用户名: 密码: 验证码:
聚氨酯/沸石分子筛有机—无机复合材料的制备及性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯弹性体由于综合性能出众而被广泛应用,但由于其耐热、耐极性溶剂性能不好,所以其应用还是受到一定程度的限制。为了进一步拓宽其应用领域,本文考察研究了聚氨酯/沸石分子筛、聚氨酯/有机蒙脱土复合材料的力学性能、耐热性能及耐极性溶剂性能。
     本文首次提出了“孔约束”的理论假说,即在高分子材料聚合过程中,线型分子的一端通过化学键或超分子作用力插入分子筛的孔道中形成硬端,而另一端则与其它单体分子缩合或聚合形成高分子材料的软端;在此假说的基础上,设计了一类孔约束型有机—无机复合高分子材料的新模式,即聚氨酯/沸石分子筛复合材料。
     分子筛是一类硅酸盐材料,其对物质分子的吸附具有择形选择性,本文所选的是微孔分子筛。由于分子筛晶穴内部有强
    
    太原理工大学硕士学位论文
    摘要
    大的库仑场和极性作用,再加上骨架中大量平衡骨架负电荷的
    可交换阳离子的暴露造成的高电场梯度及表面的不均性,使其
    对水、极性分子及可极化的分子具有高选择的吸附性能。所以
    当把分子筛加入到低聚物多元醇中后,第一由于低聚物多元醇
    是略具极性的分子,第二由于直链分子的动力学半径(约
    o.49nm)小于所选分子筛的孔口尺寸,所以低聚物多元醇分子
    就会蠕动进入分子筛孔内,且一端吸附在孔内,固定于填料表
    面;另一端留在孔外,与孔外的甲苯二异氰酸醋反应,形成以
    分子筛为铰链的交联聚合物,分子筛的存在使聚合物交联的密
    度提高;另外,由于分子筛表面富含硅轻基,所以异氰酸酷的
    一端可与经基发生化学反应进而通过形成化学键接枝到分子筛
    上,另一端的反应活性则又使聚合物分子与分子筛牢固结合在
    一起而形成网状结构,从而提高了聚氨醋弹性体的力学性能、
    耐热性能及耐极性溶剂性能。
     本文通过XRD、FTIR、TG等分析手段对复合材料的结晶
    形态、分子筛表面的反应性及其对聚合物的吸附组装进行了考
    察验证。XRD测试结果证实了有机蒙脱土在聚氨酷体系中能
    够剥离成纳米粒子,而聚氨醋/沸石分子筛复合材料中分子筛
    仍保持原来的晶型结构;FTIR谱图验证了异氰酸酷(TDI)可
    
     太原理工大学硕士学位论文摘要
    与沸石分子筛表面的硅经基进行接枝反应形成稳定的化学键;
    而TG分析结果则进一步证实了分子筛的穿孔机理。
     本文详细比较了沸石分子筛、有机蒙脱土等填料对聚氨醋
    的改性效果。力学性能、耐热性能、耐溶剂性能的测试结果均
    显示:无论在聚酷(PEG)、聚醚(PPG)还是聚四亚甲基醚
    二醇(PTMEG)体系中,当采用一步法工艺、氰轻比(NCO/OH)
    为1.1时,填料含量为5%的聚氨酷的综合改性效果最好,与
    纯PU相比,经分子筛改性的聚氨醋的扯断伸长率、耐撕裂强
    度、抗张强度、耐溶剂性最好可分别提高70%、80%、100%、
    40%以上;沸石分子筛和有机蒙脱土改性的聚氨酷的各项性能
    均优于普通无机填料粒子改性的聚氨酷;沸石分子筛改性的聚
    氨酷的力学性能和耐热性能基本与有机蒙脱土改性的聚氨酷相
    当,而耐溶剂性优于后者。
     本文讨论了分子筛改性聚氨酷的特殊机理,不仅为聚氨酷
    改性提供了一种新的方法,同时也为改性聚合物提供了一个新
    的思路。
Polyurethane(PU) elastomer has been widely applied because of its fine comprehensive properties. But its heat resistance properties and solvent resistance properties don't very well, which limit its application in a certain. In order to widen the realm of application, mechanical properties, heat resistance properties and solvent resistance properties of PU/zeolite, PU/montmorillonite (PU/MMT) composite materials are discussed in this paper.
    The theory hypothesis of "pore restriction" is first proposed in this paper. During polymerization, one end of linear molecule inserts the channels of zeolite to form hard end through chemical bond or supermolecule acting force, the other end forms soft end through condensing or polymerizing with other monomer molecule. On the basis of the theory hypothesis, a kind of novel pattern of organic-inorganic composite materials-PU/zeolite composite materials-has been designed.
    
