用户名: 密码: 验证码:
基于微流控芯片的免疫传感器和蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控芯片已经在生物化学、医学检验、药物合成筛选、环境监测等领域得到了广泛的应用。微流控芯片结合了生物技术和微电子加工技术等,将实验室中多种仪器的功能集成到芯片上进行处理,具有微型化、检测效率高、操作简单、检测成本低、易于集成化等优点。目前普遍使用的微流控芯片的制作材料是高分子聚合材料,但是其仍存在非特异性吸附等问题。研究结果表明,对高分子材料表面进行修饰改性可以改善它的性质,使聚合物芯片更有利于实际生物样品分析。本论文以高分子聚合物芯片为分析平台,通过有效的修饰方法对微流控芯片通道表面进行修饰和改性,成功实现了芯片通道内生物分子的固定,为生物分析提供了新的研究方法。
     论文的第一章综述了微流控芯片加工方法、制作材料、检测技术和实际应用等方面的研究进展,并强调了对微流控芯片通道表面进行改性和修饰的必要性和重要性;同时,详细介绍了免疫分析、生物传感器和蛋白质组学的发展状况、主要研究内容和应用领域;最后总结了本论文研究的目的和意义。
     本论文研究工作分为三章,以聚甲基丙烯酸甲酯(PMMA)和聚对苯二甲酸乙二醇酯(PET)微流控芯片作为研究对象,分别采用不同的表面修饰方法,包括聚乙烯亚胺衍生法、纳米金胶层层组装法、氧化铝溶胶-凝胶法,将S100B蛋白抗体、核酸适配体和胰蛋白酶有效地固定在微流控芯片通道表面,发展了以微流控芯片为技术平台的酶联免疫分析、核酸适配体特异识别蛋白定量分析以及酶反应器用于蛋白鉴定的新方法。具体内容如下:
     一、基于核酸适配体的微流控芯片用于生物传感器的分析研究
     本工作将核酸适配体(aptamer)固定在纳米金颗粒修饰的PMMA微流控芯片通道的内表面,利用筛选出来的核酸适配体能够高度特异性地识别人凝血酶蛋白的特点,进而将凝血酶蛋白捕获在芯片表面,同时凝血酶蛋白再与标记有生物素的二级核酸适配体相结合,最后利用生物素-亲和素特异性相互作用的性质,将碱性磷酸酶固定,碱性磷酸酶可以催化底物产生灵敏的电化学信号,从而达到检测人凝血酶蛋白的目的。本方法同时结合了微流控芯片反应速度快、耗样量少、灵敏度高等优点,最后测得的人凝血酶蛋白的检出限可以达到1pM,线性范围宽,从1pM-100pM,将该方法用于实际人血清样品中凝血酶蛋白的检测,结果令人满意。
     二、微流控芯片用于脑损伤标志物S100B蛋白的高灵敏度分析检测
     在本工作中,我们发展了一种基于微流控芯片的电化学免疫传感器用于低浓度的脑损伤标志物S100B的分析检测。利用聚乙烯亚胺(PEI)对聚甲基丙烯酸甲酯(PMMA)芯片通道表面进行氨基化修饰,用于S100B蛋白抗体的固定。PEI是一种具有丰富氨基官能团的高分子聚合物,它能够覆盖在PMMA表面引入氨基官能团,因此被广泛用于蛋白质和DNA的固定。S100B蛋白抗体固定后,通过抗原-抗体特异性反应,将S100B蛋白和碱性磷酸酶标记的二抗依次结合在一起,形成了微流控芯片通道内的具有三明治夹心结构的酶联免疫反应体系。在芯片微通道的末端,利用三电极电化学检测体系记录下用碱性磷酸酶催化4-氨基苯基磷酸盐(PAPP)时产生的还原电流信号,从而检测S100B蛋白的浓度,检出限低至0.1pgmL-1,线性范围为0.1pg mL-1-100pg mL-1.整个温育反应过程和检测过程被集成在微芯片装置上,具有高灵敏度、特异性和分析时间短等优点。因此,该方法为临床免疫检验提供了一种新的多功能的检测平台。
     三、氧化铝溶胶-凝胶修饰微流控芯片酶反应器用于低丰度蛋白的酶解鉴定
     本工作通过材料表面酯键的水解作用,产生-OH、-COOH等活性基团,进一步通过它们和溶胶-凝胶缩合反应,在聚对苯二甲酸乙二醇酯(PET)芯片通道内部构建了溶胶-凝胶网络结构,实现了胰蛋白酶的包埋固定,制备了A12O3溶胶-凝胶修饰的PET芯片酶反应器,用于低丰度蛋白的检测。A12O3溶胶-凝胶固定在PET微流控芯片的通道表面,提供了一个具有亲水性和生物相容性的界面,用于胰蛋白酶的包埋固定。由于将大量的胰蛋白酶限定在了狭小的微通道中,痕量的标准蛋白在几秒内可以在芯片酶反应器上完成酶解步骤。我们从鼠肝细胞中提取的复杂样品来评估A12O3溶胶-凝胶微酶反应器酶解效能以及应用的可行性,得到了较好的结果。这种蛋白的快速酶解鉴定方法的好处在于方法简单,易于操作,有望在蛋白质组学中得到进一步应用,实现快速、高效、在线的复杂蛋白样品的酶解鉴定。
Microfluidic chips have been widely recognized as a powerful technology that will play an important role in future biological analysis to meet the large-scale and high-throughput requirements. Their miniaturized architectures provide a number of distinct advantages, such as high sample processing rates, low manufacturing costs, advanced system integration, and reduced volumes of samples and analytes.
     In chapter 1, recent research progress on microfluidic chips, including fabrication techniques, materials, detection system and analytical applications, is described. In the end of this part, the purpose and significance of our study on microfluidics-based bioanalytical application are emphasized.
     In my research, by using surface modification approaches, such as PEI, AuNPs nanoparticles assembly, and A12O3 sol-gel. By using these methods, the antibodies, aptamer or protease can be effectively immobilized/adsorbed within the microchannels to devise microfluidic immunoassay or enzymatic reactors combined with electrochemistry method or mass spectrometry; the microchips are capable of performing the analysis of proteins in real samples. The detailed points of this thesis are expanded as follows:
     1) In this work, we designed an aptamer-based microfluidic chip biosensor and applied it to the detection of low-level human thrombin. Gold nanoparticles are coating on the surface of the modified PMMA microchannel, and sulfhydryl-labeled first-rate aptamer is fixed on AuNPs. Through the specific binding of aptamer and thrombin, the thrombin protein and biotin-labeled second-rate aptamer are connected, and ALP-labeled avidin is linked to biotin. DPV is used to detect the electronic signals from the substrate solution of PAPP and a low detection limit of 1pM has obtained. The biosensor showed high sensitivity, selectivity and broad linear response. The results indicate that the microfluidic chip combined with apatmer-protein interaction has great potential in clinical diagnosis detection.
