用户名: 密码: 验证码:
新型人工颈椎间盘不同涂层体外生物相容性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:目前脊柱外科临床上颈椎病的发病率呈上升趋势,且年轻患者所占比重逐渐增大,对于保守治疗效果不理想的患者需要进行手术治疗,传统的颈椎前路减压植骨融合术存在邻近关节退变加速、取骨处疼痛等并发症,而人工颈椎间盘置换术克服了上述不足,且保留了颈椎的生理活动度,近十年来得到了脊柱外科医师和研究者的认可并得到了较快的发展。我国目前脊柱外科临床上使用的人工颈椎间盘全部被欧美产品所垄断,欧美产品价格昂贵,存在一些不足。在这种形势下,清华大学深圳研究院联合我院及多家院校进行合作,致力于研发符合中国人颈椎生理特征的新型人工颈椎间盘,其上下终板材料为钛合金,钛合金具有良好的生物相容性,但钛合金存在生物活性差、与骨结合强度低、在生理环境下易造成金属离子释放等问题。
     目的:设计研发出符合中国人生理特征和尺寸的新型人工颈椎间盘,并对间盘上下终板进行不同涂层喷涂改性,观察3种不同涂层的体外细胞相容性和血液相容性,评价新型人工颈椎间盘3种不同涂层的体外生物相容性,为后期的实验研究及临床应用提供实验依据。
     方法:1、对新型人工颈椎间盘3种不同涂层进行场发射扫描电镜观察及X射线能谱仪检测;2、从Wistar大鼠股骨、胫骨骨髓分离BMSCs,贴壁培养法对其进行传代和纯化,按照1:3比例进行传代,以后4~5天传代1次,对第3代大鼠BMSCs进行鉴定,用符合鉴定标准的大鼠BMSCs进行国产人工颈椎间盘间盘不同涂层体外细胞相容性实验;3、将大鼠BMSCs与3组不同涂层样品共同培养,观察大鼠BMSCs在不同样品表面的黏附分化能力,检测ALP分泌活性及样品的细胞毒性,以评价国产人工颈椎间盘不同涂层体外细胞相容性;4、从大鼠腹主动脉采集3组新鲜血液:第1组、第2组新鲜血与清洁干燥的样品表面接触,分别加入一定量的蒸馏水、生理盐水孵育一定时间,然后收集溶液,利用分光光度计检测溶液吸光度值来评价样品表面动态凝血时间及溶血率;第3组新鲜血离心后收集富含血小板血浆,样品在富含血小板血浆中浸泡一定时间后洗净未黏附的血小板,经固定、脱水、置换及喷金处理后在扫描电镜下观察血小板黏附情况。以上测得的数据用以x±s表示,采用SPSS18.0软件对实验数据进行统计和分析,P<0.05为差异有统计学意义。
     结果:1、扫描电镜显示3组样品呈蜂窝状多孔表面,但HA、Ti+HA涂层的空隙更加均匀;X射线能谱仪分析显示HA、Ti+HA涂层主要由Ti、Ca、P、Si、O、C元素组成,而Ti涂层主要由Ti元素组成。2、大鼠BMSCs经全骨髓分离后,利用贴壁培养法培养,细胞生长状态良好,原代培养8天后铺满瓶底80%以上,传至第3代时细胞多呈梭形生长,细胞形态均一、生长旺盛,流式细胞仪对第3代大鼠BMSCs进行鉴定,结果显示第3代BMSCs表面抗体CD44、CD106阳性表达率分别为95.0%和81.1%,而造血类细胞表面标志CD45呈阴性,表达率为5.0%,符合作为实验细胞的基本标准。3、细胞体外相容性检测结果:3.1大鼠BMSCs与3组样品分别共同培养24、48h后,扫描电镜下可见材料与细胞复合培养24h后表面即有部分细胞黏附,Ti涂层表面的BMSCs呈圆形,而HA和Ti+HA涂层表面的细胞呈梭形或多角形;48h时可见HA和Ti+HA涂层表面的细胞开始铺展,尤其是在Ti+HA涂层表面,细胞呈多角形,并伸出细长的伪足伸入到材料的微孔内,与材料表面紧密粘附。3.2BMSCs与3组样品分别复合培养2-7d后,细胞分泌的ALP量呈上升趋势,3个观察时间点之间比较有统计学意义(P<0.05);3种材料对BMSCs分泌ALP均有促进作用,诱导剂组、Ti涂层组组间比较无统计学意义(P>0.05); HA、Ti+HA涂层组组间比较无统计学意义(P>0.05); HA、Ti+HA涂层组与诱导剂组、Ti组两两比较,有统计学意义((P<0.05)。3.3BMSCs与3组样品分别复合培养2-7d后,50%、100%浸提液组吸光度值在各时间段与对照组两两比较,Ti涂层组与对照组比较,在第2d、第4d及第7d时P>0.05,无统计学差异;材料表面细胞相对增殖率在80~96%之间,材料毒性级别为1级;HA涂层组与对照组比较,在第2d时P>0.05,无统计学差异;第4d、7d时P<0.05,有统计学差异;材料表面细胞相对增殖率在89~114%之间,材料毒性级别为0~1级;Ti+HA涂层组与对照组比较,在第2d时P>0.05,无统计学差异;第4d、7d时P<0.05,有统计学差异;材料表面细胞相对增殖率在91~117%之间,材料毒性级别为0~1级。4、血液体外相容性检测结果:4.1动态凝血时间检测,由各个时间点检测的吸光度值结果绘制的折线图可见,HA、Ti+HA涂层组抗凝血效果优于Ti涂层组,在前30min时间段内优势比较明显,30min后时间段内差异稍缩小,但HA、Ti+HA涂层组抗凝血效果仍优于Ti涂层组。4.2溶血率检测,由各样品吸光度值结果绘制的柱状图可见,HA、Ti+HA涂层组溶血率小于Ti涂层组,且溶血率<1%,符合医学标准要求的植入物溶血率<5%的要求。4.3血小板黏附率检测,大鼠抗凝血离心后收集富含血小板血浆,与3组样品共同孵育1h后,经过处理后,扫描电镜下可见Ti涂层表面有一定量的血小板,且有伪足伸出;而HA、Ti+HA涂层组表面血小板数量很少,呈圆盘状,看不到明显的伪足伸出;HA、Ti+HA涂层有较好的血液相容性。
     结论:新型人工颈椎间盘终板表面喷涂的HA、Ti+HA涂层具有蜂窝状多孔表面,空隙均匀;大鼠BMSCs是良好的骨组织工程细胞,具有取材方便、易于扩增等优点;HA、Ti+HA涂层较Ti涂层具有良好的体外细胞相容性和血液相容性,本实验为假体涂层的初步筛选和改进提供了部分实验资料;后期还要制备其它涂层并进行筛选,以达到获得符合临床应用的最佳涂层的目的。
Background:Recently,the incidence rate of cervical spondylosis is increasing year by year in the spine surgery,and the proportion of young patients are increasing.The conservative treatment is not ideal treatment for patients who require surgical treatment.The complications that the traditional anterior cervical decompression and fusion therapy bring are close joint accelerated degeneration and the donor site pain, which can be overcome by the artificial cervical disc replacement surgery and retain the physiological activity of the cervical spine. In the past decade, it has been accepted by the spine surgeons and researchers and got a rapid development. China's current uses of cervical artificial disc in spinal surgery are all monopolized by European and American products, which are more expensive and there are some other shotage. In this situation, Shenzhen Research Institute of Tsinghua University associated a number of institutions for cooperation, and committed to invent the new artificial cervical disc in accordance with physiological characteristics of the Chinese people. The material of upper and lower endplate of the disc is titanium, which has good biocompatibility, but also weakness of poor biological activity, low strength of combination with bone and easily release of metal ions under physiological conditions.
