用户名: 密码: 验证码:
河南油田二元复合驱采出液稳定机理与处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河南油田下二门联合站聚合物/表面活性剂二元复合驱采出液处理工艺按照流程顺序分为破乳脱水工艺及污水处理工艺,其工艺涉及W/O型乳状液的破乳脱水及O/W型乳状液的污水处理。
     室内分别制备二元复合驱模拟W/O型原油乳状液及模拟采出污水,并采用电子显微镜、稳定性分析仪、激光粒度分析仪、Zeta电位仪、界面张力仪及流变仪等研究聚合物/表面活性剂对二元复合驱模拟W/O型乳状液及模拟采出污水稳定性及界面性质的影响,探讨聚合物/表面活性剂对二元复合驱W/O型乳状液及模拟采出污水的稳定机理。
     聚合物/表面活性剂浓度的增加可以降低二元复合驱W/O型乳状液中分散相的平均粒径,有利于提高二元复合驱W/O型乳状液的稳定性;聚合物/表面活性剂对二元复合驱W/O型乳状液的稳定作用主要是通过聚合物增加油水界面粘度、界面弹性实现的,聚合物对二元复合驱W/O型乳状液稳定作用的贡献要大于表面活性剂。
     表面活性剂对污水中的乳化油滴起分散作用,随着表面活性剂浓度的增加,乳化油粒径逐渐减小,粒径分布变窄;随着聚合物/表面活性剂的加入,污水透射光强度降低,污水的稳定性增加;污水中油滴的Zeta电位随着聚合物/表面活性剂浓度的增加而减小聚合物/表面活性剂对二元复合驱模拟采出污水的稳定作用主要是通过表面活性剂增加油滴界面电荷实现的,表面活性剂对二元复合驱模拟采出污水稳定作用的贡献要大于聚合物。
     SP169I、AP221、TA1031、PR929、NYC9型对河南油田二元复合驱模拟W/O型原油乳状液具有较好的破乳效果,脱水率较高,脱出水清且油水界面较为齐整;破乳剂对二元复合驱W/O型模拟乳状液的脱水速率常数由大到小依次为:SP169I>PR929> NYC9>AP221>TA1031;SP169I、PR929及NYC9型破乳剂的适宜加药浓度均在80-120mmg-L-1;破乳剂对破乳温度的敏感程度由大到小依次为:NYC9>PR929>SP169I;油水界面平衡界面张力对破乳剂的破乳脱水性能的影响更大;破乳剂的加入可以降低油水界面膜的弹性模量,破乳剂对乳状液稳定性的破坏主要是通过降低油水界面膜的弹性实现的。
     不同驱替方式下污水处理的难易程度为:水驱<聚驱<二元复合驱;随着聚合物/表面活性剂浓度的增加,二元复合驱模拟采出污水处理难度增加,处理后污水中含油量及悬浮物含量增加;二元复合驱模拟采出污水初始含油量及悬浮物含量与处理后含油量及悬浮物含量呈线性关系;絮凝剂与反相破乳剂复配处理二元复合驱模拟采出污水可以降低处理后污水中的含油量及悬浮物含量,同时可以降低絮体的生成量,减轻污水处理流程过滤装置及反冲洗装置负荷。
     对于二元复合驱现场采出液的破乳,加入100mg·L-1破乳剂后三相分离器出口油中含水率由高至低依次为:NYC9>PR929>SP169I;而脱出水中含油量由高至低依次为:SP169I>NYC9>PR929;聚合物/表面活性剂浓度增加,采出液经破乳后油中含水率及脱出水中含油量均升高。
     当二元复合驱现场采出液中聚合物/表面活性剂含量分别为46.2mg·L-1和50.Omg·L-1时,向污水中加入6mg·L-1CPAM+20mg·L-1 RPDEA后,污水经二次沉降后污水中含油量及悬浮物含量均可降至30mg.L-’以下;聚合物/表面活性剂含量分别为98.7mg·L-1和102.5mg.L-1时,污水经二次沉降后含油量及悬浮物含量可降至50mg·L-1以下,二次沉降后污水经石英砂过滤后含油量及悬浮物含量均可降至10mg·L-1以下。
According to the processing order, the treatment technology of Xiaermen oil-water treatment center in Henan oilfield includes demulsification process and waste water treatment process which involves the demulsication of W/O crude oil emulsion and treatment of O/W waste water.
