桂英,张玉忠,杨周生.聚吖啶红修饰玻碳电极在抗坏血酸共存时测定肾上腺素.分析试验室,2004,23(4):1-4
    [169]Dempsey E, Diamond D, Collier A. Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film. Biosensors and Bioelectronics,2004,20:367-377.
    [170]袁军华,陈艳玲,王修中等.烟酰胺辅酶在聚甲苯胺蓝膜修饰的玻碳电极上的电催化氧化.分析化学,2004,32(1):53-55
    [171]Dong S, Chu Q, Study of the electrode process of hemoglobin at a polymerized azure A film electrode. Eletroanalysis,1993,5:135
    [172]Persson B. A chemically modified graphite electrode for electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide based on a phenothiazine derivative,3-β-naohthoyl-toluidine blue. J. Electroanal. Chem.,1990,287:61
    [173]Zhang W, Song S, Dong S. Heterogeneous electron transfer of cytochrome c facilitated by polypyrrole and methylene bule polypyrrole film modified electrode. J. Inorg. Biochem.,1990,40:189
    [174]Clark W M. Oxidation-Reduction potentials of organic systems. Baltimore, Wiliams and Wilkins,1960
    [175]张海丽,叶永康,徐斌.酸性铬蓝K固体石蜡碳糊修饰电极溶出伏安法测定痕量铅.分析化学,2000,28(2):194-196
    [176]周谷珍,陈望爱,孙元喜.聚中性红薄膜修饰电极测定盐酸环丙沙星含量.中国抗生素杂志,2007,32(5):305-307
    [177]张秋灵,邹华,常文贵.聚中性红修饰电极测定维生素C的方法研究.检测与分析,2007,10(11):33-36
    [178]王亚珍,邱红心.亚硝酸根离子在聚中性红膜修饰玻碳电极上的电化学行为.分析仪器,2008(4):23-27
    [179]林丽清,林新华,姚宏等.聚伊文思蓝修饰电极对多巴胺和抗坏血酸的电分离及同时测定,电化学,2007,13(3):329-333
    [180]姚宏,孙媛媛,林新华等.多巴胺在聚铬黑T修饰玻碳电极上的电化学行为及其测定.分析科学学报,2007,23(6):673-676
    [181]Yao H, Sun Y, Lin X, et al. Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid. Electrochimica Acta,2007,52:6165-6171
    [182]陈伟,罗红斌,林新华.聚溴酚蓝修饰玻碳电极的制备及电化学性质.电化学,2005,11(1):92-95
    [183]Kumar A, Lo P, Chen S. Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71. Biosensors and Bioelectronics,2008,24:518-523
    [184]Kumar A, Tang C, Chen S, Poly(4-amino-1-1'-azobenzene-3,4'-disulfonic acid) coated electrode for selective detection of dopamine from its interferences. Talanta,2008,74:860-866
    [185]马洁,武海,朱亚琦.以新亚甲蓝为介体的过氧化氢传感器的电化学行为研究.化学通报,2006(12):916-920
    [186]张旭麟.染料功能化碳纳米管修饰电极的构置及其电化学研究.[硕士学位论文].青岛大学,2007
    [187]Yang P, Wei W, Yang L. Simultaneous voltammetric determination of dihydroxybenzene isomers using a poly(acid chrome blue K)/carbon nanotube composite electrode. Microchim. Acta,2007,157:229-235.
    [188]Brust M, Walker M, Bethell D, et al. Self-diffusion of neon in water by 21 Ne NMR. J. Am. Soc. Chem. Commun., 1994,116:801-802
    [189]Ulman A. Formation and structure of self-assembled monolayers. Chem Rev.,1996,96:1533-1554.
    [190]徐肖邢.铜卟啉-L-半胱氨酸自组装复合膜修饰电极的制备及电化学性能研究.化学研究与应用,2004,16(5):632-636
    [191]王广凤,李茂国,阚显文等.纳米银/半胱氨酸修饰金电极的制备及对苯二酚的测定.应用化学,2005,22(2):168-173
    [192]马曾燕,李将渊,向伟.多巴胺在聚L-半胱氨酸/多壁碳纳米管修饰电极上的电化学行为及其伏安测定.应用化学,2009,26(2):224-228
    [193]Santos D P, Zanoni M V B, Bergamini M F, et al. Poly(glutamic acid) nanofibre modified glassy carbon electrode: characterization by atomic force microscopy, voltammetry and electrochemical impedance. Electrochimica Acta,2008, 53:3991-4000
    [194]万其进,杨年俊.L-半胱氨酸自组装膜电极上锌离子的电化学行为及分析应用.化学研究与应用,2008(4):78-83
    [195]王艳玲,刘海燕,张国荣.多巴胺在聚甘氨酸化学修饰电极上的催化氧化及其痕量测定.化学传感器,2002,42(1):44-51
    [196]李昌安,葛存旺,刘战辉等.戊二醛偶联组氨酸修饰金电极测定铜离子的研究.传感技术学报,2003,16(4):477-485
    [197]顾凯,朱俊杰,陈洪渊.血红蛋白在L-半胱氨酸微银修饰电极上的电化学行为.分析化学,1999,27(10):1172-1174
    [198]Liu A, Chen D, Lin C, et al. Application of cysteine monolayers for electrochemical determination of sub-ppb copper(Ⅱ). Anal. Chem.,1999,71(8):1549-1557
    [199]杨培慧,颜丽,汤绮娜等.L-半胱氨酸自组装膜电极对硒的电催化及分析应用.分析化学,2004,32(4):507-510
    [200]马玉荣,杨秋霞,李国宝等.甲醛在脯氨酸膜修饰电极上的电催化氧化.电化学,2002,8(2):207-212
    [201]Viana E, Pereir F, Zanoni M. Electrochemical reduction and determination of Cibacron Blue F3GA at poly-L-lysine modified glassy carbon electrode. Dyes and Pigments.2006,71:145-152
    [202]Luz R, Damos F, Oliveira A, et al. Voltammetric determination of 4-nitrophenol at a lithium tetracyanoethylenide (LiTCNE) modified glassy carbon electrode. Talanta,2004,64:935-942
    [203]孙登明,马伟,吴云.聚L-异白氨酸修饰电极的制备及对多巴胺的测定.应用化学,2006(11):1214-1217
    [204]梁克中,袁若,柴雅琴等.聚精氨酸修饰玻碳电极上多巴胺的电化学特性及其检测.化学研究与应用,2006,18(6):659-662
    [205]马心英,王朝霞.肾上腺素在聚L-半胱氨酸修饰玻碳电极上的电化学行为.分析试验室,2008,27(1):111-114
    [206]林祥钦,晋冠平,崔华.聚L-谷氨酸/石墨充蜡修饰电极测定多巴胺.分析化学,2002,30(3):71-275
    [207]邓湘辉,阚显文,尉艳等.二茂铁/L-半胱氨酸修饰电极的电化学行为及电催化性能.物理化学学报,2005,21(12):1399-1402