     Objects:To design and development a kind of new type artificial cervical disc to meet Chinese people's physical characteristics and dimensions, we used different modified coatings of disc endplate, and observed the cell compatibility and hemocompatibility of the three kinds of coatings in vitro, and evaluated the biocompatibility of the three kinds of different coatings in vitro of new type artificial cervical disc, and then try to provide experimental evidences for the latter part of the experimental study and clinical application.
     Methods:1, The three different coatings of new type artificial cervical disc are observed by field emission scanning electron microscopy and detected by X-ray spectrometer;2, Isolating BMSCs from the femur, tibia bone marrow of Wistar rat. BMSCs were passaged and purificated by adherent culture method, and passaged by the proportion of1:3. We can got another generation after four to five days, and the third-generation rat BMSCs were identified. The new type of artificial cervical disc compatibility of different coatings were tested in vitro experiments;3,The rat BMSCs were co-cultured with3different coated samples, observing adhesion and differentiation ability of rat BMSCs on different samples surface, and detecting cytotoxicity and ALP secretion to evaluate the cytocompatibility of different coatings in vitro;4,Collecting three groups of fresh blood from the rat abdominal aortic:the first and second group of fresh blood were touched with the clean, dry surface of different samples, and then added a certain amount of distilled water or physiological saline respectively, and incubated for a certain of period. The solutions were collected to evaluate the dynamic coagulation time and hemolysis of the different samples using a spectrophotometer; the third group of fresh blood was centrifugaled and collected platelet-rich plasma. Different samples were immersed in platelet-rich plasma for certain of period, and then the non-adherent platelets were washed off. After fixation, dehydration, replacement and sprayed gold processions, platelet adhesion proportion was observed by scanning electron microscopy. The measured data were expressed by x±s,using SPSS18.0software for statistical analysis of the experimental data, P<0.05was considered statistically significant.
     Results:1The result of scanning electron microscopy showed that three kinds of samples have honeycomb porous surface, but there are more uniform gaps on HA and Ti+HA coatings; X-ray spectrometer analyzed that HA, Ti+HA coatings are mainly composed of Ti, Ca, P, Si, O, Celements, and the Ti coating is mainly composed of Ti element.2BMSCs were cultured after separation from rat bone marrow by adherent method, the cells grew well. More than80%of the bottom was covered by BMSCs eight days after primary culture. The third generation appeared fusiform growth, forming a uniform, vigorous growth. The third generation rat BMSCs were identified by flow cytometry and the surface antibody CD44, CD106positive expression rate were95.0%and81.1%respectively. While the hematopoietic cell surface marker CD45negative expression rate was5.0%, in line with the basic criteria as the experimental cells.3Cell compatibility test results in vitro:3.1Rat BMSCs and3different kinds of samples were co-cultured for24,48h respectively. After24h, the result of scanning electron microscope showed that few BMSCs adhesion on bare titanium and the cells were round, while the cells on HA and Ti+HA coating surfaces were fusiform or polygonal; after48h, cells on HA and Ti+HA coating surfaces began to spread, especially polygonal cells on the Ti+HA coating surface, and the outstretched slender pseudopodia extended into the material within the pores, and tight adhesion on surface of the material.3.2Rat BMSCs and3different kinds of samples were co-cultured for2-7d. The amount of ALP secretion was upward trend and there was statistically significant between the three time points in the same group(P<0.05);3kinds of materials have the characteristic of promoting ALP secretion, and there was no statistically significant between the inducer group and Ti coating group(P>0.05); it was the same between HA and Ti+HA coating groups(P>0.05); HA,Ti+HA coating groups pair-wise compared with inducer, Ti coating groups, and there was statistically significant(P<0.05).3.3Rat BMSCs and3different kinds of samples were co-cultured for2-7d.50%,100%soak extract group absorbance values at each time point pair-wise compared with the control group, and there was no significant difference between Ti coating group and the control group in2d and7d, P>0.05; there was significant difference between the100%soak extract group and the control group in4d. P<0.05; the relatively cell proliferation rate on the material surface was80-96%, and material toxicity was level1; HA coating group compared with control group, and there was no significant difference in the first2d, P>0.05; in the4d and7d, there was significant difference between them, P<0.05; the relatively cell proliferation rate on the material surface was89-106%, and material toxicity was level0-1; Ti+HA coating group compared with the control group, and there was no significant difference in the first2d, P>0.05; in the4d and7d, there was significant difference between them, P<0.05; the relatively cell proliferation rate on the material surface was91-109%, and material toxicity was level0-1.4Hemocompatibility test results in vitro:4.1Dynamic coagulation time test, from the line chart drawn from the absorbance values at each time point, we can see that HA, Ti+HA coating groups anticoagulant effect are better than Ti coating group. In the first period of30min, the advantages are more obvious. After30min, the differences between them is slightly narrowing, but the HA, Ti+HA coating groups anticoagulant effects are still better than the Ti coating group.4.2Hemolysis rate detection, from the histogram drawn from the absorbance values at each time point, we can see that the hemolysis rate of HA, Ti+HA coating groups are less than Ti coating group, and the hemolysis rates of them are<1%, in line with the requirement of medical implant hemolysis rate<5%.4.3Platelet adhesion rate detection, platelet-rich plasma was collected from rat anti-coagulation blood after centrifugation.3kinds of samples were co-incubated with platelet-rich plasma for1h. After treatment, the result of scanning electron microscope showed that Ti coating surface had a certain amount of platelets, and the pseudopodia of the platelet outstreched; while on the HA, Ti+HA coating surface the platelet amount was seldom, disc-shaped, and the pseudopodia of the platelet cannot be seen nearly; HA, Ti+HA coatings have good hemocompatibility.