     Synthetic W/O crude oil emulsion and W/O waste water were prepared in laboratory respectively, electromicroscope, stability analyzer, laser particle analyzer, Zeta potential meter, interfacial tension meter and interfacial rheometer were employed to study the influence of polymer/surfactant on stability and interfacial properties of synthetic W/O crude oil emulsion and W/O waste water to investigate the stability mechanism of the emulsions.
     The density increasing of polymer/surfactant can decrease the mean particle size of synthetic W/O crude oil emulsion and thus enhance the stability of the emulsion. Synthetic W/O crude oil emulsion stabilized by polymer/surfactant is mainly stabilized by polymer by increasing the interfacial elasticity and viscosity; polymer contributes more to the stability of W/O crude oil emulsion compared with surfactant.
     Surfactant can disperse the emulsified oil droplets, the mean particle size of oil droplets decrease when surfactant concentration increases. Transmission light decreases when surfactant concentration increases which indicates that stability of O/W waste water increases. Zeta potential increases when polymer/surfactant concentration increases. O/W waste water is stabilized by increasing the electric charge of emulsified oil droplets by surfactant mainly; surfactant contributes more to the stability of O/W waste water compared with polymer.
     The demulsifier SP169I, AP221, TA1031, PR929 and NYC9 are proved to be effective in demulsification of synthetic W/O crude oil emulsion stabilized by polymer/surfactant, the dewatering rate is high, the separated water is clean and the interface condition is neat. The decomponition rate constant of the five demulsifiers has a size order:SP169I>PR929> NYC9>AP221>TA1031. The optimum demulsifer dosage of SP169I, PR929 and NYC9 is 80~120mg·L-1. The sensibility of the three demulsifiers has a size order:NYC9>PR929> SP169I.The balance interfacial tension of oil-demulsifier solution is more important than the dynamic interfacial tension in the demulsification process. The interfacial elasticity decreases with the addition of demulsifier. The demulsification mechanism is that demulsifer can adsorb at the oil-water interface and decrease the interfacial elasticity.
     Polymer/surfactant flooding waste water is harder to treat than polymer flooding waste water while polymer flooding waste water is harder to treat than water flooding waste water. Polymer/surfactant flooding waste water gets more difficult to treat when polymer/surfactant concentration increases. Initial oil & suspension concentration have a linear relationship with oil & suspension concentration after flocculation treatment. Flocculant and demulsifier have a synergistic effect to treat waste water, oil & suspension concentration after treatment and the flco decrease which can lighten the burden of filtration and washed water system in the waste water treatment process.
     As to the field emulsion, water content of the purified oil from the triphase separator with demulsier concentration of 100mg-L"1 has a size order:NYC9>PR929>SP169I while oil concentration of the separated waste water has a size order:SP169I>NYC9> PR929. Water content of the purified oil from the triphase separator and oil concentration of the separated waste water increase with polymer/surfactant concentration in field produced liquid.
     Oil & suspension concentration of field waste water containg 46.2mg·L-1 polymer and 50.0mg·L-1 surfactant after treatment with 6mg·L-1 CPAM+20mg·L-1 RPDE A are less than 30mg·L-1. Oil & suspension concentration of field waste water containg 98.7mg·L-1 polymer and 102.5mg·L-1 surfactant after treatment with 6mg·L-1 CPAM+20mg·L-1 RPDE A are less than 50mg·L-1, Oil & suspension concentration can be further reduced to less than 10mg·L-by filtration with quartz sand.
引文
[1]李干佐,翟利民,郑立强等.我国三次采油进展[J].日用化学品科学,1999(1):1-9.
    [2]郭万奎,程杰成,廖厂志等.大庆油田三次采油技术研究现状及发展方向[J].大庆石油地质与开发,2002,21(3):1-6.