     2) A simple and sensitive microchip-based method has been proposed to determine low level of S100B, biomarker of neurological disease, coupled with electrochemical detection system. Firstly, poly(ethyleneimine) (PEI) was applied to modify the poly(methyl methacrylate) (PMMA) microchannels. PEI contained abundant NH2 groups which can covalently immobilize S100B monoclonal antibody in the next step. Afterward, the antigen S100B and polyclonal rabbit anti-S100 were sequentially immobilized through antigen-antibody specific interaction. Finally, the anti-rabbit IgG alkaline phosphatase conjugate (ALP-conjugate) was bound to the polyclonal rabbit anti-S100 in microchannnel. Using three-electrode electrochemical detection system, the microchip-based immunosensor had the detection limit of S100B down to 0.1 pg mL-1, and achieved a detectable linear concentration range of 0.1 pg mL-1~100pg mL-1 by differential pulse voltammetry (DPV). The on-chip immunosensor can not only provide rapid and sensitive detection for target proteins but also be capable of resisting to non-specific adsorption of proteins. The result of the experiment shows that the proposed approach is highly sensitive and specific, which is feasible and has the potential application in clinical analysis and diagnosis.
     3) An on-chip microreactor for highly efficient proteolysis has been demonstrated using BSA, myoglobin and cytochrome c as model substrates. Alumina sol-gel exhibits a simple surface modification protocol in PET microchannels for enzyme immobilization. The standard proteins were confidently identified with a low femtomole per analysis at a concentration of 0.5ngμL-1 with the digestion time less than few seconds. Our findings also suggest that this on-chip microreactor can be used for the detection of proteins from real biological samples. This versatile system is a good example of proteolytic reactions occurring in the alumina gel-derived microchannels, where the network not only provides a support for encapsulation of enzymes, but also acts as microreactor to facilitate the protein digestion. Such on-chip enzymatic reactor coupled to MALDI-TOF-MS/MS or 2D-LC-ESI-MS/MS systems could be applied to profile the complex protein extracts in proteomic research.
引文
[1]Manz A., Graber N., Widmer H. M. Micromachining of monocrystalline silicon and glass for chemical analysis systems-A look into next century's technology. Sens. Actuators. B.1990, B(1):244-248.
    [2]于建群,王立鼎,刘军山.集成毛细管电泳芯片的结构及其制作技术研究进展.中国机械工程.2003,2:168-175.
    [3]王立凯,冯喜增.微流控芯片技术在生命科学研究中的应用.化学进展.2005,17:482-498.
    [4]Fan Z. H., Harrison D. J. Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Anal. Chem.1994,66:177-184.
    [5]Lion N., Rohner T. C., Dayon L., Arnaud I. L., Damoc E., Youhnovski N., Wu Z. Y., Roussel C., Josserand J., Jensen, H. Rossier J. S., Przybylski M., Girault H. H. Microfluidic systems in proteomics. Electrophoresis 2003,24:3533-3562.
    [6]Duffy D. C., McDonald J. C., Schueller O. J. A., Whitesides G. M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 1998,70:4974-4984.
    [7]Reichmuth D. S., Chirica G. S., Kirby B. J. Increasing the performance of high-pressure, high-efficiency electrokinetic micropumps using zwitterionic solute additives. Sens. Actuators B.2003,92:37-43.
    [8]Hong C. C, Murugesan S., Kim S., Beaucage G., Choi J. W., Ahn C. H. A functional on-chip pressure generator using solid chemical propellant for disposable lab-on-a-chip. Lab Chip 2003,3:281-286.
    [9]Bercher H, Heim U, Roetting O. The fabrication of polymer high aspect ratio structures with hot embossing for microfluidic applications. SPIE.1999,3877: 74-79.
    [10]Martynova L., Locascio L. E., Gaitan M., Kramer G. W., Christensen R. G., MacCrehan W. A. Fabrication of plastic microfluid channels by imprinting methods. Anal. Chem.1997,69:4783-4789.
    [11]Lee H. J., Beattie P. D., Seddon B. J., Osborne M. D., Girault H. H. On-line electrochemical tagging of cysteines in proteins during nanospray. Electrochem. Commun.2002,4:695-700.
    [12]Roberts M. A., Rossler J. S., Bercier P., Girault H. H. UV laser machined polymer substrates for the development of microdiagnostic systems. Anal. Chem. 1997,69:2035-2042.
    [13]Bianchi F., Wagner F., Hoffman P., Girault H. Electroosmotic flow in composite microchannels and implications in microcapillary eletrophoresis systems. Anal. Chem.2002,73:829-836.
    [14]薛巍,姜雯,苏荣国.微流控芯片检测技术进展.化学分析计量,2007,16:77-79.
    [15]Zhang B., Liu H., Karger B.L., Foret F. Micro fabricated devices for capillary electrophoresis-electrospray mass spectrometry. Anal. Chem.,1999,71: 3258-3264.
    [16]Xue Q., Foret F., Dunayevskiy Y. M., Zavracky P. M., McGruer N. E., Kargew B. L. Multichannel microchip electrospray mass spectrometry. Anal. Chem.1997,69 (3):426-430.
    [17]Licklider L., Wang X. Q., Desai A., Tai Y. C., Lee T. D. A micromachined chip-based electrospray source for mass spectrometry. Anal Chem,2000,72: 367-375.
    [18]Liu J., Tseng K., Garcia B., Lebrilla C. B., Mukerjee E., Collins S., Smith R. Electrophoresis separation in open microchannels:A method for coupling electrophoresis with MALDI-MS. Anal. Chem.2001,73(9):2147-2151.
    [19]Emrich C. A., Medintz I. L., Chu W. K., Mathies R. A. Microfabricated two-dimensional electrophoresis device for differential protein expression profiling. Anal.Chem.2007,79(19):7360-7366.
    [20]Woolley A. T., Lao K., Glazer A. N., Mathies R. A. Capillary electrophoresis chips with integrated electrochemical detection. Anal. Chem.1998,70:684-688.
    [21]Rossier J. S., Ferrigno R., Girault H. H. Electrophoresis with electrochemical detection in a polymer microdevice. Electroanal. Chem.2000,492:15-22.
    [22]Chen D. C, Hsu F. L., Zhan D. Z., Chen, C. H. Palladium film decoupler for amperometric detection in electrophoresis chips. Anal. Chem.2001,73:758-762.
    [23]程永强,张涛,王鹗,王伟,徐光明,方群.激光诱导荧光检测微流控芯片. 分析化学.2008,36(1):127-131.
    [24]朱睿,肖松山,范世福.微流控芯片检测技术进展.纳米技术与精密工程.2005,(1):74-79.
    [25]Cheek B. B., Steel A. B., Torres M. P., Yu Y., Yang H. Chemiluminescence detection for hybridization assays on the flow-thru chip:a three-dimensional microchannel biochip. Anal. Chem.2001,73 (19):5777-5785.
    [26]Greenwood P. A., Merrin C., McCreedy T., Greenway G. M. Chemiluminescence mu TAS for the determination of atropine and pethidine. Talanta.2002,56 (3): 539-545.
    [27]Arora A., Eijkel J. C. T., Morf W. E., Manz A. A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device. Anal. Chem.,2001,73 (3): 3282-3288.
    [28]Khandurina J., Guttman A. Bioanalysis in microfluidic devices. J. Chromatogr. A. 2002,943(2):159-183.
    [29]Yang J. N., Liu Y. J., Rauch C. B., et al. High sensitivity PCR assay in plastic micro reactors. Lab Chip 2002,2,179-187.