    [208]Li G, Chen L, Zhu J, et al. Histidine modified electrode and its application to the electrochemical studies of hemeproteins. Electroanalysis,1999,11(2):139-142
    [209]Song J, Yang J, Hu X. Electrochemical determination of estradiol using a poly(L-serine) film-modified electrode. J. Appl. Electrochem.,2008,38:833-836
    [210]Santos D, Bergamini M, Zanoni M. Voltammetric sensor for amoxicillin determination in human urine using polyglutamic acid/glutaraldehyde film. Sensors and Actuators B,2008,133:398-403
    [211]Pereira F, Fogg A, Ugo P, et al. Determination of iodide and idoxuridine at a glutaraldehyde-cross-linked polylysine modified glassy carbon electrode. Electroanalysis,2005,17(14):1309-1316
    [212]Wightman R M, May L J, Michael A C. Detection of dopamine dynamics in the brain. Anal. Chem.,1988,60: 769-779
    [213]Salem F B. Spectrophotometric and titrimetric determination of catecholamines. Talanta,1987,34(9):810-812
    [214]童裳伦,朱岩,郭丹等.离子色谱荧光检测法测定肾上腺素和多巴胺.分析化学,2001,29(10):1237
    [215]Guan C L, Ouyuang J, Li Q L, et al. Simultaneous determination of catecholamines by ion chromatography with direct conductivity detection. Talanta,2000,50(6):1197-1203
    [216]吴霞,童裳伦,苏本玉等.儿茶酚胺类物质荧光分析方法研究进展.分析化学,1999,2(9):82-84
    [217]Nikolaos T D, Antony C C, Constantinos E E. Flow injection chemiluminometric determination of epinephrine, norepinephrine, dopamine and L-dopa Analyst,1993,118 (6):627-632
    [218]Gonon F, Buda M, Cespuglio R, et al. In vivo electrochemical detection of catechols in the neostriatum of anaesthetized rats:dopamine or DOPAC? Nature,1980,286:902-904.
    [219]Zen J M, Hsu C T, Hsu Y L, et al. Voltammetric peak separation of dopamine from uric acid in the presence of ascorbic acid at greater than ambient solution temperatures. Anal. Chem.,2004,76:4251-4255
    [220]Zen J M, Chen P J. A selective voltammetric method for uric acid and dopamine detection using clay-modified electrodes. Anal. Chem.,1997,69:5087-5093
    [221]Gao Z Q, Huang H. Simultaneous determination of dopamine, uric acid and ascorbic acid at an ultrathin film modified gold electrode. Chem. Commun.,1998:2107-2108
    [222]Dayton M A, Ewing A G, Wightman R M. Response of microvoltammetric electrodes to homogeneous catalytic and slow heterogeneous charge-transfer reactions. Anal. Chem.,1980,52:2392-2396
    [223]Chen Y, Tan T C. Dopamine sensing and selectivity of Nafion-coated plant tissue powder sensors. Talanta,1995, 42(8):1181-1188
    [224]Maleki N, Safavi S, Tajabadi F. High-performance carbon composite electrode based on an ionic liquid as a binder. Anal. Chem.,2006,78(11):3820-3826
    [225]Huang P F, Wang L, Bai J Y, et al. Simultaneous electrochemical detection of dopamine and ascorbic acid at a poly(p-toluene sulfonic acid) modified electrode. Microchim Acta,2007,157:41-47
    [226]Rice M E, Nicholson C. Measurement of nanomolar dopamine diffusion using low-noise perfluorinated ionomer coated carbon fiber microelectrode and high-speed cyclic voltammetry. Anal. Chem.,1989,61:1805-1810
    [227]Capella P, Ghasemzadeh B, Mitchell K, et al. Nafion-coated carbon fiber electrodes for neurochemical studies in brain tissue. Electroanalysis,1990,2:175-182
    [228]Nagy G, Gerhardt G A, Oke A F, et al. Ion-exchange and transport of neurotransmitters in Nafion films on conventional and microelectrode surfaces. J. Electroanal. Chem.,1985,189:85-94
    [229]Chen Y, Tan T C. Dopamine sensing and selectivity of Nafion-coated plant tissue powder sensors. Talamta,1995, 42:1181-1188
    [230]Zen J M, Chen I L. Voltammetric determination of dopamine in the presence of ascorbic acid at a chemically modified electrode. Electroanalysis,1997,9:537-540
    [231]Chen S M, Chzo W Y. Simultaneous voltammetric detection of dopamine and ascorbic acid using didodecyldimethylammonium bromide (DDAB) film-modified electrodes. J Electroanal. Chem.,2006,587(2):226-234
    [232]Shahrokhian S, Mehrjardi H R Z. Cobalt salophen-modified carbon-paste electrode incorporating a cationic surfactant for simultaneous voltammetric detection of ascorbic acid and dopamine. Sens. Actuators B,2007,121(2): 530-537
    [233]Yang X U, Yuan R, Chen S. Selective detection of dopamine in the presence of high-concentration ascorbic acid using multi-wall carbon nanotubes-sodium dodecyl sulfate modified glassy carbon electrode. Journal of Southwest University (Natural Science Edition),2008,30(1):21-26