    [3]廖广志,王启民,王德民.化学复合驱原理及应用[M].北京:石油工业出版社,1999:33-36.
    [4]叶仲斌.提高采收率原理[M].北京:石油工业出版社,2000:144-145.
    [5]赵福麟.油田化学[M].东营:石油大学出版社,2000:110-112.
    [6]朱友益,沈平平.三次采油复合驱用表面活性剂合成、性能及应用[M].北京:石油工业出版社,2002:1.
    [7]王克亮,王凤兰,李群等.改善聚合物驱油技术研究[M].北京:石油工业出版社,1997:1.
    [8]兰玉波;杨清彦;李斌会等.聚合物驱波及系数和驱油效率实验研究[J].石油学报,2006,01:12-15.
    [9]刘洋;刘运海;顾长升等.聚合物驱的机理调研研究[J].内蒙古石油化工,2008,21:52-53.
    [10]李圣勇,李圣涛,陈馥.聚合物驱提高采收率发展现状与趋势[J].化工时刊,2005,08:13-15.
    [11]郭东红,李森,袁建国.表面活性剂驱的驱油机理与应用[J].精细石油化工进展,2002,3(7):36-41.
    [12]张逢玉,卢艳,韩建斌.表面活性剂及其复配体系在三次采油中的应用[J].石油与天然气化工,1999,28(2):130-132.
    [13]Mohammed R.A etal. Collids and Surfaces A:Physicochem Eng Aspects,1993, 80:237-242
    [14]徐岳峰译.石油加工企业原油脱盐工艺学[M].郑州:河南科技出版社,1993:10-20.
    [15]丁德盘,孙在春.原油乳状液的稳定与破乳[J].油田化学,1998,15(1):82-86.
    [16]李静.驱油剂对原油乳状液稳定性影响规律的研究[D].东营:中国石油大学,2008.
    [17]C.M.Miller, J.Venkatesan, C.A.Silebi, et al. Characterization of miniemulsion droplet size and stability using capillary hydrodynamic fractionation [J]. Journal of Colloid and Interface Science,1994,162:11-18
    [18]K.Parbhakar, J.Lewandowski, L.H.Dao. Simulation model for Ostwald ripening liquids [J]. Journal of Colloid and Interface Science,1995,174:142-147.
    [19]E.J.Johansen, I.M. Skjarvo, T. Lund, J.Sjoblom, H.Soderlund, G.Bostrom. Colloids Surfaces.1989,34:353.
    [20]J.Sjoblom, H. Soderlund, S.Lindblad, E.J.Johansen, I.M.Skjarvo.Water-in-crude oil emulsions from Norwegian continental shelf part Ⅱ.Chemical destabilization and interfacialtensios [J]. Colloid Polym. Sci.,1990,268:389-398.
    [21]Aderangi N., Wasan D.T. Coalescent of single drops at a liquid-liquid interface in the presence of surfactants/polymers [J]. Chem.Eng.Commun,1995,132:207-222.
    [22]Borwankar R.P., Lobo, L.A., Wasan, D.T. Emulsion stability-kinetics of flocculation and coalescence [J]. Colloids and Surfaces A:Physicochem Eng. Aspects,1992,69:135-146.
    [23]J.Sjoblom,L. Mingyuan,H. Hoiland,E.J. Johansen.Water-in-crude oil emulsions from the norwegian continental shelf partⅢ.A comparative destabilization of model systems [J]. Colloids Surface,1990,46:127-139.
    [24]王任芳,李克华,楚军.无机盐对W/O型原油乳状液稳定性的影响[J].油田化学,1992,9(4):366-369.
    [25]Tambe D.E., Sharma M. M.Factors controlling the stability of colloid-stabilized emulsions [J]. Colloid Interface Sci.,1993,157 (1):244-253.
    [26]K.Koczo, A.D.Nikolov, D.T.Wasan, R.P. Borwankar, and A.Gonsalves. Layering of sodium submicelles in thin liquid film-A new stabiity mechanism for food disopersions [J].Journal of Colloid and Interface Science,1997,178:694-702.
    [27]马宝岐,吴安明.油田化学原理与技术[M].北京:石油工业出版社,1998:197-198.