     Conclusion:The new type artificial cervical disc endplate surface are coated with HA, Ti+HA, which have honeycomb porous surface, and the gaps are uniform; Rat BMSCs are good bone tissue engineering cells, with the advantages of low-cost, easily obtained, and easy amplification, etc; the HA,Ti+HA coatings have good cell compatibility and hemocompatibility in vitro than the Ti coating, this experiment provided some data for the prosthesis coating initial selection and improvement; in the later period, other coatings will also be prepared and selected in order to getting optimum coating for clinical application.
引文
[1]Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerativemedicine.J Cell Physiol,2007,213(2):341-347.
    [2]Fridenstein A,Piatetskii S,Petrakova KV.Osteogenesis in transplants of bone marrow cells.Arkh Anat Gistol Embriol,1969,56(3):3-11.
    [3]Erices AA,Allers CI,Conget PA,et al.Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion. Cell Transplant.2003,12(6):555-561.
    [4]Sekiya I,Larson BL,Smith JR,et al.Expansion of human adult stem cells from bone marrow stroma:conditions that maximize the yields of early progenitors and evaluate their quality.Stem Cells.2002,20(6):530-541.
    [5]Aubin JE.Osteoprogenitor cell frequency in rat bone marrow stromal populations:role for heterotypic cell-cell interactions in osteoblast differentiation.J Cell Biochem.1999,72(3):396-410.
    [6]Neuhuber B,Swanger SA,Howard L,et al.Effects of plating density and culture time on bone marrow stromal cell characteristics.Exp Hematol.2008,36(9):1176-1185.
    [7]Amado LC,Saliaris AP,Schuleri KH,et al.Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction.Proc Natl Acad Sci U S A.2005,102(32):11474-11479.
    [8]Makkar RR,Price MJ,Lill M,et al.Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction.J Cardiovasc Pharmacol Ther.2005,10(4):225-233.
    [9]Javazon EH,Beggs KJ,Flake AW.Mesenchymal stem cells:paradoxes of passaging [J].Exp Hematol,2004,32(5)414-425.
    [10]Zhu X,Du J,Liu G.The comparison of multilineage differentiation of bone marrow and adipose-derived mesenchymal stem cells[J].Clin Lab,2012,58(9-10):897-903.
    [11]Wang B,Wu SM,Wang T,et al.Pre-treatment with bone marrow-derived mesenchymal stem cells inhibits systemic intravascular coagulation and attenuates organdysfunction in lipopolysaccharide-induced disseminated intravascular coagulation rat model[J].Chin Med J,2012,125(10):1753-1759.
    [12]Dominici M,Le Blanc K,Mueller I,et al.Minimal criteria for defining multipotent mesenchymal stromal cells.The International Society for Cellular Therapy position statement.Cytotherapy.2006,8(41):315-317.
    [13]Zhao Y,Li H,Wang C,Yang Q,et al.Effect of Osterix overexpression on osteogenic differentiation of human periodontal ligament cells.[J].Hua Xi Kou Qiang Yi Xue Za Zhi.2013 Apr;31(2):199-204.
    [14]Carter EM,Raggio CL.Genetic and orthopedic aspects of collagen disorders.Curr Opin Pediatr.2009,21(1):46-54.
    [15]Kolacna L,Bakesova J,Varga F,et al.Biochemical and biophysical aspects of collagen nanostructure in the extracellular matrix.Phvsiol Res.2007:56 Suool 1:S51-60.
    [16]Sahoo S,Toh SL,Goh JC.A bFGF-releasing silk/PLGA-based biohybrid scaffold for IigamenUtendon tissue engineering using mesenchymal progenitor cells. Biomaterials.2010, 31(11):2990-2998.
    [17]Rui YF,Lui PP,Lee YW,Chan KM.Higher BMP receptor expression and BMP-2-induced osteogenic differentiation in tendon-derived stem cells compared with bone-marrow-derived mesenchymal stem cells.[J].Int Orthop.2012 May;36(5):1099-1107.
    [18]Solomon LB,Callary SA,Boopalan PR,et,al.Impaction bone grafting of segmental bone defects in femoral non-unions.Acta Orthop Belg2013,79:64-70.
    [19]Hoshino M,Egi T,Terai H,et al.Regenerative repair of long intercalated rib defects using porous cylinders of beta-tricalcium phosphate:an experimental study in a canine model.Plast Reconstr Surg.2007; 119(5):1431-1439.
    [20]Fernandes MB,Guimaraes JA,Casado PL,et al.The effect of bone allografts combined with bone marrow stromal cells on the healing of segmental bone defects in a sheep model.[J].BMC Vet Res.2014 Feb 5;10:36.
    [21]Vo N,Niedernhofer LJ,Nasto LA,et al.An overview of underlying causes and animal models for the study of age-related degenerative disorders of the spine and synovialjoints.J Orthop Res.2013;31(6):831-837.
    [22]郑东,刘国辉,杨述华,等.转化生长因子-β3融合蛋白促进骨髓基质干细胞向软骨分化的研究[J].中华实验外科杂志,2010,27(1):104-107.
    [23]Zhang W,Chen J,Tao J,Hu C,et al.The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold.[J].Biomaterials.2013 Aug;34(25):6046-57.
    [24]Pal R,Venkataramana NK,Bansal A,et al.Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia:a pilot clinical study.Cytotherapy.2009;11(7):897-911.
    [25]陈莎莉,秦德华,步星耀.自体骨髓干细胞定向分化诱导脊髓内移植术的护理配合[J].中华护理杂志,2004,39(12):906-907.