    [234]Zou X, Luo L, Ding Y. Chitosan incorporating cetyltrimethylammonium bromide modified glassy carbon electrode for simultaneous determination of ascorbic acid and dopamine. Electroanalysis,2007,19(17):1840-1844
    [235]Wang J. Carbon-nanotube based electrochemical biosensors:A review. Electroanalysis,2005,17:7-14
    [236]Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A,2003,253:337-358
    [237]Wildgoose G G, Banks C E, Leventis H C, et al. Chemically modified carbon nanotubes for use in electroanalysis. Microchim. Acta,2006,152:187-214
    [238]Yogeswaran U, Chen S M. Separation and concentration effect of f-MWCNTs on electrocatalytic response of ascorbic acid, dopamine and uric acid at f-MWCNTs incorporated with poly(neutral red) composite films. Electrochim. Acta,2007,52:5985-5996
    [239]Liu A H, Honma I, Zhou H S. Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy carbon electrode. Biosens. Bioelectron.,2007,23:74-80
    [240]Shahrokhian S, Zare-Mahriardi H R. Application of thionine-Nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid. Electrochim. Acta,2007,52:6310-6317
    [241]Zhang Y Z, Pan Y, Su S. A novel functionalized single-wall carbon nanotube modified electrode and its application in determination of dopamine and uric acid in the presence of high concentration of ascorbic acid. Electroanalysis, 2007,19:1695-1701
    [242]段连生,谢芬.多巴胺在碳纳米管粉末微电极上的伏安行为及分析应用.华中师范大学学报(自然科学版),2008,42(1):68-71
    [243]Liu Y, Huang J, Hou H, et al. Simultaneous determination of dopamine, ascorbic acid and uric acid with electrospun carbon nanofibers modified electrode. Electrochem. Commun.,2008,10:1431-1434
    [244]Huang J, Liu Y, Hou H, et al. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens. Bioelectron.,2008,24:632-637
    [245]邓培红,张军,黎拒难.多壁碳纳米管修饰碳黑微电极同时测定多巴胺和抗坏血酸.分析试验室,2009,28(1):92-95
    [246]石银涛,袁若,柴雅琴.多巴胺在聚硫堇和Nafion双层修饰玻碳电极上的电化学行为.分析试验室,2006,25(10):51-54
    [247]孙登明,马伟,吴云.聚L-异白氨酸修饰电极的制备及对多巴胺的测定.应用化学,2006,23(11):1211-1217
    [248]Li Y, Lin X. Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly(vinyl alcohol) covalently modified glassy carbon electrode. Sens. Actuators B,2006,115:134-139
    [249]Lin X, Kang G, Lu L. DNA/poly(p-aminobenzensulfonic acid) composite bilayer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid. Bioelectrochemistry,2007,70:235-244
    [250]Chen J, Zhang J, Lin X, et al. Electrocatalytic oxidation and determination of dopamine in the presence of ascorbic acid and uric acid at a poly(4-(2-pyridylazo)-resorcinol) modified glassy carbon electrode. Electroanalysis,2007,19: 612-615
    [251]Aguilar R, Dovila M, Elizalde M. Capability of a carbon-polyvinylchloride composite electrode for the detection of dopamine, ascorbic acid and uric acid. Electrochim. Acta,2004,49:851-859
    [252]Huang P, Wang L, Bai J. et al. Simultaneous electrochemical detection of dopamine and ascorbic acid at a poly(p-toluene sulfonic acid) modified electrode. Microchim. Acta,2007,157:41-47
    [253]Kumar S, Tang C, Chen S. Poly(4-amino-1-1'-azobenzene-3,4'-disulfonic acid) coated electrode for selective detection of dopamine from its interferences. Talanta,2008,74:860-866
    [254]林祥钦,康广凤,柴颖.Nafion/胆碱双层膜碳纤维电极探测小白鼠大脑内的多巴胺.分析化学,2008,36(2):157-161
    [255]Ensafi A, Taei M, Khayamian T. A differential pulse voltammetric method for simultaneous determination of ascorbic acid, dopamine, and uric acid using poly (3-(5-chloro-2-hydroxyphenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic acid) film modified glassy carbon electrode. Journal of Electroanalytical Chemistry,2009,633:212-220
    [256]Bauldreay J M, Archer M D. Dye-modified electrodes for photogalvanic cells. Electrochim. Acta,1983,28(11): 1515-1522
    [257]Albery W J, Foulds A W, Hall K J. Thionine coated eleetrode for photogalvanic cells. Nature,1979,282(5741): 793-797
    [258]Brett C, Gyorgy I, Vilmos K. Poly(methylene blue) modified electrode sensor for haemoglobin. Anal. Chim. Acta, 1999,385:119-123
    [259]A.A. Ensafi. Determination of ascorbic acid by electrocatalytic voltammetry with methylene blue. Anal. Lett.2003, 36(3):591-604
