用户名: 密码: 验证码:
高通量细胞电融合芯片及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞电融合技术是通过外界电场在离体条件下控制两个或多个细胞融合变成一个单核或多核杂合细胞的方法。相较于生物、化学和物理等诱导融合技术而言,细胞电融合技术具有效率较高、操作简便、对细胞无毒害、便于观察、适于仪器应用和规范操作等优点,逐渐成为了现代生物技术/生物工程研究领域的重要手段,已经在遗传学、动植物远缘杂交育种、发育生物学、免疫医学、医药制备以及食品工业等方面得到了广泛应用,特别是在杂交育种、药物筛选、单克隆抗体制备、抗癌疫苗研发、临床医学研究等方面成为了核心技术。
     MEMS技术的产生使得细胞电融合技术向微尺度条件发展,该加工技术可以实现微米量级的微结构的加工,进而可以在芯片上集成大量微电极阵列,使得高通量细胞电融合成为可能;同时,微米量级的电极间距使得细胞电融合的电压可大大降低,进而可在低电压驱动条件下完成细胞电融合过程。
     目前已经商业化的细胞电融合系统通常存在排队及融合效率低的问题。课题组前期通过研制细胞电融合芯片在上述领域取得了一定进展,细胞排队率达到了69.2±18.5%的水平,细胞融合率也较传统细胞电融合系统得到了显著改善(PEG融合法:1‰,传统电融合法:1%),排队后细胞融合率最高达到了50.2%的水平。但对于高通量细胞电融合芯片的工程化推广应用还有较大距离,特别是细胞的两两排队率和两两融合率两项指标还有待进一步提高;同时,课题组前期研究芯片在芯片的操作性,以及融合后细胞的鉴定方面还存在空白。因此,针对上述问题,本论文开展了相关的研究工作:
     在深入研究细胞介电电泳、细胞电穿孔等经典理论的基础上,结合有限元分析方法,利用COMSOL仿真软件分析了微尺度条件下芯片内部的电场分布情况,探讨相关因素对电场分布的影响,并结合上述经典理论提出了芯片结构的优化设计方案,建立了微尺度条件下高效率细胞排队控制和电融合的方法,以提高芯片的两两排队率和融合率;针对细胞电融合芯片的进一步工程化应用,从提高芯片的可操作性和芯片排队及融合效率的角度出发,结合微加工技术,研究开展了系列化的高通量细胞电融合芯片:基于SOI基底的细胞电融合芯片→基于PI的柔性细胞电融合芯片→基于硅玻键合基片的细胞电融合芯片→基于表面电极技术的细胞电融合芯片;同时,本论文还根据实验需要,利用细胞电融合芯片及相关仪器设备构建了完善的细胞电融合实验平台;并利用该实验平台开展了覆盖动物、植物、微生物细胞在内的广泛的细胞电融合实验研究,利用荧光标记、融合后培养及核型分析等手段进一步验证了本系统电融合的安全性和有效性。具体而言,本论文的研究工作主要包括以下几个方面:
     1.理论研究及芯片内部电场分布仿真计算
     本论文结合电磁学、细胞电介质电泳、细胞电融合等经典理论,结合有限元分析方法,利用COMSOL仿真软件分析了微尺度条件下芯片内部的电场分布情况。重点探讨细胞电融合芯片各结构参数对芯片内部电场分布、电场梯度的影响;并根据相关仿真结果对芯片结构进行了优化设计,提出了一种高效率的电极结构模型。同时,本论文还根据经典理论和仿真结果,提出了微尺度条件有利于实现细胞排队控制与高效率电融合的方法,重点提高芯片的两两排队率和融合率。
     2.系列化高通量细胞电融合芯片的研究
     本论文结合理论分析及仿真结果,从芯片的可靠性、稳定性、集成度、生物相容性、细胞排队操控性、细胞电融合效率、实验过程可观测性以实验操作便利性多个角度出发,综合考虑了材料、加工工艺、封装实现、加工成本等多因素,以获得优化的芯片研制方案并陆续研制了系列化的高通量细胞电融合芯片。
     3.细胞电融合实验平台的建立
     本论文根据实验的具体需要,结合上述系列化的细胞电融合芯片的具体特征,利用相关仪器设备搭建了不同的细胞电融合实验平台,以获得高效的实验效果。
     4.细胞电融合实验研究
     本论文利用细胞电融合实验平台,开展了涵盖动物、植物、微生物细胞在内的多样化细胞的电融合实验研究。实验结果表明研究的系列化细胞电融合芯片能够在极低的驱动电压条件下工作(排队电压在2~10 V,融合电压在8~60 V),并较好的完成细胞电融合各过程,而芯片内部微电极的高集成度(103~105量级)为高通量的细胞电融合奠定了坚实基础。芯片在实验中表现出了良好的细胞排队控制能力,可以实现绝大多数的细胞完成排队迁徙(90±9.5%),同源细胞的两两排队率在40~60%的水平范围内,异源细胞的两两排队率也在35%水平以上。在良好的细胞排队控制基础上,细胞能够在芯片中以较高的效率完成电融合,排队后细胞的融合率平均水平最高达到了60%以上,最好水平达到了90%。远远超过了传统的PEG融合法(1‰)和电融合法(1%),也较课题组前期研究工作有了较大提高(细胞排队率:69.2±18.5%,排队后细胞融合率最高为50.2%)。