    [26]Mitsuhara T,Takeda M,Yamaguchi S,Manabe T,et al.Simulated microgravity facilitates cell migration and neuroprotection after bone marrow stromal cell transplantation in spinal cord injury.[J].Stem Cell Res Ther.2013 Apr 1;4(2):35.
    [27]Miller KD,Masur H,Jones EC,et al.High prevalence of osteonecrosis of the femoral head in HIV-infected adults.Ann Intern Med.2002;137(1):17-25.
    [28]Suh KT,Kim SW,Roh HL,et al.Decreased osteogenic differentiation of mesenchymal stem cells in alcohol-induced osteonecrosis.Clin Orthop Relat Res.2005;(431):220-225.
    [29]Velez R,Hernandez-Fernandez A,Caminal M,Vives J,et,al.Treatment of femoral head osteonecrosis with advanced cell therapy in sheep.[J]. Arch Orthop Trauma Surg.2012 Nov;132(11):1611-1618.
    [30]Wu QCui Y,Wang YT,et al.Repair of cartilage defects in BMSCs via CDMP1 gene transfection.[J].Genet Mol Res.2014 Jan 17;13(1):291-301.
    [1]孙肖雷.颈椎病研究进展[J].中国医药导报,2008,5(24):26-28。
    [2]施杞.要重视对颈椎病的研究[J].中国中医骨伤科杂志,1999,7(1):11.
    [3]沈尔安.关注青少午颈椎病[J].妇幼保健杂志,2005,12(12):18.
    [4]Rahul B,Hood KA.Cervical total disc arthroplasty[J].Global Spine J,2012,2(2):105-108.
    [5]Goffin J,Geusens E,Vantomme N,et al.Long-term follow-up after interbody fusion of the cervical spine.J Spinal Disord Tech,2004,17(2):79-85.
    [6]Cepoiu-Martin M,Faris P,Lorenzetti D,et al.Artificial cervical disc arthroplasty:a systematic review[J].Spine(Phila Pa 1976),2011,36(25):E1623-E1633.
    [7]Reitz H,Joubert MJ.Intractable headache and cervio-brachialgia treated by completer eplacement of cervicalintervertebral discs with a metal prosthesis[J].SA fr Med J,1964, 881-884.
    [8]Helmut D,Paul C,McAfee,et al.Choosing a cervical disc replacement[J].Spine J,2004, 4(6):5294-5302.
    [9]Cummins BH,Robertson JT,Gill SS.Surgical experience with an implanted artificial cervical joint[J].J Neurosurg,1998,88:943-948.
    [10]董玉雷,胡建华,翁习生.颈椎间盘置换术研究进展[J].国际骨科学杂志,2013,34(2):80-83.
    [11]蒲婷,原芳,廖振华,刘伟强.人工颈椎间盘结构、材料及体外生物力学的研究进展[J].中国组织工程研究,2013,17(26):4888-4895.
    [12]Ren X,Wang W,Chu T,et al.The intermediate clinical outcome and its limitations of Bryan cervical arthroplasty for treatment of cervical disc herniation[J].J Spinal Disord Tech,2010,67(3):679-687.
    [13]Quan GM,Vital JM,Hansen S,et al.8 year clinical and radiological follow-up of the Bryan cervical disc arthroplasty[J].Spine,2011,36(8):639-646.
    [14]Coric D,Nunley PD,Guyer RD,et al.Prospective,randomized,multicenter study of cervical arthroplasty:269 patients from the Kineflex-C artificial disc investigational device exemption study with a 2-year follow-up.clinical article[J].J Neurosurg Spine,2011,19(4):348-358.
    [15]Peng CW,Yue WM,Basit A,et al.Intermediate Results of the Prestige LP Cervical Disc Replacement:Clinical and Radiological Analysis With Minimum Two-Year Follow-up.[J].Spine(Phila Pa 1976).2011 Jan 15:36(2):E105-11.
    [16]Zhang Z,Zhu W,Zhu L,Du Y.Midterm outcomes of total cervicaltotal disc replacement with Bryan prosthesis.[J].Eur J Orthop Surg Traumatol.2014 Feb 11.
    [17]韩晓,田伟,刘波,等.Bryan人工颈椎间盘置换术在无骨折脱位脊髓损伤患者中的应用价值[J].山东医药,2009,49(8):6-8.
    [18]Auerbach JD,Jones KJ,Fras CI,et al.The prevalence of indications and contraindications to cervical total disc replacanent.[J].Spine Journal,2008,8(5):711-716.
    [19]Malham GM,Parker RM,Ellis NJ,Chan PG,Varma D.Cervical artificial disc replacement with ProDisc-C:Clinical and radiographic outcomes with long-term follow-up.[J].J Clin Neurosci.2014 Jan 13.
    [20]Zhao YB,Sun Y,Zhou FF,Liu ZJ.Cervical disc arthroplasty with ProDisc-C artificial disc:5-year radiographic follow-up results.[J].Chin Med J (Engl).2013 Oct;126(20):3809-11.
    [21]Miao J,Yu F,Shen Y,He N,et al.Clinical and radiographic outcomes of cervical disc replacement with a new prosthesis.[J].Spine J.2013 Oct 2.
    [22]Davis RJ,Kim KD,Hisey MS,Hoffman GA,et al.Cervical total disc replacement with the Mobi-C cervical artificial disc compared with anterior discectomy and fusion for treatment of 2-level symptomatic degenerative disc disease:a prospective,randomized, controlled multicenter clinical trial:clinical article. [J].J Neurosurg Spine.2013 Nov;19(5):532-45.
    [23]Park SB,Kim KJ,Jin YJ,Kim HJ,et al.X-ray based kinematic analysis of cervical spine according to prosthesis designs:analysis of the Mobi C,Bryan,PCM,and Prestige LP.[J].J Spinal Disord Tech.2013 Nov 7.
    [24]Jin YJ,Park SB,Kim MJ,Kim KJ,et al.An analysis of heterotopic ossification in cervical disc arthroplasty:a novel morphologic classification of an ossified mass.[J].Spine J.2013 Apr;13(4):408-20.
    [25]Ren X,Wang W,Chu T,et al.The intermediate clinical outcome and its limitations of Bryan cervical arthroplasty for treatment of cervical disc herniation[J].J Spinal Disord Tech,2010,67(3):679-687.
    [26]Quan GM,Vital JM,Hansen S,et al.8 year clinical and radiological follow-up of the Bryan cervical disc arthroplasty[J].Spine,2011,36(8):639-646.