    [260]孙元喜,冶保献,周性尧.聚中性红膜修饰电极上神经递质的电化学行为及应用.分析化学,1998,26(5):506-510
    [261]Mazeikiene R, Balskus K, Eicher-Lorka O, et al. Raman spectroelectrochemical study of electrode processes at Neutral red and poly(Neutral red) modified electrodes. Vibrational Spectroscopy,2009,51:238-247
    [262]汪云,周东美,陈刚等.亚甲紫的电化学聚合和亚硝酸根的电催化还原.高等学校化学学报,1997,18(6):864-868
    [263]Wang C, Wang F, Li C, et al. Voltammetric sensor for tinidazole based on poly(carmine) film-modified electrode and its application. Journal of Pharmaceutical and Biomedical Analysis,2006,41:1396-1400
    [264]王宗花,张旭麟,张菲菲等.聚茜素红功能化碳纳米管修饰电极对多巴胺和抗坏血酸的电化学研究.分析试验室,2007,26(10):17-20
    [265]Yao H, Sun Y, Lin X, et al. Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid. Electrochim. Acta,2007,52:6165-6171
    [266]Zhang Y, Zhuang H. Poly (acridine orange) film modified electrode for the determination 1-naphthol in the presence of 2-naphthol. Electrochimica Acta,2009,54:7364-7369
    [267]Li J, Chi Y. Determination of carbendazim with multiwalled carbon nanotubes-polymeric methyl red film modified electrode. Pesticide Biochemistry and Physiology,2009,93:101-104
    [268]Kumar S, Lo P, Chen S. Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71. Biosensors and Bioelectronics,2008,24:518-523
    [269]孙元喜,冶保献,周性尧.聚中性红膜修饰电极上神经递质的电化学行为及应用.分析化学,1998,26(5):506-510
    [270]孙康,项永福.Nafion膜固定的麦尔多拉蓝为介体的过氧化氢、葡萄糖和乳糖生物传感器.分析测试学报,2003,22(2):43-47
    [271]马永钧,付周周,任小娜等.2,4-二硝基苯酚在类普鲁士蓝修饰电极上的电化学行为及分析应用研究.分析化学,2008,36(2):241-244
    [272]吴辉煌,蚁良东,周绍民.二氢辅酶的电催化氧化:Ⅰ:α-萘甲酰尼罗蓝修饰电极性能研究.化学学报,1990,48(1):33-37
    [273]Persson B, Gorton L. A comparative study of some 3,7-diaminophenoxazine derivatives and related compounds for electrocatalytic oxidation ofNADH. J Electroanal. Chem.,1990,292:115-138
    [274]Karyakin Arkady A, Karyakin Elena E, Schuhmann Wolfgang, et al. New amperometric dehydrogenase electrodes based on electrocatalytic NADH-oxidation at poly (methylene blue)-modified electrodes. Electroanalysis,1994,6(10): 821-829
    [275]Yao H, Sun Y, Lin X, et al. Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid. Electrochim. Acta,2007,52(10):6165-6171
    [276]马伟,孙登明.聚L-精氨酸修饰电极存在下同时测定多巴胺和肾上腺素.分析化学,2007,35(1):66-70
    [277]梁克中,袁若,柴雅琴等.聚精氨酸修饰玻碳电极上多巴胺的电化学特性及其检测.化学研究与应用,2006,18(6):659-662
    [278]Zhao G, Li M, Li M. Differential pulse voltammetric determination of dopamine with the coexistence of ascorbic acid on boron-doped diamond surface. Central European Journal of Chemistry,2007,5(4):1114-1123
    [279]Li Y, Huang X, Chen Y, et al. Simultaneous determination of dopamine and serotonin by use of covalent modification of 5-hydroxytryptophan on glassy carbon electrode. Microchim Acta,2009,164:107-112
    [280]Gorton L, Johansson G, Torstensson A. A kinetic study of the reaction between dihydronicotinamide adenine dinucleotide (NADH) and an electrode modified by adsorption of 1,2-benzophenoxazine-7-one. J Electroanal. Chem, 1985,196(1):81-92
    [281]Gorton L, Torstensson A. Jaegfeld H, et al. Electrocatalytic oxidation of reduced nicotinamide coenzymes by graphite electrodes modified with an adsorbed phenoxazinium salt, meldola blue. J Electroanal. Chem,1984,161(1): 103-120
    [282]Tryfiates G P, Gannett P M, Bishop R E, P. K. Shastri, et al. Vitamin B6 and cancer:synthesis and occurrence of adenosine-N6-diethylthioether-N-pyridoximine-5'-phosphate, a circulating human tumor marker. Cancer Res.1996, 56(16):3670-3677
    [283]Salhany J M, Stevenson M. Hypothesis:potential utility of pyridoxal 5'-phosphate (vitamin B6) and levamisole in immune modulation and HIV-1 infection. AIDS Patient Care and STDs,1996,10(6):353-356
    [284]P. J. Van Niekerk, in Macrae R HPLC in Food Analysis.2nd Ed. Academic Press, Reading,1988
    [285]Nepota A J, Dmiani P C, OliVieri A C. Chemometrics assisted spectroscopic determination of vitamin B6, vitamin B12 and dexamethasone in injectables. J. Pharm. Biomed. Anal.,2003,31(4):621-627
    [286]印春生,黄道昌,吴孔导等.函数连接型神经网络应用于维生素B族四组分同时测定.分析科学学报,1999,15(5):358
    [287]中华人民共和国卫生部药典委员会.中华人民共和国药典[M].北京:化学工业出版社,2005:847.
    [288]El-Gindy A, El-Yazby F, Mostafa A. et al. HPLC and chemometric methods for the simultaneous determination of cyproheptadine hydrochloride, multivitamins, and sorbic acid. J. Phann. Biomed. Anal.,2004,35(4):703-713.