     在微生物细胞的电融合实验研究,以基于SOI基片的细胞电融合芯片为载体,以BS-34菌株为研究对象,探讨了相关实验参数对细胞排队效率及电融合效率的影响,融合后的BS-34菌株的关键参数-乳化力得到了明显改善。
     在烟草原生质体的实验中,以基于PI的柔性细胞电融合芯片为载体,本论文提出了利用细胞电融合方法构建烟草原生质体四倍体的实验方案,并开展了相关的实验研究。
     在动物细胞电融合实验研究中,以基于硅玻键合基片的细胞电融合芯片为载体,探索了多种动物细胞的电融合实验参数并开展了相关融合实验,在此基础上利用NIH3T3细胞和小鼠胚胎干细胞(mMESc)进行体细胞与干细胞的电融合实验研究,实验结果表明本系统能够较好的实现体细胞与干细胞的电融合实验,并能够有效地控制细胞的排队运动,以较高的效率完成细胞电融合,融合后的细胞培养实验和核型分析结果也表明这一实验方案的可行性和有效性,可望探索出一条体细胞的再程序化研究新途径。
     总之,本论文通过理论分析和仿真研究,分析了微尺度条件下细胞电融合芯片内部的电场分布情况,探讨了相关因素的具体影响;根据仿真结果研制了系列化的细胞电融合芯片;建立了相关的细胞电融合实验平台;开展了覆盖动物、植物、微生物的细胞电融合实验研究,取得了良好结果,为本系统进一步应用于微生物菌种改良、植物育种、体细胞再程序化研究等应用奠定了坚实基础。
     同时,本论文还开展了后期改进方案的研究与设计,为进一步提高芯片效能,实现系统的微型化、集成化、系统化,建立一套完整的集成细胞进样预处理、细胞芯片上电融合、融合后细胞检测/分离纯化、融合后系统的芯片式培养奠定了良好基础。
Cell electrofusion technology is applying electric stimulation to let two or more cells merge into a hybrid cell in an asexual way. In comparison with the traditional biological, chemical and physical mediated cell fusion method, cell electrofusion technique has many advantages such as high efficiency, easy operation, no contamination and visual fusion process. It has becoming an important tool in biological technology and bioengineering research, and been widespread used in genetics, animal and plant hybridization, biological evolution, immunology, drug development, food industry. Especially, it has become a key technology in crossbreeding, drug screening, antibody production, cancer vaccine development.
     MEMS technology helps the research of cell electrofusion go deep into microscale. Microfabrication can achieve micrometer scale structure and integrate a large number of microelectrodes on a chip to realize makes high-throughput cell electrofusion. Moreover, micrometer distance between microelectrode pair decreases the requirement of voltage during the fusion. Thus, cell electrofusion chip can work in low-voltage condition.