    [27]Wang Qingliang,Huang Chuanhui,Zhang Lei.Microstructure and tribological properties of plasma nitriding cast CoCrMo alloy.J Mater Sci Technol.2012;28(1):60-66.
    [28]张天阳,段永宏,朱澎,等.羟基磷灰石涂层人工假体的涂层附着力及其生物力学行为研究[J].解放军医学杂志,2011,5:431-436.
    [29]Chien CS,Chiao CL,Hong TF,et al.Synthesis and characterization of TiO2+HA coatings on Ti-6AI-4V substrate;by Nd-YAG laser cladding.13th International Conference on Biomedical Engineering.2009;23(4):1401-1404.
    [1]沈尔安.关注青少午颈椎病[J].妇幼保健杂志,2005,12(12):18.
    [2]Goffin J,Geusens E,Vantomme N,et al.Long-term follow-up after interbody fusion of the cervical spine[J].J Spinal Disord Tech,2004,17(2):79-85.
    [3]Reitz H,Joubert MJ.ntractable headache and cervio-brachialgia treated by complete replacement of cervicalintervertebral discs with a metal prosthesis[J].SA fr Med J,1964,881-884.
    [4]Conti MC,Karl A,Wismayer PS,Buhagiar J.Biocompatibility and characterization of a Kolsterised(?) medical grade cobalt-chromium-molybdenum alloy.[J].Biomatter.2014 Jan 17;4(1).
    [5]Wang Qingliang,Huang Chuanhui,Zhang Lei.Microstructure and tribological properties of plasma nitriding cast CoCrMo alloy.J Mater Sci Technol.2012;28(1):60-66.
    [6]Chien CS,Chiao CL,Hong TF,et al.Synthesis and characterization of TiO2+HA coatings on Ti-6AI-4V substrate;by Nd-YAG laser cladding.13th International Conference on Biomedical Engineering.2009;23(4):1401-1404.
    [7]Suchomel P,Jurak L,Antinheimo J,Pohjola J,et al.Does sagittal position of the CTDR-related centre of rotation influence functional outcome? Prospective 2-year follow-up analysis. [J].Eur Spine J.2014 Feb 20.
    [8]Sarkar A, Ghosh M, Sil PC.Nanotoxicity:oxidative stress mediated toxicity of metal and metal oxide nanoparticles.J Nanosci Nanotechnol.2014 Jan; 14(1):730-43.
    [9]Ninomiya JT,Kuzma SA,Schnettler TJ,et al.Metal ions activate vascular endothelial cells and increase lymphocyte chemotaxis and binding.J Orthop Res.2013 Sep;31(9):1484-91.
    [10]Gasik M,Keski-Honkola A,Bilotsky Y,Friman M.Development and optimisation of hydroxyapatite-B-TCP functionally gradated biomaterial.J Mech Behav Biomed Mater.2014 Feb;30:266-73.
    [11]Warheit DB.How to measure hazards/risks following exposures to nanoscale or pigment-grade titanium dioxide particles.[J].Toxicol Lett.2013 Jul 4;220(2):193-204.
    [12]Kim JU,Jeong YH,Choe HC.Surface morphology of highly ordered nanotube formed and laser textured beta titanium alloys.J Nanosci Nanotechnol.2013 Mar; 13(3):1876-9.
    [13]Conti MC,Karl A,Wismayer PS,Buhagiar J.Biocompatibility and characterization of a Kolsterised(?) medical grade cobalt-chromium-molybdenum alloy.Biomatter.2014 Jan 17;4(1).
    [14]Schwenke T,Wimmer MA.Cross-Shear in Metal-on-Polyethylene Articulation of Orthopaedic Implants and its Relationship to Wear.[J].Wear.2013 Apr;301(1-2):168-174.
    [15]Dempsey DK,Robinson JL,Iyer AV,et al.Characterization of a resorbable poly(ester urethane) with biodegradable hard segments. J Biomater Sci Polym Ed.2014 Apr;25(6):535-54.
    [16]Torre M,del Prever EB,Costa L,et al.Innovative materials in orthopaedics:the crosslinked polyethylene(XPE).[J].Ann Ig.2011 Jan-Feb;23(1):81-90.
    [17]Mutsuzaki H,Sogo Y,Oyane A,Ito A.Improved bonding of partially osteomyelitic bone to titanium pins owing to biomimetic coating of apatite.Int J Mol Sci.2013 Dec 13;14(12): 24366-79.
    [18]Mohamed KR,Beherei HH,EI Bassyouni GT et al.Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.Mater Sci Eng C Mater Biol Appl.2013 Oct;33(7):4126-32.
    [19]Arnould C,Volcke C,Lamarque C,et al.Titanium modified with layer-by-layer sol-gel tantalum oxide and an organodiphosphonic acid:a coating forhydroxyapatite growth.J Colloid Interface Sci.2009 Aug 15;336(2):497-503.
    [20]Koller H,Meier O,Zenner J,et al.In vivo analysis of cervical kinematics after implantation of a minimally constrained cervical artificial discreplacement. Eur Spine J.2013 Apr;22(4):747-58.
    [21]Donati D,D'Apote QBoschi M,et al.Clinical and functional outcomes of the saddle prosthesis.J Orthop Traumatol.2012 Jun;13(2):79-88.
    [22]Wilke HJ,Schmidt R,Richter M,et al.The role of prosthesis design on segmental biomechanics:semi-constrained versus unconstrained prosthesesand anterior versus posterior centre of rotation. Eur Spine J.2012 Jun;21 Suppl 5:S577-84.
    [23]Knott PT,Mardjetko SM,Kim RH,et al.A comparison of magnetic and radiographic imaging artifact after using three types of metal rods:stainless steel,titanium, and vitallium.Spine J.2010 Sep;10(9):789-94.
    [1]Ban DX,Ning GZ,Feng SQ,et al.Combination of activated Schwann cells with bone mesenchymal stem cells:the best cell strategy for repair after spinal cord injury in rats.[J].Regen Med.2011 Nov;6(6):707-20.
    [2]杨智贤,彭小忠,武振国,等.脊柱结核外科治疗骨缺损的修复.[J].中国组织工程研究与临床康复.2011,15(30):5665-5668.
    [3]Makkar RR,Price MJ,Lill M,et al.Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction.J Cardiovasc Pharmacol Ther.2005,10(4):225-233.
