用户名: 密码: 验证码:
双官能度引发剂引发丙烯酰胺聚合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯酰胺(PAM)及其衍生物是一类新型的精细功能高分子产品,是现代水溶性合成高分子聚电解质中最重要的品种之一。它广泛应用于化工、冶金、地质、煤炭、石油、造纸、轻纺、水处理等工业部门。在石油工业领域,近年来聚合物驱油技术作为油田稳产的重要手段,在原油生产中起着不可替代的作用。聚合物驱油主要是在注入水中加入一定浓度的水溶性高分子聚合物以增加溶液的粘度,减小油水粘度差,改善流度比,扩大波及系数,以提高原油采收率。大庆油田自实施聚合物驱油以来,产量明显增加,含水率下降,说明聚合物驱油取得了较好的驱油效果。
     本论文采用均聚后水解工艺,使用双官能度引发剂和两段聚合法进行了适合三次采油用部分水解超高分子量聚丙烯酰胺的聚合及水解条件的探索,详细研究了单体浓度、引发剂加入量、还原剂加入量、还原剂与引发剂的摩尔比、引发温度、偶氮二异丁腈加入量、EDTA(乙二胺四乙酸二钠)加入量、链转移剂(HCOONa)加入量、Na_3PO_4·12H_2O加入量以及水解时间和水解温度等对聚丙烯酰胺分子量的影响。研究结果表明,当单体浓度为25%、引发剂加入量为45μ mol·L~(-1)(其中AM溶液的密度以水的密度计)、还原剂加入量为54μ mol·L~(-1)(其中AM溶液的密度以水的密度计)、还原剂与引发剂的摩尔比为1.2:1、偶氮二异丁腈加入量为9.852mg·mol~(-1)(对单体)、EDTA在体系中的浓度为0.15mmol/L(AM溶液的密度以水的密度计)、Na_3PO_4·12H_2O加入量为2.84mg·mol~(-1)、水解时间为2.5h、水解温度为90℃时所制备的聚丙烯酰胺的分子量较高,其分子量最高达到3348万,水解度在20%~30%可调,水溶性亦较好,适合三次采油用。
     此外,本论文采用碘量法和溴化法还初步研究了双官能度引发剂的热分解动力学及氧化还原引发体系下对丙烯酰胺的聚合动力学。同一引发剂分子中含有两个活性基团的化合物,叫做双官能度自由基引发剂。双官能度引发剂为自由基聚合注入了活力,人们正在逐步认识到双官能度引发剂的优良性能。但是,这一领域的工作还处于初始阶段,如聚合动力学的研究只限于聚苯乙烯体系,并且只限于热分解型引发剂,其他聚合体系及氧化还原型双官能度引发体系的动力学研究目前还是空白。因此,我们的研究工作在理论上有着重大的意义。初步研究结果为,双官能度引发剂热分解级数为1级,热分解频率因子为6.63×10~(10),热分解活化能为82.6KJ/mol;聚合速率对单体浓度的反应级数为2.73级,对还原剂的反应级数为1.45级,对引发剂的反应级数为1.35级,表观活化能为0.38KJ/mol。另外,依据聚合动力学的研究结果作出了假定,提出了q值的概念。
PAM and its ramification is a new sort of fine production with macromolecule, which is water-soluble and is very important raw material in producing polymerized electrolyte. It is widely used in every department of industry, such as chemical engineering, metallurgy, geology, coal, oil, paper making, water tackling, spinning and so on. In recent years, the ploymerflooding play a great role in the stable yield of the oil field. We add water-soluble polymer to the injecting water and enhance the viscosity of solution, so we can reduce the gap of viscosity between raw oil and injecting water and enhance the fluidity rate and the sweep efficiency. Consequently, we enhance the recovery efficiency. In The DaQing Oil Field, the yield is up and the water concentration is down after adopting the ploymerflooding.