    [30]Koutny L., Schmalzing D., Salas-Solano S. O., El-Difrawy S., Adourian A., Buonocore S., Abbey K., McEwan P., Matsudaira P., Ehrlich D. Eight hundred-base sequencing in a microfabricated electrophoretic device. Anal. Chem. 2000,72(14):3388-3391.
    [31]Effenhauser C. S., Manz A., Widmer H. M. Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights. Anal. Chem.,1993, 65(19):2637-2642.
    [32]Fang Q., Xu G. M., Fang Z. L. A high-throughput continuous sample introduction interface for microfluidic chip-based capillary electrophoresis systems. Anal. Chem.2002,74:1223-1231.
    [33]Deng Y, Henion J., Li J., Thibault P., Wang C., Harrison D. J. Chip-based capillary electrophoresis/mass spectrometry determination of carnitines in human urine. Anal. Chem.2001,73(3):639-646.
    [34]Kameoka J., Craighead H. G., Zhang H., Henion J. A polymeric microfluidic chip for CE/MS determination of small molecules. Anal. Chem.2001,73(9): 1935-1941.
    [35]Peterson D. S., Rohr T., Svec F., Frechet J. M. J. Enzymatic microreactor-on-a-chip:Protein mapping using trypsin immobilized on porous polymer monoliths molded in channels of microfluidic devices. Anal. Chem.2002, 74(16):4081-4088.
    [36]Connatser R. M., Cochran M., Harrison R. J., Sepaniak M. J. Analytical optimization of nanocomposite surface-enhanced Roman spectroscopy/scattering detection in microfluidic separation devices. Electrophoresis 2008,29(7): 1441-1450.
    [37]高健,殷学锋,方肇伦,夏方诠.微流控芯片单细胞进样和溶膜.高等学校化学学报.2003,24(9):1582-1584.
    [38]McClain M. A., Culbertson C. T., Jacobson S. C., Allbritton N. L., Sims C. E., Remsey J. M. Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem.2003,75:5646-5655.
    [39]X. F. Ni, C. Crozatier, L. Sensebe, A. Langonne, L. Wang, Y. Fan, P.G. He, Y. Chen, Microelectronic Engineering.2008,85,1330-1333.
    [40]Linder V., Verpoorte E., Thormann W., de Rooi N. F., Sigrist Hans. Surface biopassivation of replicated poly(dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection. Anal. Chem.2001,73(17):4181-4189.
    [41]Wang J., Ibanez A., Chatrathi M. P., Escarpa A. Electrochemical enzyme immunoassays on microchip platforms. Anal. Chem.2001,73:5323-5327.
    [42]Kartalov E. P., Zhong J. F., Scherer A., Quake S. R., Taylor C. R., Anderson W. F. High-throughput multi-antigen microfluidic fluorescence immunoassays. Biotechniques.2006,40(1):85-90.
    [43]Liu Y, Wang H. X., Huang J. Y., Yang J., Liu B. H., Yang P, Y Microchip-based ELISA strategy for the detection of low-level disease biomarker in serum. Anal. Chim. Acta.2009,650(1):77-82.
    [44]Shen Z., Liu X., Long Z., Liu D., Ye N., Qin J., Dai Z., Lin B. Parallel analysis of biomolecules on a micro fabricated capillary array chip. Electrophoresis,2006,27: 1084-1092.
    [45]方肇伦,方群.微流控芯片发展与展望.现代科学仪器.2001,4:3-6.
    [46]管华,石茂健,崔亚男.亚太传统医药,2007,3(10):33-36.
    [47]李兴霞,程玉来,王国霞,潘家荣.免疫检测新技术在食品分析中的应用.食品工业科技.2006(3):169-173.
    [48]Niemeyer C. M., Adler M., Blohm D. Fluorometric Polymerase Chain Reaction(PCR) Enzyme-linked Immunosorbent Assay for Quantification of ImmunoPCR Products in Microplates. Anal. Biochem.1997,246(1):140-145.
    [49]Bacigalupo M. A., Meroni G. Comparision of time-resolved fluoroimmunoaasay and immunoenzymometric assay for clendbuterol. Analyst 1995,120(8): 2269-2271.
    [50]王鹏,张文艳,周泓,朱果逸.免疫电化学发光.分析化学.1998,26(7):898-903.
    [51]Hage D. S. Immunoassays. Anal. Chem.,1999,71(12):294-304.
    [52]Ulrich H., Martins A. H. B., Pesquero J. B. RNA and DNA aptamers in cytomics analysis. Cytom. Part A.2004,59A:220-231.
    [53]Polsky R., Gill R., Kaganovsky L., Willner I. Nucleic acid-functionalized Pt nanoparticles:Catalytic labels for the amplified electrochemical detection of biomolecules. Anal. Chem.2006,78:2286-2271.
    [54]张阳德.纳米生物技术学.北京:科学出版社.2009,288.
    [55]Nakabayashi Y., Yoshikawa H. Amperometric biosensors for sensing of hydrogen peroxide based on electron transfer between horseradish peroxidase and ferrocene as a mediator. Anal. Sci.2000,16(6):609-613.
    [56]Di J. W., Shen C. P., Peng S. H., Tu Y. F., Li S. J. A one-step method to construct a third-generation biosensor based on horseradish peroxidase and gold nanoparticles embedded in silica sol-gel network on gold modified electrode. Anal. Chim. Acta.2005,553:196-200.
    [57]杨海朋.纳米电化学生物传感器研究.北京:清华大学.2005:5-6.
    [58]董少俊,车广礼,谢远武.化学修饰电极.修订版.北京:科学出版社.2003:501-538.
    [59]司士辉.生物传感器.北京:化学工业出版社.2003:1-4.
    [60]Decher G. Fuzzy nanoassemblies:Toward layered polymeric multicomposites. Science 1997,177:1232-1237.
    [61]Wasinger V. C, Cordwell S. J., Cerpa-Poljak A., et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis 1995,16(7):1090-1094.
    [62]Klose J. Genotypes and phenotypes. Electrophoresis 1999,20(4-5):643-652.
    [63]Blackstock W. P., Weir M. P. Proteomics:quantitative and physical mapping of cellular proteins. Trends. Biotechnol.1999,17(3):121-127.
    [64]Service R. F. High-speed biologists search for gold in proteins. Science 2001, 294,2074-2077.
    [65]Marte B. Proteomics. Nature 2003,422,191-192.
    [66]Boguski M. S., McIntosh M. W. Biomedical informatics for proteomics. Nature 2003,422,233-237.
    [67]司英健.蛋白质组学研究的内容、方法及意义.国外医学临床生物化学与检验学分册.2003,24(3),167-168.
    [68]Dutt M. J., Lee K. H. Proteomic analysis. Curr. Opin. Biotechnol.2000,11(2): 176-179.
    [69]Chambers G.., Lawrie L., Cash P., Murray G. I. A new approach to the study of disease. J. Path.2000,192(3):280-288.
    [70]Gevaert K., Vandekerckhove J. Protein identification methods in proteomics. Electrophoresis 2000,21(6):1145-1154.
    [71]Herbert B. Advances in protein solubilisation for two-dimensional electrophoresis. Electrophoresis 1999,20(4-5):660-663.
    [72]张国安,许雪娇,张素艳,樊惠芝,杨芃原.蛋白质组的分离与分析及其应用进展.分析化学.2003,24(3):167-168.