    [289]Gatti R, Gioia M G, Cavrini V. Determination of Cinchona alkaloids and Vitamin B6 by high-performance liquid chromatography with fluorescence detection. Anal. Chim. Acta,2004,512(1):85-91
    [290]李少旦,彭卫芳.反相高效液相色谱法同时测定维生素B6、烟酰胺和泛酸钙.理化检验-化学分册A,2009,45(7):800-802
    [291]Alwarthan A A, Aly F A. Chemiluminescent determination of pyridoxine hydrochloride in pharmaceutical samples using flow injection. Talanta,1998,45(6):1131-1138
    [292]Canada M J A, Reguera M I P, Diaz A.M. Selective determination of pyridoxine in the presence of hydrosoluble vitamins using a continuous-flow solid phase sensing device with UV detection. Int. J. Pharm.,2000,202:113 120
    [293]Escander G, Bystol A, Campiglia A. Continuous shipboard determination of Fe(II) in polar waters using flow injection analysis with chemiluminescence detection. Anal. Chim. Acta,2002,466(2):273-283
    [294]El-Gindy A. Spectrophotometric and LC determination of two binary mixtures containing pyridoxine hydrochloride. J. Pharm. Biomed. Anal.,2003,32(2):277-286
    [295]Jin W, Zhang J. Monitoring pyridoxine by capillary zone electrophoresis with electrochemical detection. Electroanalysis,2000,12(6):465-467
    [296]Schreiner M, Razzazi E, Lui W. Determination of water-soluble vitamins in soft drinks and vitamin supplements using capillary electrophoresis. Nahrung/Food,2003,47(4):243-247
    [297]Hashmi M H, Hashmi M U H. Assay of vitamins in pharmaceutical preparations. Wiley, London,1973, p.188
    [298]Herna'ndez S R, Ribero G G, Goicoechea H C. Enhanced application of square wave voltammetry with glassy carbon electrode coupled to multivariate calibration tools for the determination of B6 and B12 vitamins in pharmaceutical preparations. Talanta,2003,61:743-753
    [299]Teixeira M F S, Marino G, Dockal E R, et al. Voltammetric determination of pyridoxine (Vitamin B6) at a carbon paste electrode modified with vanadyl(Ⅳ)-Salen complex. Anal. Chim. Acta,2004,508(1):79-85
    [300]Qu W, Wu K, Hu S. Voltammetric determination of pyridoxine (Vitamin B6) by use of a chemically-modified glassy carbon electrode. J. Pharm. Biomed. Anal.,2004,36:631-635
    [301]Soderhjelm P, Lindquist J. Voltammetric determination of pyridoxine by use of a carbon paste electrode. Analyst, 1975,100:349-354
    [302]Hu Q, Zhou T, Zhang L, et al. Separation and determination of three water-soluble vitamins in pharmaceutical preparations and food by micellar electrokinetic chromatography with amperometric electrochemical detection. Anal. Chim. Acta,2001,437:123-129
    [303]Chen G, Ding X, Cao Z, et al. Determination of melatonin and pyridoxine in pharmaceutical preparations for health-caring purposes by capillary electrophoresis with electrochemical detection. Anal. Chim. Acta,2000,408: 249-256
    [304]Vaze V, Srivastava A. Determination of pyridoxine hydrochloride in pharmaceutical preparations by calixarene based potentiometric sensor. J. Pharm. Biomed. Anal.,2008,47:177-182
    [305]Agustin G Crevillen, Martin Pumera, Maria Cristina Gonzalez, et al. Carbon nanotube disposable detectors in microchip capillary electrophoresis for water-soluble vitamin determination:Analytical possibilities in pharmaceutical quality control. Electrophoresis,2008,29:2997-3004
    [306]Ashok M, Prasad A, Reddy P, et al. Ru(Ⅲ)-catalyzed oxidation of pyridoxine and albuterol in pharm.aceuticals. Spectrochimica Acta Part A,2009,72:204-208
    [307]Tan L, Xie Q, Yao S. Electrochemical and spectroelectrochemical studies on pyridoxine hydrochloride using a poly(methylene blue) modified electrode. Electroanalysis,2004,16(19):1592-1597
    [308]Teixeira M F S, Segnini A, Moraes F C, et al. Determination of vitamin B6 (pyridoxine) in pharmaceutical preparations by cyclic voltammetry at a copper(Ⅱ) hexacyanoferrate(Ⅲ) modified carbon paste electrode. J. Brazil.' Chem. Soc.,2003,14(2):316-321.
    [309]Pournaghi-Azar M H, Dastangoo H, Ziaei M. Electrocatalytic oxidation of pyridoxine (vitamin B6) on aluminum electrode modified by metallic palladium particles/iron (Ⅲ) hexacyanoferrate (Ⅱ) film. J. Solid State Electrochem., 2007,11:1221-1227
    [310]Liang Tan, Qingji Xie, Shouzhuo Yao, Electrochemical and spectroelectrochemical studies on pyridoxine hydrochloride using a poly(methylene blue) modified electrode. Electroanalysis,2004,16(19):1592-1597
    [311]易求实,万其进,喻玖宏等.聚甲基红膜修饰电极的电化学性质及其对盐酸吡哆辛的伏安测定.分析科学学报,2001,17(5):379-382
    [312]Guo Y Z, Guadalupe A R, Resto O. Chemically derived prussian blue sol-gel composite thin films. Chem. Mater., 199911(1):135-140
    [313]Pyrasch M, Tieke B. Electro- and photoresponsive films of prussian blue prepared upon multiple sequential adsorption. Langmuir,2001,17(24):7706-7709
    [314]Millward R C, Madden C E, Sutherland I. Directed assembly of multilayers—the case of Prussian Blue. Chem. Commun,2001,19:1994-1995
    [315]Razmi H, Mohammad-Rezaei R. Flow injection amperometric determination of pyridoxine at a Prussian blue nanoparticle-modified carbon ceramic electrode. Electrochimica Acta,2010,55(5):1814-1819
    [316]Dong S, Chu Q, Study of the electrode process of hemoglobin at a polymerized azure A film electrode. Electroanalysis,1993,5:135