    [28]方洪波.聚合物驱采出液破乳机理研究[D].山东:胜利油田博士后科研工作站,2004:10-13.
    [29]Kang Wanli, Wang Demin. SPE72138, Presented at the SPE Asia Pacific Improved Oil Recovery Conference held in Kuala Lumpur, Malaysia,2001 (8-9):1-3
    [30]李明远,甄鹏,吴肇亮等.原油乳状液稳定性研究Ⅵ-界面膜特性与原油乳状液稳定性[J].石油学报(石油加工),1998,14(3):1-5.
    [31]Mohammed R A, Taylor S.E.Colloids and Surface.1994,91:129-139.
    [32]Bhardwaj A, Hartland S. Ind Eng Chem Res.1994,33:1271-1279.
    [33]杨小莉,陆婉珍.辽河原油沥青质及胶质油水界面化学性质初探[J].石油学报(石油加工),1999,15(4):1-6.
    [34]杨小莉,陆婉珍.用Lanumuir-B lodgett技术研究原油中沥青质和胶质膜性质[J].石油学报(石油加工),1999,15(3):5-9.
    [35]Eley D D, Hey M J, Lee M A. Colloids and Surfaces A,1987,24:173-182.
    [36]Acevedo S, et al. Isolation and characterization of natural surfactants from extra heavy crude oils, asphaltenes and maltenes. Interpretation of their interfacial tension-pH behaviour in terms of ion pair formation [J]. Fuel.1992,71(6):619-624.
    [37]Acevedo S, Luyrisser I, Rivas H. Asphaltenes and resins from the Orinoco basin [J]. J Disper Sci Technol.1984,5(1):1-8.
    [38]Th.F.Tadros. Emulsions-A fundamental and Practical Approach [M].1992.
    [39]郑忠.胶体科学导论[M].北京:高等教育出版社,1989:35-45.
    [40]James A.Svefgoff. Petroleum Engineer International.1989,8:30-35.
    [41]D.E. Tambe and M.M. Sharma. Effects of Asphaltene Solvency on Stability of water in crude oil Emulsions [J]. Journal of Colloid and Interface Science,1993,157:244-253.
    [42]李明远.原油乳状液稳定性研究:V.北海原油乳状液的稳定与破乳[J].石油学报(石油加工).1995,11(3):1-5.
    [43]Zhang L.Y., Lopetinsky R., Xu Z. and Masliyah J.H. (2005) Asphaltene monolayers at a toluene/water interface. Energy Fuels,19:1330.
    [44]T.J.Jones, et al. Water-in-Crude Oil Emulsion Stability and Emulsion Destabilization by Chemical Demulsifiers [J]. The Journal of Canadian Petroleum Technology.1978, 17:100-108.
    [45]R.A.Mohammed, et al. Dewatering of crude oil emulsions 2. Interfacial properties of the asphaltic constituents of crude oil [J]. Colloids and Srfaces A,1993,80:237-242.
    [46]B.P.Singh. Energy Sources.1994:16:377-385.
    [47]B.Obah. Eadol und Kohle,Erdgas.Petrochemle Vereinigt mit brennstoff-Chemie.1988, 41,71-74.
    [48]J.A.Ajienka, et al. Crude Oil Emulsions [J]. Journal of Petroleum Science and Engineering.1993,9:331-339.
    [49]梁文杰.石油化学[M].山东东营:石油大学出版社,1995:15-20.
    [50]郭正阳.ASP驱采出液乳状液的形成、稳定及破乳机理研究[D].北京:石油大学,2000.
    [51]JohanSjoblom. Emulsion and Emulsion Stability [M]. NewYork:MareelDekker, Inc. 1996:93-94.
    [52]Laurier L. Sehramm. Emulsions:Fundamentals and Applieation in the Petroleum Industry [M]. Washington DC:Ameriean Chemieal Soeiety,1992:23-24.
    [53]R.FoIkersma, A.J.G vanDiemen, H.N.Stein. Understanding the influence of Gravityon
    Perikinetie Coagulation on the Basis of the DLVO theory [J]. Advanees in Colloid and Interface Seienee,1999,83:71-84.