    [73]Monaghan P. B., Manz A., Nichols W. W. Micro Total Analysis System 2000. Kulwer Academic Publishers, Netherlands,2000,111.
    [74]Walker G. M., Ozer M. S., Beebe D. J. Micro Total Analysis System 2000. Kulwer Academic Publishers, Netherlands,2001,309.
    [75]Steinberg T. H., Lauber W. M., Berggren K., Kemper C., Yue S., Patton W. F. Fluorescence detection of proteins in sodium dodecyl sulfate-polyacrylamide gels using environmentally benign, nonfixative, saline solution. Electrophoresis 2000, 21(3):497-508.
    [76]Opiteck G. J., Ramirez S. M., Jorgenson J. W., Moseley M. A. Comprehensive two-dimensional high-performance liquid chromatography for the isolation of overexpressed proteins and proteome mapping. Anal. Biochem.1998,258(2): 349-361.
    [77]Washburn M. P., Wolters D., Yates J. R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 2001,19(3):242-247.
    [78]McDonald W. H., Ohi R., Miyamoto D. T., Mitchison T. J., Yates J.R. Comparison of three directly coupled HPLC MS/MS strategies for identification of proteins from complex mixtures:single-dimension LC-MS/MS,2-phase MudPIT, and 3-phase MudPIT. Int. J. Mass Spec.2002,219(1):245-251.
    [79]Chelius D., Zhang T., Wang G. H., Shen R. F. Global protein identification and quantification technology using two-dimensional liquid chromatography nanospray mass spectrometry. Anal. Chem.2003,75(23):6658-6665.
    [80]Bridoux M. C., Annenkov V. V., Menzel H., Keil R. G., Ingalls A. E. A new liquid chromatography/electrospray ionization mass spectrometry method for the analysis of underivatized aliphatic long-chain polyamines:application to diatom-rich sediments. Rapid Commun. Mass Spectrom.2011,25(7):877-888.
    [81]Liu J. J., Konermann L. Protein-Protein Binding Affinities in Solution Determined by Electrospray Mass Spectrometry. J. Am. Soc. Mass. Spectrom. 2011,22(3):408-417.
    [82]Yan W. Y., Ammon D. M., Gardella J. A., Maziarz E. P., Hawkridge A. M., Grobe G. L., Wood T. D. Quantitative mass spectrometry of technical polymers:a comparison of several ionization methods. Eur. Mass Spectrom.1998,4(6): 467-474.
    [83]Huang M. Z., Hsu H. J., Lee L. Y., Jeng J. Y, Shiea L. T. Direct protein detection from biological media through electrospray-assisted laser desorption ionization/mass spectrometry. J. Proteome Res.2006,5(5):1107-1116.
    [84]Weidner S., Kuhn G., Friedrich J. Infrared-matrix-assisted laser desorption/ionization and infrared-laser desorption/ionization investigations of synthetic polymers Rapid Commun. Mass Spectrom.1998,12(19):1373-1381.
    [85]Schaaff T.G. Laser desorption and matrix-assisted laser desorption/ionization mass spectrometry of 29-kDa Au:SR cluster compound. Anal. Chem.2004, 76(21):6187-6196.
    [86]Jungblut P. R., Zimny-Arndt U., Zeindl-Eberhart E., Stulik J., Koupilova K. Pleissner K. P., Otto A., Muller E. C., Sokolowska-Kohler W., Grabher G., Stoffler G.. Proteomics in human disease:Cancer, heart and infectious diseases. Electrophoresis 1999,20(10):2100-2110.
    [87]Bousette N., Gramolini A. O., Kislinger T. Proteomics-based investigations of animal models of disease. Proteom. Clin. Appl.2008.2(5):638-653.
    [88]Hu S., Loo J. A., Wong D. T. Human body fluid proteome analysis. Proteomics 2006,6(23):6326-6353.
    [89]Licker V., Kovari E., Hochstrasser D. F., Burkhard P. R. Differential expression and redox proteomics analyses of an alzheimer disease transgenic mouse model: effects of the amyloid-beta peptide of amyloid precursor protein:Neuroscience 2011,177,207-222.
    [90]Robinson J. M., Ackerman W. E., Kniss D. A., Takizawa T., Vandre D. D. Proteomics of the human placenta:Promises and realities. Placenta 2008,29(2): 135-143.
    [91]Keough T., Youngquist R. S., Lacey M. P. A method for high-sensitivity peptide sequencing using postsource decay matrix-assisted laser desorption ionization mass spectrometry Proc. Nat. Acad. Sci.1999,96(13):7131-7136.
    [92]Keough T., Youngquist R. S., Lacey M. P. Sulfonic acid derivatives for peptide sequencing. Aanl. Chem.2003,75(7):156A-165A
    [93]Keough T., Lacey M. P., Youngquist R. S. Derivatization procedures to facilitate de novo sequencing of lysine-terminated tryptic peptides using postsource decay matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom.2000,14(24):2348-2356.
    [94]Stevenson T. I., Loo J. A., Greis K. D. Coupling capillary high-performance liquid chromatography to matrix-assisted laser desorption/ionization mass spectrometry and N-terminal sequencing of peptides via automated microblotting onto membrane substrates. Aanl. Chem.1998,262(2):99-109.
    [95]Bantscheff M., Hopf C., Savitski M. M., et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat. Biotechnol. 2011,29(3):255-U124.
    [96]Dodds R. A., James I. E., Rieman D., Ahern R., Hwang S. M., Connor J. R., Thompson S. D., Veber D. F., Drake F. H., Holmes S., Lark M. W., Gowen M. Human osteoclast cathepsin K is processed intracellularly prior to attachment and bone resorption. J. Bone Miner. Res.2001,16(3):478-486.
    [1]Ellington A. D., Szostak J. W. Invitro Selection of Rna Molecules That Bind Specific Ligands. Nature.1990,346(6287):818-822.
    [2]Tuerk C, Gold L. Systematic Evolution of Ligands by Exponential Enrichment-Rna Ligands to Bacteriophage-T4 DNA-Polymerase. Science.1990,249(4968): 505-510.
    [3]Shangguan D., Cao Z. H., Meng L., Mallikaratchy P., Sefah K., Wang H., Li Y., Tan W. H. Cell-specific aptamer probes for membrane protein elucidation in cancer cells.J. Proteom. Res.2008,7(5):2133-2139
    [4]Cho S. Y, Lee S. H., Chung W. J., Kim Y K., Lee Y. S., Kim B.G.. Microbead-based affinity chromatography chip using RNA aptamer modified with photocleavable linker. Electrophoresis 2004,25(21-22):3730-3739
    [5]Kluwe C, Ellington A. D. RNA GPS. Science 2010,330(6002):330-331.
    [6]McGown L. B., Joseph M. J., Pitner J. B., Vonk G. P., Linn C. P. The nucleic-acid ligand-a new tool for molecular recognition. Anal. Chem.1995,67(21): A663-A668.
    [7]Jayasena S. D. Aptamers:An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem.1999,45(9):1628-1650.