    
    
    Zeolite is a kind of silicate materials and it has shape selectivity. Microporous zeolites are chosen in this paper. It has high selectivity in adsorpting water , polar molecule or polarizable molecule on account of the existing of mighty coulomb field and polar interaction in the internal of crystal cave of zeolite, the high electric field gradient and the uneven surface caused by the exposure of exchangable cation of equilibrium framework negative charge in framework structures. By reasons of its mildly polarity and its kinetic radius which less than pore-opening size of the chosen zeolites, oligopolyols will wiggle into the channels of the zeolite when adding zeolite to oligopolyols. The existing of zeolite in PU made the crosslinking density improved. Thus mechanical properties, heat resistance properties and solvent resistance properties of PU are greatly enhanced.
    Crystal forms of composite materials, surfacial reactivity and adsorption assemble properties of zeolite are discussed in this paper by means of XRD, FTIR and TG etc. The test results of XRD prove that MMT can be exfoliated into nanocomposites in PU/MMT, while zeolite keep its original crystal structure in PU/zeolite. The spectras of FTIR prove that TDI can graft on the surface of the zeolite. Perforating mechanism is further illustrated by TGA.
    The modifying effects on PU of different fillers such as zeolite, MMT etc are discussed in this paper. The test results show that the properties of PU are almost all best when using "one step "processing, NCO/OH equaling 1.1, the content of fillers being 5%. Compare to pure PU, the elongation percentage at break, tear resistance, tensile strength, solvent resistance of PU modified with zeolite can be improved about 70%,80%,100%,40% respectively. All properties of PU/zeolite, PU/MMT are superior to PU modified with ordinary
    
    
    
    fillers. Mechanical properties and heat resistance properties of PU/zeolite are correspond to those of PU/MMT, but the solvent resistance properties of the former are preferable.
    The special mechanism of PU which modified with zeolite is studied in this paper. There may be not only a new way to modifying PU, but also a new thought of modifying polymer.
引文
[1] 翁汉元,我国聚氨酯工业发展现状和发展展望,聚氨酯工业,2001,16(3),1~5
    [2] 吴持生,中国聚氨酯工业的发展,第一届聚氨酯中国′95国际会议论文集,北京,1995,1
    [3] 翁汉元,我国聚氨酯工业现状和发展展望,中国聚氨酯工业协会第十次年会论文集,上海,2001.1
    [4] Pritchard G, US Foam Growth Slows, PU Share to Rise Urethanes Technology, 1999, 16(3), 45
    [5] Pryweller J, PU Business Set to Grow, Urethanes Technology, 1999, 16(3), 12
    [6] 陈智生,仲婧宇,聚氨酯硬泡在防撬门生产中的应用,聚氨酯工业,2001,16(4),34~36
    [7] 袁毅,郭建民,申开智,浅谈聚氨酯硬泡在建筑业上的应用,聚氨酯工业,2001,16(4),10~13
    [8] 江镇海,聚氨酯在建筑业上的开发应用,合成材料老化与应用,2000,(1),24~25
    [9] 闫格,浅谈聚氨酯硬泡在建筑屋面上的应用,聚氨酯工业,2000,15(2),47~49
    [10] 邢益辉,供热管道保温用的全水发泡聚氨酯泡沫,聚氨酯工
    