    [54]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1991.
    [55]李外郎,戴乐蓉.破乳剂的油-水界面性质与破乳效果的关系[J].油田化学,1986,33(1):16-20.
    [56]Gafonova O.V., Yarraton H.W. The stabilization of water-in-hydrocarbons emulsions by asphaltenes and resins [J]. Journal of Colloid and Interface Science.2001,241:469-478.
    [57]孙在春,丁德磐,徐梅清.破乳行为与破乳剂结构关系的研究.石油学报(石油加 工),1999,14(3):93-96.
    [58]Zhiqing Zhang, G.Y.Xu, F. Wang, et al. Characterization and demulsification of poly (ethyleneoxide)-block-poly (propylene oxide)-block-poly (ethylene oxide) copolymers [J]. Journal of Colloid and Interface Science,2004,277:464-470.
    [59]Khristov K., Taylor S.D., Czarnecki J., et al.Thin liquid film technique application to water-oil-water bitumen emulsion films [J]. Colloid Surf.A,2000,174:183-196.
    [60]乔建江,詹敏,徐心茹等.非离子乳化原油破乳剂油水界面行为的研究[J1.华东理工大学报,1998,24(2):145-149.
    [61]Chin-Ming Chen, Chun-Hsiung Lu, Chien-Hsiang Chang. In fluence of pH on the sta bility of oil-in-water emulsions, stabilized by a splitable surfactant [J]. Colloids and Surfaces A,2000,170:173-179.
    [62]X.Wu. Investigating the stability mechanism of water-in-diluted bitumen emulsions through isolation and characterization of the stabilizing materials at the interface [J]. Energy & Fuels,2003,17:179-190.
    [63]Sjoblom J, Li M., Christy A.A.,et al. Water in-crude oil emulsions from Norwegian continental shelf 7-Interfacial pressure and emulsion stability [J]. Colloids and surface.1992,66:55-62.
    [64]Sjoblom J, Li M., Christy A.A., et al. Water in-crude oil emulsions from Norwegian continental shelf7.Interfacial pressure and emulsion stability [J]. Colloids and surface, 1992,66:55-62.
    [65]Mohammed R A, Taylor S E etal. Colloids and Surface,1994,91:129-139.
    [66]Krawczyk M A, Wasan DT, Shetty C S., Chemical dumulsification of petroleum emulsions using oil-soluble demulsifiers [J]. Ind Eng Chem Res,1991,30:367-375.
    [67]Berger P. D. Designing and Fluid Characteristics, SPE,1998,16285.
    [68]赵福麟.采油用剂[M].山东东营:石油大学出版社,1997:247-252.
    [69]Cohen J.M., Hannah SA. In the 3rd water quality and treatment (Eds:Hill M.), New York,1971,66-122.
    [70]姜恒,宫红.含油污水气浮处理药剂的应用与研究进展[J].工业水处理,2001,21(5):5-8.
    [71]李凡修,陈武.聚合氯化铝制备技术的研究现状和进展[J].工业水处理,2003,23(3):5-8.
    [72]李俊梅.聚硫氯化铝絮凝效果及在水处理中的应用[J].化工环保,1998,18(1):7-10.
    [73]吴宇峰,周坤坪.高效絮凝剂聚合氯化硫酸铁的制备及其混凝效果的研究[J].工业水处理,2000,20(10):24-26.
    [74]吴早春,胡勇有.新型混凝剂聚磷氯化铝在水处理中的特性[J].工业水处理,1996,16(5):15-17.
    [75]郑怀礼,舒型武.含磷复合絮凝剂的应用研究[J].水处理技术,2001,27(5):274-276.
    [76]赵谨.国内有机高分子絮凝剂的开发及应用[J].工业水处理,2003,23(3):9-12.
    [77]廷伟.胜利油田开发使用的回注污水絮凝剂和浮选剂[J].油田化学,1998,15(4):382-384.
    [78]张立山,张玉芬.絮凝法处理油田废水的研究及应用现状[J].河北工业科技,2005,(6):17-19.