     Commercial cell electrofusion systems have some problem, like low efficiency in cell alignment and cell electrofusion. Our group has developped a cell electrofusion chip to solve these problems. It has maded some progress in cell alignment (the cell alignment efficiency up to 69.2±18.5%). And its fusion efficiency in paired cells (50.2%) was much larger than those in traditional chemical induced fusion (1‰) and electrofusion (1%). But for high-throughput cell electrofusion chip promote the use of engineering there is a large distance. Especailly the efficiency of cell alignment and cell electrofusion need to improve. In the same time, the research on operability, cluture of fused cell, and the fused cell karyotyping are still exist. Therefore, combined with these problems, this paper carried out research as follws:
     In this paper, based on the research on the classic theory of cell dielectrophoresis and cell electroporation, the profile of electric field on the chip was analyzed by using finite element method and the COMSOL simulation software. The researching emphasis was focused on those factors which could impact the profile of the electric field and the simulation results were used to guide the optimization of chip structures. High-efficiency cell-alignment control and electrofusion method have been established on the theory analysis and simulation. It aims to improve the efficiency of chip in cell alignment and cell electrofusion. Combined with micro-processing technology, a series of cell-electrofusion chip based on SOI wafer, flexible polymer (PI substrate), silicon-glass bonding wafer, and surface-electrode technique were developed.
     1. Theoretical research and simulation of electric field profile on the chip
     Based on classical electromagnetic, dielectrophoretic, cell-electrofusion theories, the electric-field profile on the cell-electrofusion chip was analyzed by using finite element method and COMSOL simulation software. In particular, the relationship between electric field intensity, electric field gradient and the structure parameters such as arrangement and size of the microelectrodes was computed. According to the simulation results, optimized microelectrode structures were developed and high-efficiency cell alignment control and electrofusion method was established.
     2. A series of cell-electrofusion chip
     Based on theoretical analysis and simulation, a series of cell-electrofusion chip were developed. Comprehensively thinking of the reliability, stability, integration, biocompatibility, cell aligment, fusion efficiency, materials, fabrication technique, package and cost, optimized chip design and a series of cell-electrofusion chips were developed.
     3. Establishment of the cell-electrofusion platform
     According to the specific requirements of the experimental research and the characteristics of the series cell electrofusion chip mentioned above, two cell electrofusion platforms were established.
     4. Cell-electrofusion experimental research
     On the cell electrofusion platform, many cell-electrofusion experiments based on animal, plant, microorganism cells were carried out. Experimental results showed that these chips could work under low-voltage conditions, and the cell alignment voltage was only 2~10 V and the cell-electrofusion voltage was 8~60 V. A great number of microelectrodes (103~105 on the chip) could be used to control lots of cells to realize cell alignment and electroporation. It was the base for high-throughput cell electrofusion. In the electrofusion experiments, high-efficiency cell alignment control has been realized. On the chip, more than 90±9.5% cells moved towards the microelectrodes and were aligned by the dielectrophoretic force which was generated by the alignment signal. By adjusting the electric-filed intensity, most cells could be controlled to align as cell-cell pairs (homologous cells cell-cell pairs rate of 40~60%). Based this high-efficiency cell alignment, cell pairs were fused to form hybrid cells under the control of cell electroprotaion signal. The fusion efficiency in pairs cells, more than 60% (the best level reached 90%), which was a great improvement compared with traditional PEG method (less than 1‰) and electrofusion methods (less than 1%).
     In cell-electrofusion experiments about microorganisms based on the SOI cell electrofusion chip, strains BS-34 was choosen as researching samples. The impact of the experiment parameters such as the ion concentration, voltage, etc. on the cell alignment and electrofusion was explored. The surface tension of fused strains increased from 62% to 85%, which showed that this cell-electrofusion system had great potential in strains promotion.
     In the electrofusion experiments on plant protoplasts based on the PI substrate cell electrofusion chip, tobacco protoplasts were used to constructed tetraploid tobacco hybrid. Relative experimental research has been carried out.