    业,2001,16(4),31~33
    [11] 钟培辉,聚氨酯泡沫塑料在液化气体保冷领域的应用,聚氨酯工业,2001,16(4),26~30
    [12] 刘意,张力,刘敬芹,聚氨酯涂料的研究进展,辽宁化工,2002,31(3),107~112
    [13] Felix Schmitt, Andreas Wenning, Jornvolker Weiss, Recent development in aqueous two-compoment polyurethane coatings, Progress in Organic Coatings, 2000, 40, 99
    [14] M.J.Dvorchak, Using 'High Performance Two-Compoment Waterborne Polyurethane' Wood Coatings, Journal of Coatings Technology, 1997, 69, 886
    [15] David. A Ley, Denise.E.Fiori, Richard. J.Quinn, Optimization of acrylic polyols for low VOC two-compoment water reducible polyurethane coatings using tertiary isocyanate crosslinkrs, Progress in Organic Coatings, 1999, 35, 109
    [16] Masakazu. Hirose, Jianhui.Zhou, Katsutoshi.Nagai, The structure and properties of acrylic-polyurethane hybrid emulsions, Progress inorganic Coatings, 2000, 38, 27
    [17] 龙复,寇波,刘洪荣,水性聚氨酯新进展,涂料工业,1996,3,31~32
    [18] 王建国,新型丙烯酸聚氨酯涂料研究,化学建材,1996,6,250~255
    [19] 许戈文,熊潜生,王彤等,水性环氧改性聚氨酯涂料的研制,环境保护,1998,11,30~32
    
    
    [20] 石毓锬,秦华宇,梁国正等,聚氨酯改性聚有机硅氧烷的研究进展,材料导报,1999,2,45~47
    [21] 孙宇宏,张建华,聚氨酯胶粘剂研究的进展,粘接,1991,1,92~94
    [22] Meyer R E, Encyclopedia of Polymer Science and Technology, Sealants, New York, John Wileyand Sons, 1989
    [23] 李绍雄,刘益军,聚氨酯胶粘剂,北京,化学工业出版社,1998
    [24] La Haye, et al, Adherent corrective lenses and eyeglasses embodying the same, U.S.P6, 170, 952, Jan9, 2001
    [25] Hepburn H, Polyurethane Elastomers, NewYork, Applied Science Publishers Ltd, 1982
    [26] 李莉,郭旭虹,聚氨酯改性环氧树脂粘合剂,化学与粘合,1997,2,63~66
    [27] 王士才,李宝霞,聚氨酯改性软质PVC塑料的研制及其性能的研究,聚氯乙烯,1998,3,5~10
    [28] P. kordom enos, Isocyanate applied in polyurethane, ACS Org, Coat and Plast Preprints, 1978, 38, 450
    [29] H.E Reymore, J.Cell, How to improve thermal stability of polyurethane, Plast, 1975, 11, 328
    [30] I.C.KogonJ, Hydrolytic stability of polyurethanes, Org Chem, 1958, 23, 1594
    [31] J.H.Saunders, Polyurethanes modified by isocyanate, Chem. and Tech., 1962, 23, 18~22
    [32] Sardanopoli et al, Cross-linking thermoplastic polyurethane,
    
    U.S.P6, 258, 310 Jul10, 2001
    [33] 王士才,李宝霞,王得宁,异氰脲酸酯改性聚氨酯弹性体的合成及研究,弹性体,1997,7(2),19~30
    [34] 亢茂青,张亮玫,殷宁等,提高聚氨酯弹性体耐热性能的研究,合成橡胶工业,1997,20(5),274~276
    [35] 陈尔凡,徐军,刘志玲等,水敏性硅烷改性聚氨酯粘合剂,中国胶粘剂,1995,5(1),1~4
    [36] 吴辉,张阿方,杨惠昌,单组份丙烯酸有机硅烷改性聚氨酯,河南科学,1995,13(4),332~336
    [37] 王刚,李秀玲,梁鸿文等,硅烷偶联剂对湿固化聚氨酯的改性及在锌粉底漆中的作用,材料保护,1997,30(8),3~5
    [38] Conma A, et al, New rich zinc primer, Mod Paint Coat, 1981, 65(5), 23~25
    [39] Clive H Hare, Tri Pigment Iinc Primer Systems, Mod Paint Coat, 1982, 72(4), 8~13
    [40] Besold Rorbert, New Anticorrosive Primer System with Flake Zinc Pigment, Farbe+Lack, 1983, 83(3), 166
    [41] Hare Clive H, Anticorrosive Shielding Pigment, Mod Paint Coat, 1984, 74(10), 72~75
    [42] Fawcette Newton C, Chemistry of Rich Zinc Primer and Improved Rich Zinc Primer, Polym Mater Sci Eng, 1985(53), 69~73
    [43] 陈大俊,李瑶君,淀粉改性的生物可降解聚氨酯弹性体,合成橡胶工业,1997,20(4),244
    [44] 郭金全,林剑清,戴季宗等,玉米淀粉对聚氨酯(PU)泡沫
    