    [4]Spoliti M,Iudicone P,Leone R,et al.In vitro release and expansion of mesenchymal stem cells by a hyaluronic acid scaffold used in combination withbone marrow.Muscles Ligaments Tendons J.2013 Jan 21;2(4):289-94.
    [5]Novikova LN,Mosahebi A,Wiberg M,et al.Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation.J Biomed Mater Res A.2006 May;77(2):242-52.
    [6]李瑞,王青山.生物材料生物相容性的评价方法和发展趋势.[J].中国组织工程研究与临床康复.2011,15(29):5471-5474.
    [7]Liu L,Pei FX,Zhou ZK,Li QH.Cellular compatibility of improved scaffold material with deproteinized heterogeneous bone. Chin J Traumatol.2007 Aug;10(4):233-6.
    [8]Smajilagic A1,Aljicevic M,Redzic A,Filipovic S,et al.Rat bone marrow stem cells isolation and culture as a bone formative experimental system. Bosn J Basic Med Sci.2013 Feb;13(1):27-30.
    [9]Adesida AB,Mulet-Sierra A,Jomha NM.Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res Ther.2012 Mar 2;3(2):9.
    [10]Ye J,Gong P,Zhou F,Li G,et al.Culture and identification of human bone marrow mesenchymal stem cells from alveolar ridge dental implant site.J Craniofac Surg.2013 Sep;24(5):1539-43.
    [11]Sekiya I,Larson BL,Smith JR,et al.Expansion of human adult stem cells from bone marrow stroma:conditions that maximize the yields of early progenitors and evaluate their quality.[J].Stem Cells.2002,20(6):530-541.
    [12]Aubin JE.Osteoprogenitor cell frequency in rat bone marrow stromal populations:role for heterotypic cell-cell interactions in osteoblast differentiation.J Cell Biochem.1999,72(3):396-410.
    [13]Neuhuber B,Swanger SA,Howard L,et al.Effects of plating density and culture time on bone marrow stromal cell characteristics.[J].Exp Hematol.2008,36(9):1176-1185.
    [14]Agata H,Watanabe N,Ishii Y,et al.Feasibility and efficacy of bone tissue engineering using human bone marrow stromal cells cultivated in serum-free conditions. [J].Biochem Biophys Res Commun.2009 May 1;382(2):353-8.
    [15]Amado LC,Saliaris AP,Schuleri KH,et al.Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction.Proc Natl Acad Sci U S A.2005,102(32):11474-11479.
    [16]Makkar RR,Price MJ,Lill M,et al.Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction.J Cardiovasc Pharmacol Ther.2005,10(4):225-233.
    [17]Park JS,Yang HN,Woo DG,et al.In vitro and in vivo chondrogenesis of rabbit bone marrow-derived stromal cells in fibrin matrix mixed with growth factor loaded in nanoparticles.[J].Tissue Eng Part A.2009 Aug; 15(8):2163-75.
    [18]Zhu X,Du J,Liu G.The comparison of multilineage differentiation of bone marrow and adipose-derived mesenchymal stem cells[J].Clin Lab,2012,58(9-10):897-903.
    [19]Wang B,Wu SM,Wang T,et al.Pre-treatment with bone marrow-derived mesenchymal stem cells inhibits systemic intravascular coagulation and attenuates organ dysfunction in lipopolysaccharide-induced disseminated intravascular coagulation rat model[J].Chin Med J,2012,125(10):1753-1759.
    [20]Dominici M,Le Blanc K,Mueller I,et al.Minimal criteria for defining multipotent mesenchymal stromal cells.The International Society for Cellular Therapy position statement.Cytotherapy.2006,8(41):315-317.
    [21]Rui YF,Lui PP,Lee YW,Chan KM.Higher BMP receptor expression and BMP-2-induced osteogenic differentiation in tendon-derived stem cells compared with bone-marrow-derived mesenchymal stem cells.[J].Int Orthop.2012 May;36(5):1099-1107.
    [22]Fernandes MB,Guimaraes JA,Casado PL,et al.The effect of bone allografts combined with bone marrow stromal cells on the healing of segmental bone defects in a sheep model.[J].BMC Vet Res.2014 Feb 5;10:36.
    [23]Zhang W,Chen J,Tao J,Hu C,et al.The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold.[J].Biomaterials.2013 Aug;34(25):6046-57.
    [24]Mitsuhara T,Takeda M,Yamaguchi S,Manabe T,et al.Simulated microgravity facilitates cell migration and neuroprotection after bone marrow stromal cell transplantation in spinal cord injury.[J].Stem Cell Res Ther.2013 Apr 1;4(2):35.
    [25]Li JW,Guo XL,He CL,et al.In vitro chondrogenesis of the goat bone marrow mesenchymal stem cells directed by chondrocytes in monolayer and 3-dimetional indirect co-culture system.Chin Med J (Engl).2011 Oct;124(19):3080-6.
    [1]Ismail A,Dancey A,Titley OG.Prosthetic metal implants and airport metal detectors.[J].Ann R Coll Surg Engl.2013 Apr;95(3):211-4.
    [2]Jun SH,Lee EJ,Jang TS,et al.Bone morphogenic protein-2 (BMP-2) loaded hybrid coating on porous hydroxyapatite scaffolds for bone tissue engineering.J Mater Sci Mater Med.2013 Mar;24(3):773-82.
    [3]Meirelles L,Albrektsson T,Kjellin P,et al.Bone reaction to nano hydroxyapatite modified titanium implants placed in a gap-healing model.J Biomed Mater Res A.2008 Dec 1;87(3):624-31.
    [4]Zhang Y,Li L,Zhu J,Kuang H,et al.In vitro observations of self-assembled ECM-mimetic bioceramic nanoreservoir delivering rFN/CDH to modulate osteogenesis.[J].Biomaterials. 2012 Oct;33(30):7468-77.
    [5]Barbucci R,Arturoni E,Panariello G,et al.A new amido phosphonate derivative of carboxymethylcellulose with an osteogenic activity and which is capable of interacting with any Ti surface.J Biomed Mater Res A.2010 Oct;95(1):58-67.
    [6]Jansen JH,van der Jagt OP,Punt BJ,et al.Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields:an in vitro study.[J].BMC Musculoskelet Disord.2010 Aug 23; 11:188.