     In the electrofusion experiments on animal cells based on the silicon-glass bonding chip, the impact of many parameters on the fusion efficiency has been explored and relative fusion experiments have been carried out. For example, NIH3T3 cells and mMESc were used as samples to research the electrofusion between somatic cells and stem cells. These results validated that our system could perform high-efficiency cell electrofusion process. Culture and karyotype analysis of fused cells also proved the feasibility and effectiveness of this system. This chip could produce large amounts of fused cells at the same time and it established a good foundation for somatic cell reprogramming research.
     In conclusion, by using the theoretical and simulation research, the on-chip profile of electric field and other factors have been analyzed. A series of chip and electrofusion platform have been developed. Experimental research on animal, plant and microbial cells have been done, which set up good foundation for strains improvement, plant breeding, and reprogramming of somatic cells.
     Meanwhile, some design and research for future working have been explored, whose objectives were to realize miniaturization, integration and systematization, and set up a whole system integrated with sample preparation, on-chip electrofusion, detection and separation of fused cells, and on-chip cell culture.
引文
[1]李志勇.细胞工程[M].北京:科学出版社, 2003.
    [2] Vahey M D, Voldman J. A new equilibrium method for continuous-flowcell sorting using dielectrophoresis[J]. Analytical Chemistry, 2008, 80(9): 3135-3143.
    [3] Elizabeth H C, Eric N O. Unveiling the Mechanisms of Cell-Cell Fusion[J]. Science, 2005, 308(5720): 369-373.
    [4] Okada Y, Bikens J. The introduction of cell fusion with non-activity Xitai virus[J]. Nature, 1958, (1): 103-110.
    [5] Hayashi T, Tanaka J. Immunogenicity and Therapeutic Efficacy of Dendritic–Tumor Hybrid Cells Generated by Electrofusion[J]. Clinical Immunology, 2002, 104(1): 14-20.
    [6] Trefzer U, Weingart G, Chen Y W, et al. Hybrid cell vaccination for cancer immune therapy: first clinical trial with metastatic melanoma[J]. Int J Cancer, 2000, 85: 618-626.
    [7] Song W, Tong Y, Carpenter H, et al. Persistent, antigen-specific, therapeutic antitumor immunity by dendritic cells genetically modified with an adenoviral vector to express a model tumor antigen[J]. Gene Ther, 2000, 7: 2080-2086.
    [8] Kyozuka J. Production of cytoplasmic male Strile vice by cell fusion[J]. Bio-technology, 1989, 7: 1171-1174.
    [9] Senda M. Plant Cell Physoil[J]. Plant Cell Rep, 1979, 20(1): 441-443.
    [10] Assani A, Chabane D, Ha?cour R, et al. Protoplast fusion in banana (Musa spp.): comparison of chemical (PEG: polyethylene. glycol) and electrical procedure[J]. Plant Cell Tissue and Organ Culture, 2005, 83(2): 145-151.
    [11]汪睦和,谢廷栋.细胞电穿孔电融合电刺激原理技术及其应用[M].天津科学技术出版社, 2000.
    [12] Zimmermann U, Pilwat G. The relevance of electric field induced changes in the membrane structure to basic membrane research and clinical therapeutics and diagnosis[C]. Abstract IV-19-(H) of the 6th International Biophysics Congress, Kyoto, Japan, 1978: 140.
    [13] Van Wert S L, Saunders J. Electrofusion and electroporation of plants [J]. Plant Physical, 1992, 99: 365-367.
    [14] Zimmermann U, Büchner K H, Arnold W M. Electrofusion of cells: Recent developments and relevance for evolution[M]. In Allen M J, Usherwood P N R (eds.) Charge and Field Effects in Biosystems, Abacus Press, 1984: 293-318.
    [15] Zimmermann U, Vienken J, Pilwat G, et al. Electrofusion of cells: principles and potential for the future[M]. In Cell Fusion (CIBA Foundation Symposium 103), Pitman, London, 1984:67-73.
    [16] TeissiéJ, Rols M P. Fusion of mammalian cells in culture is obtained by creating the contact between cells after their electropermeabilization[J]. Biochem Biophys Res Commun, 1986, 140(1): 258-266.