    [8]Deng C. Y, Chen J. H., Nie Z., Wang M. D., Chu X. C., Chen X. L., Xiao X. L Lei C. Y, Yao S. Z. Impedimetric Aptasensor with Femtomolar Sensitivity Based on the Enlargement of Surface-Charged Gold Nanoparticles. Anal. Chem.2009, 81(2):739-745.
    [9]谢海燕,陈薛钗,邓玉林.18.核酸适配体及其在化学领域的相关应用.化学进展.2007,19(6):1026-1033.
    [10]Goringer H., Homann M., Lorger M.. In vitro selection of high-affinity nucleic acid ligands to parasite target molecules. Int. J. Parasitol.2003,33(12): 1309-1317.
    [II]Zhao Q., Lu X. F., Yuan C. G., Li X. F., Le X. C. Aptamer-Linked Assay for Thrombin Using Gold-Mass Spectrometry Detection. Anal. Chem.2009,81(17): 7484-7489.
    [12]Li B. L., Wei H., Dong S. J. Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch. Chem. Commun.2007 (1):73-75.
    [13]Mir M., Vreeke M., Katakis L. Different strategies to develop an electrochemical thrombin aptasensor. Electrochem. Commun.2006,8(3): 505-511.
    [14]Yang H., Ji J., Liu Y., Kong J. L., Liu B. H. An aptamer-based biosensor for sensitive thrombin detection. Electrochem. Commun.2009,11(1):38-40.
    [15]Wang Y. L., Li D., Ren W., Liu Z. J., Dong S. J., Wang E. K. Ultrasensitive colorimetric detection of protein by aptamer-Au nanoparticles conjugates based on a dot-blot assay. Chem. Commun.2008(22):2520-2522.
    [16]Fang X. H., Cao Z. H., Beck T., Tan W. H. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Anal. Chem.2001,73(23):5752-5757
    [17]Deng C. Y, Chen J. H., Nie Z., Wang M. D., Chu X. C., L.Chen X., Xiao X. L., Lei C. Y, Yao S. Z. Impedimetric Aptasensor with Femtomolar Sensitivity Based on the Enlargement of Surface-Charged Gold Nanoparticles. Anal. Chem.2009, 81(2):739-745.
    [18]Bock L.C., Griffin L. C., Latham J. A., Vermaas E. H., Toole J. J. Selection of single-stranded-dna molecules that bind and inhibit human thrombin. Nature 1992, 355(6360):564-566.
    [19]Liu Y, Lu H. J., Zhong W., Song P. Y, Kong J. L., Yang P. Y, Girault H. H., Liu B. H. Multi layer-assembled microchip for enzyme immobilization as reactor toward low-level protein identification. Anal. Chem.2006,78(3):801-808.
    [20]Liu Y, Xue Y, Ji J., Chen X., Kong J., Yang P. Y, Girault H. H., Liu B. H. Gold nanoparticle assembly microfluidic reactor for efficient on-line proteolysis. Mol Cell Proteomics.2007,6(8):1428-1436.
    [21]Ji J., Zhang Y, Zhou X., Kong J., Tang Y, Liu B. Enhanced protein digestion through the confinement of nanozeolite-assembled microchip reactors. Anal. Chem.2008,80(7):2457-2463.
    [22]Liu Y, Zhong W., Meng S., Kong J. L., Lu H. J., Yang P. Y, Girault H. H., Liu B. H. Assembly-controlled biocompatible interface on a microchip:Strategy to highly efficient proteolysis. Chem-Eur J.2006,12(25):6585-6591.
    [23]Wang H. X., Meng S., Guo K., Liu Y., Yang P. Y., Zhong W., Liu B. H. Microfluidic immunosensor based on stable antibody-patterned surface in PMMA microchip. Electrochem. Commun.2008,10(3):447-450.
    [24]Liu Y, Wang H. X., Huang J. Y, Yang J., Liu B. H., Yang P. Y. Microchip-based ELISA strategy for the detection of low-level disease biomarker in serum. Anal. Chim. Acta.2009,650(1):77-82.
    [25]Bizzarri A. R., Cannistraro S. Surface-enhanced Raman spectroscopy combined with atomic force microscopy for ultrasensitive detection of thrombin. Anal. Biochem.2009,393(2):149-154.
    [26]Stubbs M. T., Bode W. The Clot Thickens-Clues Provided by Thrombin Structure. Trends Biochem. Sci.1995,20(1):23-28.
    [27]Chen W., McCarthy T. J. Layer-by-layer deposition:A tool for polymer surface modification. Macromolecules.1997,30(1):78-86.
    [28]Qu H. Y, Wang H. T., Huang Y, Zhong W., Lu H. J., Kong J. L., Yang P. Y, Liu B. H. Stable microstructured network for protein patterning on a plastic microfluidic channel:Strategy and characterization of on-chip enzyme microreactors. Anal. Chem.2004,76(21):6426-6433.
    [29]Grabar K. C., Freeman R. G., Hommer M. B., Natan M. J. Preparation and Characterization of Au Colloid Monolayers. Anal. Chem.1995,67(4):735-743.
    [30]Butler J. E., Ni L., Nessler R., Joshi K. S., Suter M., Rosenberg B., Chang J., Brown W. R., Cantarero L. A. The physical and functional-behavior of capture antibodies adsorbed on polystyrene. Immunol. Methods,1992,150(1-2):77-90.
    [31]Butler J.E. Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays Immunol. Methods.2000,22:4-23.
    [32]Davies J, Dawkes A. C., Haymes A. G., Roberts C. J., Sunderland R. F., Wilkins M. J., Davies M. C., Tendler S. J. B., Jackson D. E., Edwards J. C. Immunol. Methods.1994,167(1-2):263-269.
    [33]Kunze J., Burgess I., Nichols R., Buess-Herman C, Lipkowski J. Electrochemical evaluation of citrate adsorption on Au(111) and the stability of citrate-reduced gold colloids. Electroanal. Chem.2007,599(2):147-159.
    [34]Zhao S., Zhang K., Bai Y, Yang W. W., Sun C. Q. Glucose oxidase/colloidal gold nanoparticles immobilized in Nation film on glassy carbon electrode:Direct electron transfer and electrocatalysis. Bioelectrochemistry 2006,69(2):158-163.
    [35]Wang D. G., Zhang S.W., Yu X. X., et al. Proceedings of the Third Asia International Conference on Tribology. Kanazawa. Japan.2006:121.
    [36]Zhang L. X., Sun X. P., Song Y. H., Jiang X., Dong S. J., Wang E. K. Didodecyldimethylammonium Bromide Lipid Bilayer-Protected Gold Nanopaiticles:Synthesis, Characterization, and Self-Assembly. Langmuir,2006, 22 (6):2838-2843.
    [37]Lee M., Walt D. R. A fiber-optic microarray biosensor using aptamers as receptors. Anal. Biochem.2000,282(1):142-146.
    [1]Kopp M. U., de Mello A. J., Manz A. Chemical amplification:Continuous-flow PCR on a chip. Science 1998,280:1046-1048.
    [2]Schilling E. A., Kamholz E., Yager P. Celllysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal. Chem. 2002,74:1798-1804.
    [3]Olsen K. G., Ross D. J., Tarlov M. J. Immobilization of DNA hydrogel plugs in microfluidic channels. Anal. Chem.2002,74:1436-1441.