    hi this paper, our main task is examining the conditions of hydrolyzation after homopolymerization that is to produce hydrolyzed polypropylene amide with high molecular weight by bifunctional initiator and double polymerization. The conditions include the monomer concentration, the quantity of initiator, the quantity of reducing agent, the mol ratio of reducing agent to initiator, the solicitation temperature, the quantity of azodiisobutyronitrile, the quantity of EDTA, the quantity of agent transferring chain(HCOONa), the quantity of Na3PO4.12H2O, the hydrolyzation time and the hydrolyzation temperature. The result shows when the monomer concentration is 25%, the quantity of initiator is 45 μmol·L-1(the density of AM is equal to the density of water), the quantity of reducing agent is 54μmol· L-1, the mol ratio of reducing agent to initiator is 1.2:1, the quantity of azodiisobutyronitrile is 9.852mg·mol-1 (the base is monomer) , the EDTA concentration is 0.15mmol/L, the quantity of Na3PO4.12H2O is 2.84mg.mol-1, the hour of hydrolyzation is 2.5h and the temperature of hydrolyzation is 90℃, we had produced polypropylene amide with high molecular weight of 3,348 milllion and the rate of hydrolysis of it range from 20% to 30% and the solubility of it is good.The production is suitable to tertiary oil recovery.
    Moreover, we had done primary study on dynamics of the bifunctional initiator's oxidation-reduction solicitation system in producing polypropylene amide and the heat decomposition of bifunctional initiator by iodonation and bromination method. The compound with two active groups is bifunctional initiator with free radicles. Although we had known the merits of the bifunctional initiator, our research on it is shallow. The study on dynamics of polymerization is limited in the system of polystyrene and the initiator is limited by heat decomposition. Nothing had been done on dynamics of other polymerization systems and the bifunctional initiator's oxidation-reduction solicitation System. So our study on it is very significant theoretically. The results show that thermal decomposition series of bifunctional initiator is 1, thermal decomposition factor of it is 6.63 ×1010, thermal decomposition activation energy of it is 82.6KJ/mol; the polymerization rate is in direct ratio to the monomer concentration, the reduction agent and the initiator, and the reaction order of the monomer concentration is 2.73, the reaction order of the reduction agent is 1.45, the reaction order of the initiator is 1.35, apparent activation energy is 0.38KJ/mol. In addition, we made hypothesis of q value based on the results of polymerization dynamics.
引文
1 丘坤元.自由基聚合高活性多功能引发体系.石油化工,1993(6):409~418
    2 丘坤元,郭人捷,郭新秋等.有机过氧化物与N-甲基N-2-羟乙基苯胺引发体系的研究.高分子学报,1991(1):84~90
    3 傅杰,郭新秋,丘坤元等.有机过氧化物与N,N-二(2-羟烷基)对甲苯胺体系引发烯类聚合及其机理的研究.高分子学报,1990(1):67~75
    4 司一一,郭新秋,丘坤元.过硫酸铵与N-[(3-二甲氨基)丙基]丙烯酰胺氧化还原引发体系的研究.高分子学报,1995(4):508~512
    5 张贞浴,于春梅,张勇等.含胺基功能性单体的聚合研究.高分子学报,1991(4):415~423
    6 Shah N A, Leonard F, Tobolsky A.J Polym Sci, 1951,7:537~541
    7 Smet G. Woodward A. J Polym Sci, 1954,14:126~127