    [317]Dong S, Chu Q, Study on electrode process of myoglobin at a polymerized toluidine blue film electrode. Chin. J. Chem.,1993,11:12
    [318]董绍俊,褚庆辉.肌红蛋白在聚天青A薄膜修饰电极上电极过程的研究.化学学报,1992,50:589
    [319]Albery W J, Foulds AM, Hall K J, et al. The thionine-coated electrode for photogalvanic cells. J. Electrochem. Soc. 1980,127:654
    [320]Torstensson A, Gorton L. Catalytic oxidation of NADH by surface-modified graphite electrode. J. Electroanal. Chem.,1981,130:199
    [321]Engstrom R C. Electrochemical pretreatment of glassy carbon electrodes. Anal Chem.,1982,54:2310-2314
    [322]Poon M, McCreery R L. In situ laser activation of glassy carbon electrodes. Anal Chem.,1986,58:2745-2750
    [323]Martell A E, Smith R M. Critical Stability Constants, Vol.6, Plenum Press, New York,1989, p.478
    [324]Li X, Zhang Q, Lian H, et al. Separation of three water-soluble vitamins by poly(dimethylsiloxane) microchannel electrophoresis with electrochemical detection. J. Sep. Sci.,2007,30:2320-2325
    [325]罗雪华,蔡秀娟.紫外分光光度法测定蔬菜硝酸盐含量.华南热带农业大学学报,2004,1:15-18
    [326]郭金全,李富兰.亚硝酸盐检测方法研究进展.当代化工,2009,38(5):546-549
    [327]Jamshid L M, Mohammad H. Spectrophotometric determination of nitrite based on its catalytic effect on the oxidation of carminic acid by bromate. Talanta,1998,46(6):1379-1386
    [328]王瑜.动力学催化光度法测定痕量亚硝酸根.理化检验:化学分册,2005,41(8):561-562
    [329]Mikuska P, Vecera Z. Simultaneous determination of nitrite and nitrate in water by chemiluminescent flow-injection analysis. Anal. Chim. Acta,2003,495:225-232
    [330]姜华,何荣桓,修明磊等.反相离子对色谱法同时测定水中的硝酸根和亚硝酸根.分析化学,2001,29(7):867-867
    [331]张秋菊,崔世勇,姜丽华等.反相高效液相色谱法同时测定酱腌菜中亚硝酸盐和硝酸盐.中国卫生检验杂志,2008,7:85-86
    [332]张新智.离子色谱法同时测定苹果汁中的亚硝酸盐、硝酸盐和硫酸盐.检验检疫科学,2008,1(15):34-36
    [333]Szoko E, Tabi T, Halasz A S, et al. High sensitivity analysis of nitrite and nitrate in biological samples by capillary zone electrophoresis with transient isotachophoretic sample stacking. J. Chromatogr. A,2004,1051:177-183
    [334].秦汉明,王瑞敏.用硝酸根电极同时测定硝酸根和亚硝酸根.江汉大学学报,2000,17(3):1-3
    [335]'Zen J M, Kumar A S, Wang H F. A dual electrochemical sensor for nitrite and nitric oxide. Analyst,2000,125: 2169-2172;
    [336]王亚珍,邱红心.亚硝酸根离子在聚中性红膜修饰玻碳电极上的电化学行为.分析仪器,2008,4:23-27
    [337]Wang S, Yin Y, Lin X. Cooperative effect of Pt nanoparticles and Fe (Ⅲ) in the electrocatalytic oxidation of nitrite. Electrochem. Commun.,2004,6:259-262
    [338]Zhao K, Song H, Zhuang S, et al. Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes. Electrochemistry Communications,2007,9:65-70
    [339]朱小红.电聚合烟酰胺构建新型亚硝酸盐电化学传感器.合肥师范学院学报,2009,27(6):73-75
    [340]Lin C Y, Vasantha V S, Ho K C. Detection of nitrite using poly(3,4-ethylenedioxythiophene) modified SPCEs. Sensors and Actuators B,2009,140:51-57
    [341]杨春海,刘涛,张升晖.L-半胱氨酸聚合膜亚硝酸盐安培传感器的制备及在食品检测中的应用.食品科学,2009,30(4):158-161
    [342]刘赵荣,王玉春,弓巧娟.电化学掺铜(Ⅱ)类普鲁士蓝膜修饰电极的制备及其对亚硝酸根的测定.分析化学,2010,38(7):1040-1043
    [343]Bard A J, Faulkner L R. Electrochemical methods, fundamentals and applications.2nd edition, John Wiley & Sons, New York,2001
    [344]Guidelli R. Voltammetric behavior of nitrite ion on platinum in natural and weakly acidic media. Anal. Chem.,1972, 44:745-755
    [345]Almeida M G, Silveira C M, Moura J J G. Biosensing nitrite using the system nitrite reductase/Nafion/methyl viologen-A voltammetric study. Biosens. Bioelectron.,2007,22:2485-2492
    [346]Zhao Y D, Zhang W D, Luo Q M, et al. The oxidation and reduction behavior of nitrite at carbon nanotube powder microelectrodes. Microchem. J.,2003,75:189-198
    [347]Tang Q Y, Luo X X, Wen R M. Construction of a heteropolyanion-containing polypyrrole/carbon nanotube modified electrode and its electrocatalytic property. Anal. Lett.,2005,38:1445-1456
    [348]Jian L Y, Wang R X, Li X M, et al. Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochem. Commun.,2005,7:597-601
    [349]宋诗稳,于浩,刘珍叶等.聚吡咯/亚铁氰化钾/碳纳米管修饰电极检测亚硝酸根.分析试验室,2010,29(4):64-67
    [350]Terashima C, Rao T N, Sarada B V, et al. Electrochemical oxidation of chlorophenols at a boron-doped diamond electrode and their determination by high-performance liquid chromatography with amperometric detection. Anal. Chem.,2002,74(4):895-902
    [351]Xiao W, Xiao D. Aminopyrene functionalized mesoporous silica for the selective determination of resorcinol. Talanta,2007,72(4):1288-1292
    [352]Adams R N. Probing brain chemistry with electroanalytical techniques. Anal. Chem.,1976,48:1126A-1138A
    [353]Senior S Z, Mans L L, VanGuilder H D, et al. Catecholase activity associated with copper-Sl00B. Biochemistry, 2003,42:4392-4397
    [354]Russell I M, Burton S G. Development and demonstration of an immobilised-polyphenol oxidase bioprobe for the detection of phenolic pollutants in water. Anal. Chim. Acta,1999,389:161-170
    [355]Pistonesi M F, Di Nezio M S, Centurion M E, et al. Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta 2006,69(5):1265-1268
    [356]缪进康,王佩芳.照相药液分析化学.北京:中国电影出版社,1981,93-95
    [357]Corominas B G T, CatalaIcardo M, Zamora L L, et al. A tandem-flow assembly for the chemiluminometric determination of hydroquinone. Talanta,2004,64(3):618-625
    [358]李淮芬,谢成根,宗佳佳.同步荧光法同时测定苯二酚中邻苯二酚和对苯二酚.冶金分析,2009,29(9):31-35
    [359]孟昭仁,刘欣茹,示波极谱法测定显影液中米吐尔和对苯二酚含量.分析科学学报,2000,16(4):314-316.