    化学改性的研究,厦门大学学报(自然科学版),1996,35(4),642~644
    [45] 罗祥林,何斌,李赛等,表面紫外光接枝润滑改性医用聚氨酯材料,高分子材料科学与工程,2000,16(2),132~135
    [46] 刘芳,吴小华,刘安石等,减磨耐磨聚氨酯复合材料摩擦性能的研究,塑料工业,1997,4,76~78
    [47] 傅明源,孙酣经,聚氨酯弹性体及其应用,北京,化学工业出版社,1994
    [48] 管云林,陈同蕙,许美萱等,聚碳酸酯改性聚酯型热塑性聚氨酯弹性体的合成与性能,应用化学,1994,11(6),65~68
    [49] Cuve L, Pascault J P, Bolteux G et al, TPU modified by PC, Polymer, 1991, 32, 343
    [50] Bayer co, The effects of PC in polyurethane, BP 1, 149, 815 1969
    [51] 马挺,应锡璋,姚诗凯,碳酸钙在人工心脏中的应用,化学世界,1996,12,629~632
    [52] Na. Jafi-Mohajeri, Nelson, G.L.Benrashid R, Synthesis and properties of new ferrocene-modified urethaneblock copolymers, Journal of Applied Polymer Science, 2000, 76(13), 1847~1856
    [53] 张立德,牟季美,纳米材料学,沈阳,辽宁科技出版社,1994
    [54] Shang SW, Willians JW, Soderholm KJM, How the work of adhension affects the mechanical properties of silica-filled polymer composites, Journal of Materials Science, 1994, 29, 2406~2416
    
    
    [55] 胡圣飞,纳米级CaCO_3粒子对PVC增韧增强研究,中国塑料,1999,6,25
    [56] 王旭,黄锐,PP/纳米级CaCO_3复合材料性能研究,中国塑料,1999,10,22
    [57] 汪信,张金柱等,纳米TiO_2填充改性HIPS废料的研究,中国兵器工业第五三研究所所庆四十周年报告文集
    [58] 赵立波,纳米技术在聚氨酯改性中的应用,科技情报开发与经济,2001,11(2),97
    [59] Zhao wenwei, Hasegawa shin, Fujita Jun etc, Effects of zeolites on the pyrolysis of polypropylene, Polymer Degradation and Stability, 1996, 53, 129~135
    [60] Cornelia Vasile, Hooshang Pakdel, Brebu Mihai etc, Thermal and catalytic decomposition of mixed plastics, Journal of Analytical and Applied Pyrolysis, 2001, 57, 287~303
    [61] 张维萍,韩秀文,包信和等,超细分子筛的合成、结构特性及在催化中的应用,分子催化,1999,13(5),393~400
    [62] 王征,王婷,赵学明,直接缩合法合成低分子量聚乳酸的研究,离子交换与吸附,2000,16(4),311~317
    [63] House, Drying agents for non-foamed polyurethanes, U.S.P 6, 051, 647 Apr18, 2000
    [64] Anelli, et al, Moisture-resistant cable including zeolite, U.S.P 6, 205, 276 Mar20, 2001
    [65] Thompson, et al, Incorporation of zeolites into hybrid polymer matrices, U.S.P6, 248, 682Jun19, 2001
    