    8 Hariison J B, Magcli O L. US, 3117166.1965
    9 Orr R J.Williams H L.J Am Chem Soc, 1957,79:3137~3141
    10 Molyneux P. ibid, 1961,43:31~59
    11 Yerigove S g, Ivachev S S. Polym Sci, USSR, 1969,11:2377
    12 Prisyazhnyuk A I, Ivachev S S. ibid, 1970,12:54
    13 Tolygina T A, Ivachev S S. Polym Sci, USSR, 1972,14:1143
    14 Simionescu C I, Comanica E. Prog Polym Sci, 1986,12:1~109
    15 Zhou Guangchang, Huang Pengcheng. Proceedings of Sth International Symposium on Fine Chemistry and Functional Polymers Jinan, China, 1994.34
    16 Sanchez J, Kamath V R, Halas J C. US, 4 079 074.1978
    17 gaysal B M. Makromol Chem, 1985,186(6):1269~1278
    18 Kim K J, Liang W R, Choi K Y. Ind Eng Res, 1989,28:131~138
    19 Yoon W Y, Choi K Y. Polymer, 1992,33(21):4582~4591
    20 须山修治,中村知之.JP,01242567
    21 Yasumasa W, Hideyo I, Suyama S. Polym J, 1992,24:257~262
    22 Yoon W Y, Choi K Y.J Appl Polym Sci, 1992,46:1353~1367
    23 须山修治,中村知之.日本公开平,2-36205.1990
    24 须山修治,中村知之.日本公开平,2-34604.1990
    25 须山修治,中村知之.日本公开平,2-279708.1990
    26 江畸厚,木村文雄.日本公开平,2-86603.1990
    27 黄鹏程,杨朝东.92秋季中国材料研讨会论文集.中国材料学会,国际材科学会中国理事会.1992,580
    28 金关泰.高分子化学的理论和应用进展.北京:中国石化出版社,1995
    29 黄龙峰.安徽化工,1992,(4):38
    30 第贞浴,周浩然,李福锦.高分子学报,1987(2):149
    31 张贞浴,祖春兴,李福锦.高分子学报,1990(5):623
    32 张贞浴,于春梅,张勇,李福锦.高分子学报,1991(4):415
    33 李金旺,黄兰,李福锦.高分子学报,1993(1):35
    34 高青雨,张福莲,杨更须,张举贤.高分子学报,1994(3):36
    35 US. Pat. 4 617 359 Oct. 14,1986
    36 Mitsumi T. Nippon Kagaku Kaishi, 1989,12:2070
    37 马自俊,金日辉.聚丙烯酰胺水溶液聚合的儿种氧化还原引发体系的研究[J].精细石油化工,
    
    1997,(1):41~43,59
    38 李玉江,吴涛.(N,N’-二乙基)偶氮二异丁脒盐酸盐引发下的丙烯酰胺水溶液聚合[J].化学研究与应用,1999,11(4):371~373
    39 孙德君,匡洞庭,张宝军,等.驱油用超高分子量聚丙烯酰胺的合成[J].精细石油化工,2001,(5):13~15
    40 Bajpai U D N, Anita A. Polymerization of acrylamide using mandelic acid/permanganate redox system in acidicmedium[J].Jounal of Applied Polymer Science, 1990,40:359~368
    41 Pierre L, Bernard B, Synthesis, characterization and associative properties of triblock and diblock perfluorinated poly(acralamide) s[J].Polymer Bulletion, 1999,43:59~66
    42 Dionne I F, John AP. Solvent-free synthesis of polyacralamide by frontal polymerization[J]. Journal of Polymer Science:Part A:Polymer Chemistry, 2000,38:1129~l135
    43 Ahmet G, Huceste C Lgil-Giz, klina A, et al. Kinetics and mechanisms of acralamide polymerization from absolute online monitoring of polymerization reaction[J].Macromolecules, 2001,34:1180~1191
    44 哈润华,侯斯健,栗付平,等.微乳液结构和丙烯酰胺反向微乳液聚合[J].高分子通报,1995(1):10~19
    45 侯斯健,哈润华.近年来丙烯酰胺聚台反应的发展[J].高分子通报,1995(4):217~219
    46 Xu Zushun, Chen Yuanchun, Zhang Gueijun, et al. The inverse mulsion polymerization of acralamide using polystyrene-graft-polyoxyethylene as the stabilizer[J].Journal of Polymer Science: Part A:Polymer Chemistry, 1999,37:2719~2725
    47 Jaroslav B, Ignac C. Acralamide and butyl acrylate polymerization in winsor Ⅳ(W/O)and winsor Ⅰ(O/W) microe mulsions[J].Macromolecules, 2000,33:5353~5357
    48 李好管,张学文.聚丙烯烯酰胺的技术及市场分析。上海化工,2001(22):32~35
    49 潘祖仁.高分子化学[M].北京:化学工业出版社,1997.
    50 张洁,申明成,程丽敏,等.合成高分子聚丙烯酰胺参数的确定[J].河南化工,2002,3(1):18-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700