    [360]Penner N A, Nesterenko P N. Simultaneous determination of dihydroxybenzenes, aminophenols and phenylenediamines in hair dyes by high-performance liquid chromatography on hypercross-linked polystyrene. Analyst,2000,125:1249-1254
    [361]Yao L F, He H B, Feng Y Q, et al. HPLC separation of positional isomers on a dodecylamine-N, N-dimethylenephosphonic acid modified zirconia stationary phase. Talanta,2004,64(1):244-251.
    [362]Lin C H, Sheu J Y, Wu H L, et al. Determination of hydroquinone in cosmetic emulsion using microdialysis sampling coupled with high-performance liquid chromatography. J. Pharm. Biomed. Anal.2005,38:414-419
    [363]黄少鹏,徐金瑞,王琼.薄层色谱法同时测定邻苯二酚、间苯二酚和对苯二酚异构体.分析化学,1999,27(3):331-333
    [364]Pranaityte B, PadarauskasA. Micellar electrokinetic chromatography at low pH with polyelectrolyte-coated capillaries. J. Chrom atogr. A,2004,1042:197-202
    [365]Allen D, Rassi Z E. Capillary electrochromatography with monolithic silica columns:Ⅲ. Preparation of hydrophilic silica monoliths having surface-bound cyano groups:chromatographic characterization and application to the separation of carbohydrates, nucleosides, nucleic acid bases and other neutral polar species. J. Chromatogr. A,2004, 1029:239-247
    [366]Pranaityte B, PadarauskasA, DikCius A, et al. Rapid capillary electrophoretic determination of glutaraldehyde in photographic developers using a cationic polymer coating. Anal. Chim. Acta,2004,507(2):185-190
    [367]Xie T, Liu Q, Shi Y, et al. Simultaneous determination of positional isomers of benzenediols by capillary zone electrophoresis with square wave amperometric detection. J. Chromatogr. A,2006,1109:317-321
    [368]Harrison I, Leader R U, Higgo J J, et al. Determination of organic pollutants in small samples of groundwaters by liquid-liquid extraction and capillary gas chromatography. J. Chromatogr. A,1994,688:181-188
    [369]Wang S P, LeeW T. Determination of benzophenones in a cosmetic matrix by supercritical fluid extraction and capillary electrophoresis. J. Chromatogr. A,2003,987:269-275
    [370]何亚明,张维成,王志茹.测酚用的酪氨酸酶媒体玻碳电极的研制.分析测试学报,1999,18(4):76-78
    [371]高孟姣,应太林,漆德瑶.辣根过氧化氢酶电极的研究.分析试验室,2000,20(1):55-57
    [372]Rogers K R, Becker J Y, Cembrano J, et al. Viscosity and binder composition effects on tyrosinase based carbon paste electrode for detection of phenol and catechol. Talanta,2001,54(6):1059-1065
    [373]Liu S Q, Yu J H, J u H X. Renewable phenol biosensor based on a tyrosinase colloidal gold modified carbon paste electrode. J. Electroanal Chem.,2003,540(2):61-67
    [374]Mailley P, Cummings E A, Mailley S, et al. Amperometric detection of phenolic compounds by polypyrrole based composite carbon paste electrodes. Bioelectrochem.,2004,63(1):291-296
    [375]Zen J M, Chung H H, Kumar A S. Selective detection of o-diphenols on copper-plated screen-printed electrodes. Anal. Chem.,2002,74(5):1202-1206
    [376]Ding Y P, Liu W L, Wu Q S, et al. Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry. J. Electroanal. Chem.,2005,575:275-280
    [377]Qi H, Zhang C. Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis,2005,17(10):832-838
    [378]Wang L, Huang P, Bai J, et al. Simultaneous electrochemical determination of phenol isomers in binary mixtures at a poly(phenylalanine) modified glassy carbon electrode. Int. J. Electrochem. Sci.2006,1(8):403-413
    [379]Peng J, Gao Z N. Influence of micelles on the electrochemical behaviors of catechol and hydroquinone and their simultaneous determination. Anal. Bioanal. Chem.2006,384:1525-1532
    [380]Wang L, Huang P, Bai J, et al. Direct simultaneous electrochemical determination of hydroquinone and catechol at a poly(glutamic acid) modified glassy carbon electrode. Int. J. Electrochem. Sci.2007,2:123-132
    [381]Lei Y, Zhao G, Liu M, et al. Simple and feasible simultaneous determination of three phenolic pollutants on boron-doped diamond film electrode. Electroanalysis,2007,19(18):1933-1938
    [382]Kim M A, Lee W Y. Amperometric phenol biosensor based on sol-gel silicate/Nafion composite film. Anal. Chim. Acta,2003,479(2):143-150
    [383]Aziz M A, Selvaraju T, Yang H. Selective determination of catechol in the presence of hydroquinone at bare indium tin oxide electrodes via peak-potential separation and redox cycling by hydrazine. Electroanalysis,2007,19:1543-1546