    [79]高宝玉,卢磊.利用新复合引发体系合成P(DMDAAC-AM)共聚物[J].环境化学,2005,24(2):162-167.
    [80]唐琼.处理油田废水的多功能阳离子絮凝剂的合成及性能研究[D].成都:四川大学,2003.
    [81]赵景霞,谢大宁.ZB型有机絮凝剂在含油废水处理中的应用[J].石油炼制与化工1995,26(6):56-59.
    [82]吴伟,韩哲茵.二甲基二烯丙基氯化铵-丙烯酰胺的合成及其在含油污水处理中的应用[J].油气田环境保护,1996,6(4):4-7.
    [83]孙岩波,肖占利.注聚区采出液原油破乳及污水处理[J].油气田地面工程,2004,23(5):51.
    [84]吴迪,王瑞泉.聚合物驱采出液和含油污水油水分离化学剂的研制[J].精细化工2002,19:80-82.
    [85]吴迪,孟祥春.油水分离剂在化学驱采出液和含油污水处理中的应用[J].精细化工2004,21(1):23-24.
    [86]吴迪,孟祥春等.大庆油田三元复合驱采出水的稳定性及其反相破乳剂的应用[J].精细化工,2001,15(2):86-55.
    [87]李绍文,吴卫霞等.聚合物驱含油污水絮凝剂筛选闭[J].断块油气田,2006,13(4):79-80.
    [88]温青,李凯峰等.油田含聚废水处理方法研究[J].应用科学,2002,29(8):64-66.
    [89]龙凤乐,杜灿敏等.胜利油田注聚采出液含油污水处理技术研究[J].工业水处理,2005,25(8):30-33.
    [90]戚秀云,张冰等.油田含聚污水处理技术探讨[J].炼油与化工,2006,17(3):45-46.
    [91]叶宏儒.复合处理剂WK-668在油田注聚采出液中的应用[J].石油天然气学报,2005,27(5):661-663.
    [92]秦普丰,杨仁斌等.聚驱采油废水处理与回用试验[J].湖南农业大学学报,2005,31(3):324-327.
    [93]Kurane R. Mierobial PoPulation and Ideniifieation of Phthalate Ester-utilizing Micro-organisms in Aetivated sludge Inoeulated with Microorganisms [J]. Agric. Biol. Chem.,1979,43(5):907-917.
    [94]张彤,朱怀兰.微生物絮凝剂的研究和应用进展[J].应用与环境生物学报,1996, 2(1):95-105.
    [95]吴迪,赵凤玲,孙福祥等.油水分离剂在杏二中试验区低驱油剂含量三元复合驱采出液处理中的应用试验[J].2005表面活性剂技术经济文集,大述:精细与专用化学品编辑部,2005:270-273.
    [96]吴迪,赵凤玲,孟祥春等.微乳液型反相破乳剂的研制及其在大庆油田喇Ⅱ-1联合站的应用[J].2003表面活性剂技术经济文集,大连:《精细与专用化学品》编辑部,2003:304-308.
    [97]宋乃忍,张洪俊,翠景亭.孤东小井距复合驱采出液预处理试验研究[J].油田化学,1995,12(2):143-146.
    [98]李胜华,高亚丽,高强等.孤岛油田复合驱采出液处理技术[J].油气田地面工程,2005,24(2):26-27.
    [99]Civan F., Alarcon L.J., Campbell S.E. Laboratory confirmation of new emulsion stability model [J]. Journal of petroleum science and engineering,2005,43:25-34.
    [100]Civan F., Weers J.J. Laboratory and theoretical evaluation of corrosion-inhibiting emulsions [D]. SPE production and facilities,2001:260-266.
    [101]Auflem I.H., Kallevik H., Westvik A., et al. Influence of pressure and solvency on the separation of water-in-crude-oil emulsions form north sea [J]. Journal of petroleum science and engineering,2001,31(1):1-12.
    [102]常青.水处理絮凝学[M].北京:化学工业出版社,2003:122-126.
    [103]卢磊.油田聚合物驱采油污水处理药剂及工艺研究[D].济南:山东大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700