    [7]Segerstrom S,Sandborgh-Englund QRuyter E1.Biological and physicochemical properties of carbon-graphite fibre-reinforced polymers intended for implants up rastructures.Eur J Oral Sci.2011 Jun;119(3):246-52.
    [8]Hagihara K1,Fujii K,Matsugaki A,Nakano T.Possibility of Mg- and Ca-based intermetallic compounds as new biodegradable implant materials.[J].Mater Sci Eng C Mater Biol Appl.2013 Oct;33(7):4101-11.
    [9]Goel VK,Panjabi MM,Patwardhan AQet al.Test protocols for evaluation of spinal implants.J Bone Joint Surg Am.2006 Apr;88 Suppl 2:103-9.
    [10]Ciofani QRaffa V,Vittorio O,et al.In vitro and in vivo biocompatibility testing of functionalized carbon nanotubes.[J].Methods Mol Biol.2010;625:67-83.
    [11]Navarro M,Michiardi A,Castano O,Planell JA.Biomaterials in orthopaedics.J R Soc Interface.2008 Oct 6;5(27):1137-58.
    [12]Martin JY,Schwartz Z,Hummert TW,Schraub DM,et al.Effect of titanium surface roughness on proliferation, differentiation and protein synthesis of human osteoblast-like cells(MG63).Biomed Mater Res,1995;29:389-401.
    [13]Chien CY,Tsai WB.Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides,hydroxyapatite,and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells.ACS Appl Mater Interfaces.2013 Aug 14;5(15):6975-6983.
    [14]Malchau H,Herberts P,Ahnfelt L.Prognosis of total hip replacement in Sweden. Acta Orthop Scand,1993:64:497-506.
    [15]姜红江,王玉林.医用钛合金的表面改性.生物骨科材料与临床研究[J].2005;2(4):28-33.
    [16]Hench LL.Bioceramics from concept to clinic [J].Am Ceram Soc,1991;8(1):1487-1510.
    [17]Mutsuzaki H,Sogo Y,Oyane A,to A.Improved bonding of partially osteomyelitic bone to titanium pins owing to biomimetic coating of apatite.Int J Mol Sci.2013 Dec 13;14(12):24366-79.
    [18]Anselme K.Osteoblast adhesion on biomaterials.Biomaterials 2000;21:667-681.
    [19]Nakashima Y,Sato T,Yamamoto T,et al.Results at a minimum of 10 years of follow-up for AMS and PerFix HA-coated cementless total hip arthroplasty:impact of cross-linked polyethylene on implant longevity.J Orthop Sci.2013 Nov;18(6):962-8.
    [20]Shin J,Lee K,Koh J,et al.Hydroxyapatite coatings on nanotubular titanium dioxide thin films prepared by radio frequency magnetron sputtering.J Nanosci Nanotechnol.2013 Aug;13(8):5807-10.
    [21]Li J,Zheng W,Zheng Y,Lou X.Cell responses and hemocompatibility of g-HA/PLA composites.Sci China Life Sci.2011 Apr;54(4):366-71.
    [22]Lee T M,Yang C Y,Chang E,et al.Comparison of plasma sprayed hydroxyapatitc coatings and zirconia-reinforced hydroxyapatite composite coatings:in vivo study Journal of biomedical Materials Research Part A,2004,71 A(4):652-660.
    [23]Antonov EN,Bagratashvili VN,Ball M,et al.Influence of target density on properties of laser deposited calcium phosphate coatings.Key Engineering Materials,2001,192-195(22-26): 107-110.
    [24]Long HL,Kim HW,Lee SH,et al.Biocompatibility of titanium implants modified by microarc oxidation and hydraxyapatite coating.Journal of Biomedical Materials Research PartA,2005,73A(1):48-54.
    [25]Ma J,Wang C,Peng KM.Electrophoretic deposition of porous hydroxyapatite scaffold.Biomaterials,2003,24:(3)505-510.
    [26]Lord G,Bancel P.Themadreporic cementless total hip arthroplasty.New experimental data and a seven-year clinical follow-up study.Clin Orthop RelatRes,1983,176:67-76.
    [27]Zreiqat H,Valenzuela SM,Nissan BB,et al.The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts.Biomaterials,2005,26:7579-7586.
    [28]Millet P,Girardin E,Braham C,et al.Stress Influences on Interface in Plasma-sprayed Hydroxyapatite Coatings on Titanium Alloy J Biomed Mater Res,2012,60(4):679-684
    [29]Sun JY,Li HW.Effect of ionic dissolution products of dicalcium silicate coating on osteopenic differentiation in human mesenchvmal stem cells.The Journal of International Medical Research,2011:39:112-128.
    [30]Zeng XL,Li JF,Yang SH,Zheng QX,Zou ZW.In Vivo Testing of Canine Prosthetic Femoral Components with HA-Ti Ladder-type Coating on Vacuum Plasma-sprayed Ti Substrate. J Huazhong Univ Sci Technolog Med Sci.2013 Aug;33(4):543-50.
    [31]Heimann RB,Schurmann N,Muller RT.In vitro and in vivo performance offi6A14Vimplants with plasma-sprayed osteoconductive hydroxyapatite-bioinert titanic bond coat "duplex" systems:an experimental study in sheep.Mater Sci Mater Med,2004,15(9):1045-1052.
    [32]Ker ED,Chu B,Phillippi JA,Gharaibeh B,Huard J,Weiss LE,Campbell PG.Engineering spatial control of multiple differentiation fates within a stem cell population.Biomaterials.2011,32(13):3413-3422.
    [1]Muthusubramaniam L,Lowe R,Fissell WH,et al.Hemocompatibility of silicon-based substrates for biomedical implant applications.[J].Ann Biomed Eng.2011 Apr;39(4):1296-305.
    [2]Zhao L,Xu Y,Qiu H,et al.Preparation of spider silk protein bilayer small diameter vascular scaffold and blood compatibility analysis in vitro.[J].Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi.2013 Jul;27(7):800-4.
    [3]Guan RG,Johnson I,Cui T,et al.Electrodeposition of hydroxyapatite coating on Mg-4.0Zn-1.0Ca-0.6Zr alloy and in vitro evaluation of degradation,hemolysis,and cytotoxicity.J Biomed Mater Res A.2012 Apr;100(4):999-1015.
    [4]Liu Q,Cheng S,Li Z,et al.Characterization,biodegradability and blood compatibility of poly[(R)-3-hydroxybutyrate] based poly(ester-urethane)s.J Biomed MaterRes A.2009 Sep 15;90(4):1162-76.