    [384]Liu W, Wang X, Wu Q, et al. A facile and fast electrochemical method for the simultaneous determination of o-dihydroxybenzene and p-dihydroxybenzene using a surfactant. J. Anal. Chem.,2009,64:54-58
    [385]Frenzel W, Oleksy-Frenzel J. Spectrophotmetric determination of phenolic compounds by flow-injection analysis. Anal. Chim. Acta,1992,261:253-259
    [386]Zhao C, Song J, Zhang J. Determination of total phenols in environmental wastewater by flow-injection analysis with a biamperometric detector. Anal. Bioanal. Chem.,2002,374(3):498-504
    [387]Gutes A, Cespedes F, Al egret S, et al. Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis. Biosens. Bioelectron.,2005,20:1668-1673
    [388]Carvalho R M, Mello C, Kubota L T. Simultaneous determination of phenol isomers in binary mixtures by differential pulse voltammetry using carbon fibre electrode and neural network with pruning as a multivariate calibration tool. Anal. Chim. Acta,2000,420:109-121
    [389]杜丹,王升富,黄春保.L-半胱氨酸修饰金电极对邻苯二酚和对苯二酚的电催化及分析应用.分析测试学,2001,20(5):18-20
    [390]蔡火操,杜丹,孙亚楠等.L-半胱氨酸自组装膜电极的表征及其对对苯二酚的差分脉冲伏安法测定.分析科学学报,2002,18(2):133-136
    [391]Shaidarova L G, Gedmina A V, Chelnokova I A, et al. Electrocatalytic oxidation of hydroquinone and pyrocatechol at an electrode modified with a polyvinyl pyridine film with electrodeposited rhodium and its use in the analysis of pharmaceuticals. J. Anal Chem.,2004,59:1025
    [392]Qi H, Zhang C. Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis,2005,17:832-828
    [393]Peng J, Gao Z. Influence of micelles on the electrochemical behaviors of catechol and hydroquinone and their simultaneous determination. Anal. Bioanal. Chem.,2006,384:1525-1532
    [394]孙进高,王广凤,焦守峰等.纳米La(OH)3修饰电极对邻苯二酚和对苯二酚的同时测定.分析化学,2007,35:335-339
    [395]Wang L, Huang P, Bai J, et al. Covalent modification of a glassy carbon electrode with penicillamine for simultaneous determination of hydroquinone and catechol. Microchim. Acta,2007,158:151-157
    [396]Ghanem M A. Electrocatalytic activity and simultaneous determination of catechol and hydroquinone at mesoporous platinum electrode. Electrochem. Commun.,2007,9:2501-2506
    [397]徐白,张旭志,焦奎等.三种酚在碳纳米管修饰电极上的电催化氧化.青岛科技大学学报(自然科学版),2007,28(3):189-192
    [398]张海江,王春燕,黄建设等.钯/碳纳米纤维复合材料修饰电极同时电化学检测邻苯二酚和对苯二酚.2009,37(11):1622-1626
    [399]Yu J, Du W, Zhao F, et al. High sensitive simultaneous determination of catechol and hydroquinone at mesoporous carbon CMK-3 electrode in comparison with multi-walled carbon nanotubes and vulcan XC-72 carbon electrodes. Electrochim. Acta,2009,54:984-988
    [400]Han L, Zhang X. Simultaneous voltammetry determination of dihydroxybenzene isomers by nanogold modified electrode. Electroanalysis,2009,21:124-129
    [401]古练权,许家喜,段玉峰.生物化学.北京:高等教育出版,2000,33
    [402]Richard A, Margaritis A. Poly(glutamic acid) for biomedical application. Crit. Rev. Biotechnol,2001,21:219-232
    [403]Yu A M, Chen H Y. Electrocatalytic oxidation and determination of ascorbic acid at poly(glutamic acid) chemically modified electrode. Anal. Chim. Acta,1997,344(3):181-185
    [404]Yu A M, Chen H Y. Electrocatalytic oxidation of hydrazine at the poly(glutamic acid) chemically modified electrode and its amperometric determination. Anal. Lett.,1997,30(3):599-607
    [405]Niwa M, Matsui M, Koide K, et al. Enantioselective adsorption of ferrocene-modified glutamic acids on helical poly(L-glutamic acid) self-assemblies at gold electrodes J. Mater. Chem.,1997,7:2191-2192
    [406]Zhang L, Lin X. Covalent modification of glassy carbon electrode with glutamic acid for simultaneous determination of uric acid and ascorbic acid. Analyst,2001,126:367-370
    [407]Santos D P, Bergamini M F, Fogg A G, et al. Application of a glassy carbon electrode modified with poly(glutamic acid) in caffeic acid determination. Microchim. Acta,2005,151:127-134
    [408]Bard A J, Faulkner L R. Electrochemical Methods. Wiley, New York,1980
    [409]徐寿昌.有机化学.第2版,高等教育出版社,北京,1993
    [410]Janeiro P, Brett A M O. Catechin electrochemical oxidation mechanisms. Anal. Chim. Acta,2004,518(1):109-115
    [411]靳宝辉,冶保献.神经递质多巴胺和5-羟色胺及共存物质抗坏血酸的电子传递机理研究.郑州大学学报,2001(5):25-33
    .[412] Kissinger P T, Heineman W R. Laboraory Techniques in Electroanalytical Chemistry. New York and Basel: MarcelDekker, Inc,1984:98-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700