    [4]Soper S. A., Ford S. M., Qi. S., McCarley R. L., Kely. K., Murphy M. C Polymeric microelectromechanical systems. Anal. Chem.2000,72:642-643.
    [5]Peterson D.S., Rohr T., Svec. F., Frechet, J. M. J. Enzymatic microreactor-on-a-chip:Protein mapping using trypsin immobilized on porous polymer monoliths molded in channels of microfluidic devices. Anal. Chem.2002, 74:4081-4088.
    [6]Figeys D., Pinto D. Lab-on-a-chip:A revolution in biological and medical sciences. Anal. Chem.2000,72:330A-335A.
    [7]Rossier J. S., Youhnovski N., Lion N., Damoc E., Becker S., Reymond E., Girault H. H., Przybylski M. Thin-chip microspray system for high-performance Fourier-transform ion-cyclotron resonance mass spectrometry of biopolymers. Angew. Chem. Int. Ed.2003,42:54-58.
    [8]Lion N., Gelon J. O., Jensen H., Grault H. H. On-chip protein sample desalting and preparation for direct coupling with electrospray ionization mass spectrometry J. Chromatogr. A.2003,1003:11-19.
    [9]Lion N., Rohner T. C., Dayon L., Arnaud I. L., Damoc E., Youhnovski. N., Wu Z. Y, Roussel C., Josserand J., Jensen H., Rossier J. S., Przybylski M., Girault H. H. Microfluidic systems in proteomics. Electrophoresis.2003,24:3533-3562.
    [10]Belder D., Ludwig M. Surface modification in microchip electrophoresis. El ectrophoresis.2003,24:3595-3606.
    [11]Yang T. L., Jung S. Y, Mao H. B., Cremer. P. S. Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays. Anal. Chem.2001,73: 165-169.
    [12]Seong G. H., Zhan W., Crooks R. M. Fabrication of microchambers defined by photopolymerized hydrogels and weirs within microfluidic systems:Application to DNA hybridization. Anal. Chem.2002,74:3372-3377.
    [13]Seong G. H., Crooks R. M. J. Efficient mixing and reactions within microfluidic channels using microbead-supported catalysts. J. Am. Chem. Soc.2002,124: 13360-13361.
    [14]Seong G H., Hen J., Crooks R. M. Measurement of enzyme kinetics using a continuous-flow microfluidic system. Anal. Chem.2003,75:3161-3167.
    [15]Eteshola E., Leckband D. Development and characterization of an ELISA assay in PDMS microfluidic channels. Sens. Actuators B.2001,72:129-133.
    [16]王琨,李彦敏. NSE. S-100蛋白与脑损伤关系的研究.脑与神经疾病杂志.2009,17(5):396-398.
    [17]Green A. J. E.., Keir G.., Thompson E. J. A specific and sensitive ELISA for measuring S-100b in cerebrospinal fluid. J. Immun. Meth.1997,205:35-41.
    [18]Fano, G, Biocca, S., Fulle, S., Mariggio, M., Belia, S., Calissano, P. The S-100:a protein family in search of a function. Prog. Neurobiol.1995,46(1):71-82.
    [19]Zimmer, D. B., Cornwall, E. H., Landar, A., Song, W., The S100 protein family: history, function and expression. Brain Res. Bull.1995,37 (4):417-429.
    [20]Kato K., Kimura S. S-100ao (alpha, alpha) protein in mainly located in the heart and striated muscles. Biochim. Biophys. Acta.1985,842(2-3):146-150.
    [21]Kato K., Haimoto H., Ariyoshi Y., Horisawa M., Washida H., Kimura S. High levels of S-100ao (alpha, alpha) protein in tumor tissues and in sera of patients with renal cell carcinoma. Jpn. J. Cancer Res.1985,76(9):856-862.
    [22]Persson L., Hardemark H., Gustafsson J., Rundstrom G, Mendel-Hartvig I., Esscher T., Pahlman S. S-100 protein and neuron-specific enolase in cerebrospinal fluid and serum:markers of cell damage in human central nervous system. Stroke 1987,18(5):911-918.
    [23]Griffin W. S. T., Yeralan O., Sheng J. G.., Boop F. A., Mrak R. E., Rovnaghi C. R., Burnett B. A., Feoktistova A., Van Eldik L. J. Overexpression of neurotropic cytokine S-100b in human temporal lobe epilepsy. J. Neurochem.1995,65(1), 228-233.
    [24]Michetti F., Massaro A. R., Murazio M. The nervous system specific S-100 antigen in cerebrospinal fluid of multiple sclerosis patients. Neurosci. Lett.1979, 11(2):171-175.
    [25]徐卫平,谢飞,雷恩奇,朱忠勇. ELISA检测血清S100B蛋白方法的建立与临床应用.上海免疫学杂志.2002,22(2):119-120.
    [26]Michetti F., Massaro A. R., Russo G., Rigon G., The S-100 antigen in cerebrospinal fluid as a possible index of cell injury in the nervous system. J. Neurol. Sci.1980,44(2-3):259-263.
    [27]Sindic C. J. M., Chalon M. P., Cambiaso, C. L., Laterre E. C, Masson P. L. Assessment of damage to the central nervous system by determination of S-100 protein in the cerebrospinal fluid. J. Neurol. Neurosurg. Psychiatry.1982,45(12): 1130-1135.
    [28]Mokuno K., Kato K., Kawai K., Matsuoka Y. Sobue I. Neuron-specific enolase and S-100 protein levels in cerebrospinal fluid of patients with various neurological diseases. J. Neurol. Sci.1983,60(3):443-451.
    [29]Noppe M., Crols R., Andries D., Lowenthal A. Determination in human cerebrospinal fluid of glial fibrillary acidic protein, S-100 and myelin basic protein as indices of nonspecific or specific central nervous tissue pathology. Clin. Chim. Acta.1986,155(2):143-150.
    [30]Kato K., Nakajima T., Ishiguro Y., Matsutani T. Sensitive enzyme immunoassay for S-100 protein in human cerebrospinal fluid. Biomed. Res.1982,3(1):24-28.
    [31]Aurell A., Rosengren L. E., Wikkelso C., Nordberg G., Haglid K. G. The S-100 protein in cerebrospinal fluid:a simple ELISA method. J. Neurol. Sci.1989, 89(2-3):157-164.
    [32]Griffin W. S. T., Stanley L. C., Yeralan O., Rovaghi C. R., Marshak D. R. Cytokines in human neurodegenerative disease. Methods Neurosci.1993,17:267.
    [33]Doyle M. J., Halsall H. B., Heineman W. R. Enzyme-linked immunoadsorbent assay with electrochemical detection for alpha-1-acid glycoprotein. Anal. Chem. 1984,56(13)2355-2360.
    [34]Joos T. O., Schrenk M., Hopfl P., Kroger K., Chowdhury U., Stoll D., Schorner D., Durr M., Herick K., Rupp S., Sohn K., Hammerle H. A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 2000,21(13):2641-2650.
    [35]Ohkuma H., Abe K., Ito M., Kokado A., Kambegawa A., Maeda M. Development of a highly sensitive enzyme-linked immunosorbent assay for bisphenol A in serum. Analyst.2002,127(1):93-97.