    [5]Villa T,La Barbera L,Galbusera F.Comparative analysis of international standards for the fatigue testing of posterior spinal fixation systems.Spine J.2013 Nov 20.
    [6]段长恩,杨秀滨.生物材料的血液相容性研究进展[J].新乡医学院学报,2012,29(5):390-392.
    [7]Cecchinato F,Xue Y,Karlsson J,et al.In vitro evaluation of human fetal osteoblast response to magnesium loaded mesoporous TiO2 coating.J Biomed Mater Res A.2013 Dec 12.
    [8]Szymonowicz M,Rybak Z,Paluch D,et al. Studies of interaction between surface of pirolytic carbon and blood cells and proteins.[J].Polim Med.2013 Jul-Sep;43(3):165-73.
    [9]Pesskova V,Kubies D,Hulejova H,Himmlova L.The influence of implant surface properties on cell adhesion and proliferation.J Mater Sci Mater Med.2007 Mar;18(3):465-73.
    [10]Koseoglu M,Hur A,Atay A,Cuhadar S.Effects of hemolysis interferences on routine biochemistry parameters.[J].Biochem Med (Zagreb).2011;21(1):79-85.
    [11]Shah KG,Idrovo JP,Nicastro J,et al.A retrospective analysis of the incidence of hemolysis in type and screen specimens from trauma patients.Int J Angiol.2009 Winter; 18(4):182-3.
    [12]Luo R,Tang L,Zhong S,et al.In vitro investigation of enhanced hemocompatibility and endothelial cell proliferation associated with quinone-rich polydopamine coating.[J]. ACS Appl Mater Interfaces.2013 Mar 13;5(5):1704-14.
    [13]Protasiewicz M,Szymkiewicz P,Kuliczkowski W,et al.Modern antiplatelet therapy-opportunities and risks.[J].Adv Clin Exp Med.2013 Nov-Dec;22(6):875-85.
    [14]de Mel A,Chaloupka K,Malam Y,et al.A silver nanocomposite biomaterial for blood-contacting implants. J Biomed Mater Res A.2012 Sep;100(9):2348-57.
    [15]Galibarov PE1,Prendergast PJ,Lennon AB.A probabilistic modelling scheme foranalysis of long-term failure of cemented femoral joint replacements.[J].Proc Inst Mech Eng H.2012 Dec;226(12):927-38.
    [16]Artzi N,Zeiger A,Boehning F,et al.Tuning adhesion failure strength for tissue-specific applications. [J].Acta Biomater.2011 Jan;7(1):67-74.
    [17]Li G,Yang P,Liao Y,Huang N.Tailoring of the titanium surface by immobilization of heparin/fibronectin complexes for improving blood compatibility and endothelialization:an in vitro study.[J].Biomacromolecules.2011 Apr 11;12(4):1155-68.
    [18]Elamin K,Jansson H,Kittaka S,Swenson J.Different behavior of water in confined solutions of high and low solute concentrations. [J].Phys Chem Chem Phys.2013 Nov14; 15(42):18437-44.
    [19]Sanchez VC,Jachak A,Hurt RH,Kane AB.Biological interactions of graphene-family nanomaterials:an interdisciplinary review.[J].Chem Res Toxicol.2012 Jan 13;25(1):15-34.
    [20]Lin W,He Y,Zhang J,et al.Highly hemocompatible zwitterionic micelles stabilized by reversible cross-linkage for anti-cancer drug delivery. [J].Colloids Surf B Biointerfaces.2013 Dec 19;115C:384-390.
    [21]Katona B,Dar6czi L,Jenei A,et al.Comperative study of implant surface characteristics.[J]. Fogorv Sz.2013 Dec;106(4):135-43.
    [22]Nozaki K,Wang W,Horiuchi N,et al.Enhanced osteoconductivity of titanium implant by polarization-induced surface charges.J Biomed Mater Res A.2013 Oct 7.
    [23]VanTeeffelen JW,Brands J,Vink H.Agonist-induced impairment of glycocalyx exclusion properties:contribution to coronary effects of adenosine.[J].Cardiovasc Res. 2010 Jul 15;87(2):311-9.
    [24]Yavas S,Ayaz S,Kose SK,et al.Influence of blood collection systems on coagulation tests.[J].Turk J Haematol.2012 Dec;29(4):367-75.
    [25]Abbah SA,Liu J,Goh JC,Wong HK.Enhanced control of in vivo bone formation with surface functionalized alginate microbeads incorporatingheparin and human bone morphogenetic protein-2.[J].Tissue Eng Part A.2013 Feb;19(3-4):350-9.
    [26]Kohavi D,Badihi L,Rosen G,et al.An in vivo method for measuring the adsorption of plasma proteins to titanium in humans.[J].Biofouling.2013;29(10):1215-24.
    [27]Kucinska-Lipka J,Gubanska I,Janik H.Gelatin-modified polyurethanes for soft tissue scaffold.[J].Scientific World Journal.2013 Nov 20;2013:450132.
    [28]Harshakumar K,Nair KC,Paulose NQet al.Titanium dioxide as an osteoconductive material:an animal study.J Indian Prosthodont Soc.2013 Jun;13(2):95-100.
    [29]da Silva JS,Amico SC,Rodrigues AO,et al.Osteoblastlike cell adhesion on titanium surfaces modified by plasma nitriding.Int J Oral Maxillofac Implants.2011 Mar-Apr;26(2):237-44.
    [30]Wang HG,Yin TY,Ge SP,et al.Biofunctionalization of titanium surface with multilayer films modified by heparin-VEGF-fibronectin complex toimprove endothelial cell proliferation and blood compatibility.J Biomed Mater Res A.2013 Feb;101(2):413-20.
    [31]Sha JM,Tao YQ,Yan ZY,et al.Cytotoxicity evaluation of hydroxyapatite on human umbilical cord vein endothelial cells for mechanical heart valve prosthesis applications. [J].Thorac Cardiovasc Surg.2009 Mar;57(2):74-8.
    [32]Layek B,Haldar MK,Sharma G,et al.Hexanoic Acid and Polyethylene Glycol Double Grafted Amphiphilic Chitosan for Enhanced Gene Delivery:Influence of Hydrophobic and Hydrophilic Substitution Degree.[J].Mol Pharm.2014 Feb 19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700