    [17] Schnettler R, Zimmermann U. Influence of the composition of the fusion medium on the yield of electrofused yeast hybrids[J]. FEMS Microbiology Letters, 1985, 27: 195-198.
    [18] Weaver J C. Understanding conditions for which biological effects of nonionizing electromagnetic fields can be expected[J]. Bioelectrochemistry, 2002, 56(1): 207-209.
    [19] Zimmermann V, Scheurich P. The cell fusion of method with electro-mechanical fusion[J]. Planta, 1981, 151: 26-32.
    [20] Zimmermann U. Electric field mediated fusion and related electrical phenomena [J]. Biochem Biophy Acta, 1982, 694: 227-277.
    [21] Shimizu K, Nagasawa H, Takahasi K, et al. Mammalian cell fusion in an electroporation device[J]. Journal of Immunological Methods, 1995, 18(2): 209-217.
    [22] Wiegand R, Weber G, Zimmermann K, et al. Laser-induced fusion of mammalian-cells and plant-protoplasts[J]. Journal of Cell Science, 1987, 88: 145-149.
    [23] Steubing R W, Cheng S, Numajiri Y, et al. Laser Induced Cell Fusion in Combination with Optical Tweezers: The Laser Cell Fusion Trap[J]. Cytometry, 1991, 12: 505-510.
    [24]郑慧琼,王六发,陈爱地等.烟草细胞的空间电融合[J].科学通报, 2003, 48(13): 1438-1441.
    [25]沈羡云.神舟四号上的细胞融合实验[J].中国航天, 2003, 9: 10-12.
    [26]刘承宪.细胞电融合技术在空间的发展潜力[J].植物生理学通讯, 1996, 32(4): 300-307.
    [27]刘承宪. 21世纪空间生命科学和空间生物技术发展的机遇与挑战[J].科技导报, 2000, 2: 40-45.
    [28]汤章城.空间植物科学与技术[J].植物生理学通讯, 2003, 39(06): 665-669.
    [29]吴建刚,岳瑞峰,曾雪锋等.用于微全分析系统的数字化微流控芯片的研究[J].分析化学, 2006, 34(7): 1042-1046.
    [30]章吉良,杨春生等.微机电系统及其应用[M].上海交通大学出版社, 2000.
    [31] Masuda S, Washizu M, Nanba T. Novel method of cell fusion in field constriction area in fluid integrated circuit[J]. IEEE Transac. Indus. Appl, 1989, 4: 732-737.
    [32] Chiu DT. A microfluidics platform for cell fusion[J]. Curr. Opin. Chem. Bio, 2001, 5: 609-612.
    [33] Guillaume Tresset, Shoji Takeuchi. A microfluidic device for electrofusion for biological vesicles[J]. Biomedical Microdevices. 2004, 63: 213-218.
    [34] Jun Wang, Chang Lu. Microfluidic cell fusion under continuous direct current voltage[J]. APPLIED PHYSICS LETTERS, 2006, 89: 234102(1-3)
    [35] Zhao Z Q, Zheng X L, Xiong J G, et al. A 3-D microelectrodes array microchip applied to cellfusion [C]. 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2005: 1282-1285.
    [36] Ju J, Ko J M, Cha H C, et al. A microfluidic device for electrofusion of two plant cells[M]. Springer Berlin Heidelberg, 2007: 302-305
    [37] Wang J, Stine M J, Lu C. Microfluidic cell electroporation using a mechanical valve[J]. Anal Chem, 2007, 79(24): 9584-9587
    [38] A. M. Skelley, O. Kirak, H Suh, et al. Microfluidic control of cell pairing and fusion[J]. Nature Methods, 2009, 6: 147-152.
    [39] Zimmermann U. Electrical breakdown electropermeabilization and electrofusion[M]. Springer Berlin Heidelberg, 1986: 175-256
    [40] Tresset G, Takeuchi S. Utilization of cell-sized lipid containers for nanostructure and macromolecule handling in microfabricated devices[J]. Anal Chem, 2005, 77: 2795-2801.
    [41] Cui H H, J Voldman, X F He, et al. Separation of Particles by Pulsed Dielectrophoresis[J]. Lab on a Chip, 2009, 9: 2306-2312.