    [36]Lu H. H., Conneely G., Crowe M. A., Aherne M., Pravda M., Guilbault G. G. Screening for testosterone, methyltestosterone,19-nortestosterone residues and their metabolites in bovine urine with enzyme-linked immunosorbent assay (ELISA). Anal. Chim. Acta.2006,570(1):116-123.
    [37]Lai S., Wang S. N., Luo J., Lee L. J., Yang S. T., Madou M. J. Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal. Chem.2004,76(7):1832-1837.
    [38]Cho Y. A., Kim Y. J., Hammock B. D., Lee Y. T., Lee H. S. Development of a microtiter plate ELISA and a dipstick ELISA for the determination of the organophosphorus insecticide fenthion. J. Agric. Food. Chem.2003,51(27): 7854-7860.
    [39]Knopp A., Knopp D., Niessner R. ELISA determination of the sulfonylurea herbicide metsulfuron-methyl in different water types. Environ. Sci. Techn.1999, 33(2):358-361.
    [40]Sia S. K., Linder V.,. Parviz B. A, Siegel A., Whitesides G. M. An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew.Chem. Int. Ed.2004,43(4):498-502.
    [41]Herr A. E., Hatch A. V., Throckmorton D. J., Tran H. M., Brennan J. S., Giannobile W. V., Singh A. K. Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc. Natl. Acad. Sci. USA 2007,104(13):5268-5273.
    [42]Figeys D., Pinto D. Lab-on-a-chip:A revolution in biological and medical sciences. Anal. Chem.2000,72(9):330-335A.
    [43]Manz A., Graber N., Widmer H. M. Micromachining of monocrystalline silicon and glass for chemical analysis systems-A look into next century's technology [J]. Sens. Actuators. B,1990, B(1):244-248.
    [44]Lionello A., Josserand J., Jensen H., Girault H. H. Dynamic protein adsorption in microchannels by "stop-flow" and continuous flow. Lab Chip 2005 5(10): 1096-1103.
    [45]Shin K. S., Lee S. W., Han K. C., Kim S. K., Yang E. K., Park J. H., Ju B. K., Kang J. Y., Kim T. S. Amplification of fluorescence with packed beads to enhance the sensitivity of miniaturized detection in microfluidic chip. Biosens. Bioelectron. 2007,22(9-10):2261-2267.
    [46]Cho J. H., Han S. M., Paek E. H., Cho I. H., Paek S. H. Plastic ELISA-on-a-chip based on sequential cross-flow chromatography. Anal. Chem.2006,78(3): 793-800.
    [47]Liu Y, Lu H. J., Zhong W., Song P. Y., Kong J. L., Yang P. Y, Girault H. H., Liu B. H. Multi layer-assembled microchip for enzyme immobilization as reactor toward low-level protein identification. Anal. Chem.2006,78(3):801-808.
    [48]Ji J., Zhang Y.H., Zhou X.Q., Kong J.L., Tang Y., Liu B.H. Enhanced protein digestion through the confinement of nanozeolite-assembled microchip reactors Anal. Chem.2008,80(7):2457-2463.
    [49]Liu Y, Zhong W., Meng S., Kong J. L., Lu H. J., Yang P. Y, Girault H. H., Liu B. H. Assembly-controlled biocompatible interface on a microchip:Strategy to highly efficient proteolysis. Chem. Eur. J.2006,12(25):658506591.
    [50]Liu Y., Wang H. X., Huang J. Y., Yang J., Liu B. H., Yang P. Y. Microchip-based ELISA strategy for the detection of low-level disease biomarker in serum. Anal. Chim. Acta.2009,650(1):77-82.
    [51]Wang H. X., Meng S., Guo K., Liu Y., Yang P. Y, Zhong W., Liu B. H. Microfluidic immunosensor based on stable antibody-patterned surface in PMMA microchip, Electrochem. Commun.2009,10(3):447-450.
    [52]Kurita R., Yokota Y, Sato Y, Mizutani F., Niwa O. On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system. Anal. Chem.2006,78(15): 5525-5531.
    [53]Wang J., Ibanez A., Chatrathi M. P. On-chip integration of enzyme and immunoassays:Simultaneous measurements of insulin and glucose J. Am. Chem. Soc.2003,125(28):8444-8445.
    [54]Qu H. Y, Wang H. T., Huang Y., Zhong W., Lu H. J., Kong J. L., Yang P. Y, Liu B. H. Stable micro structured network for protein patterning on a plastic microfluidic channel:Strategy and characterization of on-chip enzyme microreactors. Anal. Chem.2004,76(21):6426-6433.
    [55]Bai Y. L., Koh C. G., Boreman M., Juang Y J., Tang I. C., Lee L. J., Yang S. T. Surface modification for enhancing antibody binding on polymer-based microfluidic device for enzyme-linked immunosorbent assay. Langmuir 2006,22 (22):9458-9467.
    [1]Colyer C. L., Tang T., Chiem N., Harrison D. J. Clinical potential of microchip capillary electrophoresis systems. Electrophoresis.1997,18(10):1733-1741.
    [2]Figeys D., Pinto D. Proteomics on a chip:Promising developments. Electrophoresis.2001,22(2):208-216.
    [3]Olsen K. G., Ross D. J., Tarlov M. J. Immobilization of DNA hydrogel plugs in microfluidic channels. Anal. Chem.2002,74,1436-1441.
    [4]Schilling E. A., Kamholz E., Yanger P. Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal. Chem. 2002,74,1798-1804.
    [5]Kopp M. U., De Mello A. J., Manz A. Chemical amplification:continuous-flow PCR on a chip. Science 1998,280,1046-1048.
    [6]Braun S., Rappoport S., Zusman R., Avnir D., Ottolenghi M. Biochemically Active Sol-Gel Glasses-the Trapping of Enzymes. Mater. Lett.1990,10,1-5.
    [7]Ellerby L. M., Nishida C. R., Nishida F., Yamanaka S. A., Dunn B., Valentine J. S., Zink J. I. Encapsulation of Proteins in Transparent Porous Silicate-Glasses Prepared by the Sol-Gel Method. Science.1992,255(5048):1113-1115.
    [8]Dave B. C., Dunn B., Valentine J. S., Zink J. I. Sol-gel encapsulation methods for biosensors [J]. Anal. Chem.,1994,66:1120-1127.
    [9]Kim Y. D., Park C. B., Clark D. S. Stable sol-gel microstructured and microfluidic networks for protein patterning. Biotechnol. Bioeng.2001,73(5):331-337.
    [10]Figeys D., Pinto D. Lab-on-a-chip:A revolution in biological and medical sciences. Anal. Chem.2000,72(9):330a-335a.
    [11]Rossier J. S., Youhnovski N., Lion N., Damoc E., Becker S., Reymond F., Girault H. H., Przybylski M. Thin-chip microspray system for high-performance Fourier-transform ion-cyclotron resonance mass spectrometry of biopolymers. Angew. Chem. Int. Edit.2003,42(1):54-58.
    [12]Lion N., Gellon J. O., Jensen H., Girault H. H. On-chip protein sample desalting and preparation for direct coupling with electrospray ionization mass spectrometry. J. Chromatogr. A.2003,1003(1-2):11-19.