    
    [66] Soria, etal, Membrane comprisings porous carrier and a layer of a molecular sieve and its preparation, U.S.P 6, 472, 016 Oct29, 2002
    [67] Birgul Tantekin-Ersolmaz S, Senorkyan Lara, Kalaonar Niso etc, n-Pentane/I-pentane separation by using zeolite-PMDS mixed matrix membranes, Journal of Membrane Science, 2001, 189(1) , 59-67
    [68] Sekine, et al, Environment purifying matetial, U.S.P 5, 997, 829 Dec7, 1999
    [69] Gancet, et al, Superabsorbent composition for hygiene articles free from unpleasant smells, U.S.P 6, 277, 772 Aug21, 2001
    [70] Blinka, etal, Zeolite in packaging film, U.S.P6, 458, 438 Octl, 2002
    [71] Stefania Quintavalla, Loredana Vicini, Antimicrobial food packaging in meat industry, Meat Science, 2002, 62, 373-380
    [72] Corbin, et al, Composition containing liquid crystalline polymer, U.S.P 6, 126, 856 Oct3, 2000
    [73] Katoot, Polymer additives for forming objects, U.S.P 6, 146, 556 Nov14, 2000
    [74] Lee, etal, Flameproof thermoplastic resin compositions, U.S.P 5, 952, 408 Sepl4, 1999
    [75] Nakazawa, et al, Stabilizer composition for chlorine-containing polymers and process for preparation thereof, U.S.P 5, 133, 899Jul28, 1992
    
    
    [76] Kaufman, Polymer modifying agent, U.S.P6, 080, 805Jun27, 2000
    [77] Ram, et al, Zeolite molecular sieves for packaging structures, U.S.P5, 789, 044 Aug4, 1998
    [78] S.Slane, M.Salomon, Composite gel electrolyte for rechargeable lithium batteries, Journal of Power Sources, 1995, 55, 7-10
    [79] J.Schneider, D.Fanter, M.Bauer etc, Preparation and optical transparency of composite materials from methacrylate ester copolymers and faujasites with an embedded azo dye, Microporous and Mesoporous Materials, 2000, 39, 257-263
    [80] 山西省化工研究所,聚氨酯弹性体手册,北京,化学工业出版 社,2001,1~9
    [81] Baral Dipak , De P.P, Nando Golok B, Thermal characterization of mica-filled thermoplastic polyurethane composites, Polymer Degradation and Stability , 1999, 65, 47-51
    [82] Barron Benny G, DaiSheng hong, PorterJames R, Polyurea polymers having improved high temperature stability and method of making same, U.S.P. 5, 525, 681 June 11, 1996
    [83] Roe Ronald Lloyd, Weidert, Ednard Wayne, Polyurethane roller with high surface resistance, U.S.P.6, 150, 025 November 21, 2000
    [84] Petrovic Z.S., Zhang W.Glassy, Elastomeric polyurethanes filled with nano-silica particles , Materials Science Forum 352 Sep 20-Sep24 1999-2000 Trans Tech Publ.
    
    
    [85] Colby, Scott A., Process for producing filled polyurethane elastomers, U.S.P. 5, 952, 053 Sep 14, 1999
    [86] Ball.P., Garwin Li., New methods of modified polymer, Nature, 1992, 355-762
    [87] Blinka, Thomas A., Edwards;Frank B., Miranda; Nathanael R., Zeolite in Packaging film, U.S.P. 6, 391, 403 May 21, 2002
    [88] 钱逸泰,结晶化学导论,第2版,合肥,中国科学技术出版社,1999,259~263
    [89] 堂宝富,复合材料在相控阵天线结构中的应用,电子机械工程,2002,18(3),35~40
    [90] 余海湖,周灵德,姜德生,纳米材料与自组装技术,自然杂志,2002,24(4),216~218
    [91] 马继盛,漆宗能,张树范,聚氨酯弹性体/蒙脱土纳米复合材料的合成、结构与性能,高分子学报,2001,3,325~328

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700