    [42] Chen E H, Grote E, Mohler W, et al. Cell-cell fusion [J]. FEBS Lett, 2007, 581(11): 2181-2193.
    [43] Pohl HA. The motion and precipitation of suspensoids in divergent electric fields[J]. J. Appl. Phys., 1951, 22: 869-871.
    [44] Pohl HA. Separation of living and dead cells by dielectrophoresis[J]. Science, 1966, 152: 647-649.
    [45] Fielding G H, Phompson J K, Borgardus H F, et al. Dielectrophoretic filtration of solid an liquid aerosol particulates[C]. 68 th Annual Meeting Pollution Control Association. 1975
    [46] Verschure R H, Ijlst L. Apparatus for continuous dielectric-medium separation of mineral grains[J]. Nature, 1966, 211: 619-620.
    [47] Santamaria C, Ijlesias F J, Dominguez A. Dielectrophoretic deposition in suspensions of macromolecules: Polyvingychloride and Sephadex G-50[J]. J. Colloid Interface Sci. 1985, 103: 508-515.
    [48] Pohl HA, Crane JS. Dielectrophoresis of cells[J]. Biophys. J., 1971, 11: 711-727.
    [49] Iglesisas FJ, Lopez MC, Santamaria C, et al. Dielectrophoretic properties of yeast cells dividing by budding and by trabsversal fissioh[J]. Biochim. Biophys. Acta., 1984, 804: 221-229.
    [50] Iglesisas FJ, Lopez MC, Santamaria C, et al. Orientation of Schizosacharomyces pombe nonliving cells under alternating uniform and nonuniform electric fields[J]. Biophys. J., 1985, 48: 721-726.
    [51] Zimmermann U, Arnold WM. The interpretation and use of the rotaion of biological cells[J]. Coher. Excit. Bio. Sys., 1983, 2: 211-221.
    [52] Mischel M, Lamprecht I. Dielectrophoretie rotation in budding yeast cells[J]. Z. Naturforsch, 1980, 35: 1111-1113.
    [53] Teixeira-Pinto AA, Nejelski LL, Cutter J, et. al. The behavior of unicellular organisms in an electromagnetic field[J]. Exp. Cell Res., 1960, 20: 548-564.
    [54] Schnettler R, Zimmermann U. Influence of the composition of the fusion medium on the yield of electrofused yeast hybrids[J]. FEMS Microbiology Letters, 1986, 27: 195-198.
    [55] Daniel Johnston; Samuel Miao-sin Wu. Foundations of Cellular Neurophysiology[M]. Cambridge, Massachusetts, London, England: The MIT Press, 1995: 59-64.
    [56] Benguigui L, Lin IJ. The dielectrophoresis force[J]. American J. Phys., 1986, 5: 447-450.
    [57]汪和睦,谢廷栋.细胞电穿孔电融合电刺激原理技术及应用[M].天津,天津科学技术出版社, 2000: 95.
    [58] Holazapfel C, Vienken J, Zimmermann U. Rotaion of cells in an alternating electric field: theory and experimental proof[J].J. Membr. Biol., 1982, 67: 13-26.
    [59] Needham D, Hochmuth R M. Biophys. J. 1989, 55: 1001.
    [60]颜威利,徐桂芝等著.生物医学电磁场数值分析[M].北京:机械工业出版社, 2006.
    [61]胡宁,杨军,侯文生等.基于SOI基底的高通量细胞电融合芯片[J].高等学校化学学报, 2009, 30(1): 42-45.
    [62]夏斌,杨军,胡宁等.基于MEMS细胞电融合芯片的设计及试验研究[J].传感器与微系统, 2009, 28: 45-47.
    [63] SOI材料介绍. http://www.simgui.com.cn/zw/product.asp.
    [64]徐敬波,赵玉龙,蒋庄德等.基于SOI的集成硅微传感器芯片的制作[J].半导体学报, 2007, 28(2): 302-307.
    [65]邱碧秀.微系统封装原理与技术[M].北京:电子工业出版, 2006.