    [13](a) Rohner T. C., Josserand J., Jensen H., Girault H. H. Numerical investigation of an electrochemically induced tagging in a nanospray forprotein analysis. Anal. Chem.2003,75:2065-207; (b) Lionello A., Josserand J., Jensen H., Girault H. H. Dynamic protein adsorption in microchannels by "stop-flow" and continuous flow. Lab Chip 2005,5:254-260.
    [14]Heyl P., Olschewski T., Wijnaendts R. W. Manufacturing of 3D structures for micro-tools using laser ablation. Microelectron. Eng.2001,57:775-780.
    [15]Roberts M. A., Rossier J. S., Bercier P., Girault H. UV laser machined polymer substrates for the development of microdiagnostic systems. Anal. Chem.1997,69 (11):2035-2042.
    [16]Jiang Y, Lee C. S. On-line coupling of micro-enzyme reactor with micro-membrane chromatography for protein digestion, peptide separation, and protein identification using electrospray ionization mass spectrometry. J. Chromatogr. A.2001,924(1-2):315-322.
    [17]Mao H. B., Yang T. L., Cremer P. S. Design and characterization of immobilized enzymes in microfluidic systems. Anal. Chem.2002,74(2):379-385.
    [18]Jin L. J., Ferrance J., Sanders J. C., Landers J. P. A microchip-based proteolytic digestion system driven by electroosmotic pumping. Lab Chip.2003,3(1):11-18.
    [19]Sanders G. H. W., Manz A. Chip-based microsystems for genomic and proteomic analysis. Trac-Trend.Anal. Chem.2000,19(6):364-378.
    [20]Kim Y. D., Park C. B., Clark D. S. Stable sol-gel microstructured and microfluidic networks for protein patterning. Biotechnol. Bioeng.2001,73(5): 331-337.
    [21]Sakai-Kato K., Kato M., Toyo'oka T. On-line trypsin-encapsulated enzyme reactor by the sol-gel method integrated into capillary electrophoresis. Anal Chem. 2002,74(13):2943-2949.
    [22]Sakai-Kato K., Kato M., Toyo'oka T. Creation of an on-chip enzyme reactor by encapsulating trypsin in sol-gel on a plastic microchip. Anal. Chem.2003,75(3): 388-393.
    [23]Belder D., Ludwig M. Surface modification in microchip electrophoresis. Electrophoresis.2003,24(21):3595-3606.
    [24]Dodge A., Fluri K., Verpoorte E., de Rooij N. F. Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays. Anal Chem.2001,73(14):3400-3409.
    [25]Mao H. B., Yang T. L., Cremer P. S. Design and characterization of immobilized enzymes in microfluidic systems. Anal. Chem.2002,74(2):379-385.
    [26]Eteshola E., Leckband D. Development and characterization of an ELISA assay in PDMS microfluidic channels [J] Sens. Actuators B.2001,72:129-133.
    [27]Sakai-Kato K., Kato M., Toyo'oka T. Creation of an on-chip enzyme reactor by encapsulating trypsin in sol-gel on a plastic microchip. Anal Chem.2003,75(3): 388-393.
    [28]Seong G. H., Zhan W., Crooks R. M. Fabrication of microchambers defined by photopolymerized hydrogels and weirs within microfluidic systems:Application to DNA hybridization. Anal. Chem.2002,74(14):3372-3377.
    [29]Seong G. H., Crooks R. M. Efficient mixing and reactions within microfluidic channels using microbead-supported catalysts. J. Am. Chem. Soc.2002,124(45): 13360-13361.
    [30]Seong G. H., Heo J., Crooks R. M. Measurement of enzyme kinetics using a continuous-flow microfluidic system. Anal. Chem.2003,75(13):3161-3167.
    [31]Wu H. L., Zhai J. J., Tian Y. P., Lu H. J., Wang X. Y., Jia W. T., Liu B. H., Yang P. Y, Xu Y. Y., Wang H. H. Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance. Lab Chip 2004,4:588-597.
    [32]Qu H. Y, Wang H. T., Huang Y, Zhong W., Lu H. J., Kong J. L., Yang P. Y., Liu B. H. Stable microstructured network for protein patterning on a plastic microfluidic channel:strategy and characterization of on-chip enzymer microreactors. Anal. Chem.2004,76:6426-6433.
    [33]Wu H. L., Tian Y. P., Liu B. H., Lu H. J., Wang X. Y, Zhai J. J., Jin H., Yang P. Y, Xu Y M., Wang H.H. Titania and alumina sol-gel-derived microfluidics enzymatic-reactors for peptide mapping:Design, characterization, and performance. J. Proteome Res.2004,3:1201-1209.
    [34]Kozlov M., Quarmyne M., Chen W., McCarthy T. J. Adsorption of poly(vinyl alcohol) onto hydrophobic substrates. A general approach for hydrophilizing and chemically activating surfaces. Macromolecules.2003,36(16):6054-6059.
    [35]Dauginet L., Duwez A. S., Legras R., Demoustier-Champagne S. Surface modification of polycarbonate and poly(ethylene terephthalate) films and membranes by polyelectrolyte deposition. Langmuir.2001,17(13):3952-3957.
    [36]Bronshtein A., Aharonson N., Avnir D., Turniansky A., Altstein M. Sol-gel matrixes doped with atrazine antibodies:Atrazine binding properties. Chem. Mater.1997,9(11):2632-2639.
    [37]Jiang D. C., Tang J., Liu B. H., Yang P. Y, Kong J. L. Ultrathin alumina sol-gel-derived films:Allowing direct detection of the liver fibrosis markers by capacitance measurement. Anal. Chem.2003,75(17):4578-4584.
    Rohner T. C., Rossier J. S., Girault H. H. On-line electrochemical tagging of cysteines in proteins during nanospray. Electrochem. Commun.2002,4(9):695-700.
    [38]Bianchi F., Wagner F., Hoffmann P., Girault H. H. Electroosmotic flow in composite microchannels and implications in microcapillary electrophoresis systems. Anal. Chem.2001,73(4):829-836.
    [39]Roberts M. A., Rossier J. S., Bercier P., Girault H. UV laser machined polymer substrates for the development of microdiagnostic systems. Anal. Chem.1997, 69(11):2035-2042.
    [40]Peterson D. S., Rohr T., Svec F., Frechet J. M. J. High-throughput peptide mass mapping using a microdevice containing trypsin immobilized on a porous polymer monolith coupled to MALDI TOF and ESI TOF mass spectrometers. J. Proteome Res.2002,1(6):563-568.
    [41]Ekstrom S., Onnerfjord P., Nilsson J., Bengtsson M., Laurell T., Marko-Varga G. Integrated microanalytical technology enabling rapid and automated protein identification. Anal. Chem.2000,72(2):286-293.
    [42]Wang C, Oleschuk R., Ouchen F., Li J. J., Thibault P., Harrison D. J. Integration of immobilized trypsin bead beds for protein digestion within a microfluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface. Rapid Commun. Mass. Sp.2000,14(15):1377-1383.
    [43]Shi H. Q., Tsai W. B., Garrison M. D., Ferrari S., Ratner B. D. Template-imprinted nanostructured surfaces for protein recognition. Nature.1999, 398(6728):593-597.
    [44]Qioa L., Liu Y., Hudson S. P., Yang P. Y, Magner Y, Liu B. H. A nanoporous reactor for efficient proteolysis. Chem.-Eur. J.2008,14(1):151-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700