    [66]廖秀英,杨晓波. Si-SiO2薄膜的翘曲度及应力分布测试分析[J].半导体光电, 2003, 23(3): 209-211.
    [67]孙骐,吴广明,周斌等.疏水型SiO2气凝胶薄膜的制备[J].功能材料, 2002, 33(4): 430-434.
    [68]张林,孟宪省,赵光华等.氮化硅结合碳化硅材料的生产与应用[J].耐火材料, 1999, 3: 156-157.
    [69]王海宁,王水弟,蔡坚等.先进的MEMS封装技术[J].半导体技术, 2003, 28(6): 7-10.
    [70]刘晓明,朱钟.微机电系统设计与制造[M].北京:国防工业出版社, 2006.
    [71]曹毅,杨军,胡宁等.一种细胞电融合芯片的研制[J].仪器仪表学报, 2009, 30: 298-302.
    [72]霍丹群,姜志忠,曹毅等.基于微电极阵列的微生物电融合[J].生物技术通报, 2008, 5: 193-197
    [73] Cao Y, Yang J, Yin ZQ, et al. Study of high-throughput cell electrofusion in a microelectrode- array chip[J]. Microfludics & Nanofluidics, 2008, 5: 669-675.
    [74]曹毅,杨军,阴正勤等.高效细胞电融合芯片中的电场分析[J].分析化学, 2008, 36: 593-598
    [75]张菲,段军,曾晓雁等. 355nm紫外激光加工柔性线路板盲孔的研究[J].
    [76] Jong-Mo Seo, Sung June Kim, Hum Chung, et al. Biocompatibility of polyimide microelectrode array for retinal stimulation [J]. Materials Science and Engineering C, 2004, 24: 185-189.
    [77] Richardson RR Jr, Miller JA, Reichert WM. Polyimides as biomaterials: preliminary biocompatibility testing[J]. Biomaterials, 1993, 14(8): 627-35.
    [78] Sun Y, Lacour SP, Brooks RA, et al. Assessment of the biocompatibility of photosensitive polyimide for implantable medical device use[J]. J Biomed Mater Res A, 2009, 90(3): 648-55.
    [79] Ramires PA, Mirenghi L, Romano AR, et al. Plasma-treated PET surfaces improve the biocompatibility of human endothelial cells[J]. J Biomed Mater Res, 2000, 51(3): 535-539.
    [80]潘长江,王进,黄楠等.等离子体表面接枝改性聚对苯二甲酸乙二醇酯的血液相容性研究.功能材料, 2003, 34(4): 468-470.
    [81]刘建伟,陈元维,唐昌伟等. PET膜的接枝改性及其血液相容性研究[J].四川大学学报(工程科学版), 2004, 36(1): 41-44.
    [82] Chow AY, Peachey NS. The subretinal microphotodiode array retinal artificial[J]. Ophthalmic Res, 1998, 30: 195-198
    [83] Hugo H.ammerle, Karin Kobuch. Biostability of micro-photodiode arrays for subretinal implantation[J]. Biomaterials, 2002, 23: 797–804
    [84] D. Ziegler, P. Linderholm, M. Mazza, et al. An active microphotodiode array of oscillating pixels for retinal stimulation[J]. Sensors and Actuators A, 2004, 110: 11–17
    [85]叶嘉明,李明佳,庄金亮等.模板电解法快速制作玻璃微流控芯片.功能材料与器件学报, 2008, 14(2): 491-495.
    [86]刘晓为,王蔚,田丽等.集成微流体测控芯片的研制[J].传感技术学报, 2006, 19(5): 1970-1973.
    [87]殷学锋,方群,凌云扬.微流控分析芯片的加工技术[J].现代科学仪器, 2001, 4: 10-14.
    [88]刘长春,崔大付,赵强等.基于MEMS技术的PDMS电泳微芯片的研制[J].微细加工技术, 2004, 1: 58-61.
    [89]王立凯,冯喜增.微流控芯片技术在生命科学研究中的应用[J].化学进展, 2005, 17(3): 482-498.
    [90]曹毅,杨军,胡宁等.全金属微电极阵列细胞电融合芯片的研制[J].传感技术学, 2009, 22: 171-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700