用户名: 密码: 验证码:
不同晶型羟基氧化铁(FeOOH)的形成及其吸附去除Cr(VI)的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属铬污染主要来源于采矿、电镀、颜料、皮革等工业废水和垃圾渗滤液等,含Cr(Ⅲ)和Cr(Ⅵ)的排泄废水易引起地表水和地下水的铬污染。其中,Cr(Ⅵ)毒性极强,对人体有致畸致癌作用。目前,利用生物和矿物材料(铝硅酸盐矿物、碳酸盐矿物和铁的氢氧化物等)去除重金属是研究者们关注的热点。羟基氧化铁(FeOOH)广泛存在于土壤、水体沉积物和矿山废水等自然环境中,通常以针铁矿(α-FeOOH)、纤铁矿(γ-FeOOH)和四方纤铁矿(β-FeOOH)等多种同质多像体形式存在,它们可通过沉淀、离子交换和吸附等作用,有效去除环境介质中的污染金属。羟基氧化铁因具有较稳定的化学性质,较高的比表面积和细微的颗粒结构,作为重金属等污染物的吸附材料倍受关注。但不同因素作用下形成的FeOOH产物矿相、结构性质的差异,及其对环境功能的影响,却少有报道。
     为此,本论文系统研究了不同合成途径(水解中和、化学氧化、生物氧化和凝胶网格作用)和不同影响因素(反应铁盐、pH、温度、离子、生物氧化和有机大分子固定等)作用下羟基氧化铁的制备,并对其结构性质进行了表征,在此基础上比较了它们对水中重金属Cr(Ⅵ)的吸附去除效果,重点探讨了四方纤铁矿的生物合成及其对Cr(Ⅵ)的去除效能与作用机理,为环境材料的研发提供科学依据。主要研究结果如下:
     化学水解中和合成FeOOH时,pH8条件下,所有Fe(Ⅲ)溶液水解产物均为二线水铁矿(Fe_5HO_B·4H_2O);随着pH升高,Fe_5HO_8·4H_2O会向α-FeOOH相转化;Cl~-、NO_3~-离子的存在分别有利于β-FeOOH、α-FeOOH的形成;SO_4~(2-)会阻碍Fe_5·HO_8·4H_2O向a-FeOOH相转化。在Fe~(2+)作用下,会促进Fe_5HO_8·4H_2O向α-FeOOH相转化。加热陈化可促进Fe_5HO_8·4H_2O转化为α-FeOOH,且有利于良好结晶α-FeOOH的形成;但pH<5,富含Cl~-的铁盐溶液加热水解有利于β-FeOOH的生成。四方纤铁矿A1、A2和针铁矿Gl、G4的合成条件和产物颗粒形貌结构,使其表现出更为优越的吸附Cr(Ⅵ)的界面特性,对Cr(Ⅵ)的最大吸附量可达到24-27mg g~(-1),是一种较好的环境吸附材料。
     亚铁空气氧化合成FeOOH时,不同反应pH下,形成的铁矿物产物分别为γ-FeOOH(~pH6.7)、γ-FeOOH和α-FeOOH的混合相(pH为6.7和7.0)、α-FeOOH(pH为8.5、11和12),它们均由“短棒”状细小颗粒组成。(NH_4)_2Fe(SO_4)_2反应溶液(pH6.7-4.0)中形成的沉淀物以纤铁矿为主要矿相,H_2PO_~-的加入会抑制纤铁矿的形成,而获得水铁矿产物,不同矿相铁矿物的颗粒形貌极相似,皆由直径约为20nm球形颗粒组成,且颗粒间易团聚。FeSO_4反应溶液(~pH4.0)中形成的沉淀物以针铁矿为主要矿相,A.ferrooxidans细胞的加入可促进Fe~(2+)氧化,但对产物矿相和形貌不会产生影响,皆由易团聚的球形颗粒(直径约为20nm)组成。
     于室温下静置70天,γ-FeOOH样品Lep(~pH6.7)未发生矿相转化,只是其结晶度在静置70天后较30天明显要好。同样条件下,负载Cr(Ⅵ)的铁矿物样品Lep(~pH6.7)和Gth(pH8.5)溶液中Cr(Ⅵ)的释放量间的关系为γ-FeOOH(pH7.0)<γ-FeOOH(pH5.5)<α-FeOOH(pH7.O)<α-FeOOH(pH5.5),对应值分别为7.2、8.2、8.7和9.6 mg g~(-1);70天后,溶液中Cr()的释放率依次为17.9、15.7、31.1和15.3%,α-FeOOH(pH7.0)溶中的Cr(Ⅵ)释放率约是另三者的2倍。显然,针铁矿样品Gth(pH8.5)在溶液pH7.0条件下,与Cr(Ⅵ)的结合能力较其在pH5.5时和纤铁矿样品Lep(~pH6.7)要差得多。
     室温下,FeCl_2溶液在Cl~-驯化A.ferrooxidans氧化作用下可形成表面粗糙的“纺锤形"四方纤铁矿颗粒,长约200nm、长宽比5;化学结构式为Fe_8O_8(OH)_(7.1)(Cl)_(0.9),其中Fe/Cl的摩尔比为8.93;比表面积为100 m~2 g~(-1)。不同Cl~-/SO_4~(2-)摩尔比对形成铁矿物的影响为:很少量SO_4~(2-)就会抑制四方纤铁矿形成,即使溶液中含约10%的SO_4~(2-)时,铁矿物仍以施氏矿物为主要矿相;但较高Cl~-浓度对所生成施氏矿物颗粒形貌及大小会产生明显影响。所有含SO_4~(2-)反应中形成的沉淀物中施氏矿物相的理论化学计量表达式均可表示为Fe_8O_8(OH)_(8-2x)(SO_4)_x,其中1.09≤x≤1.79,其对应Fe/S摩尔比范围为4.3-8。FeCl_2溶液经Cl~-驯化A.ferrooxidans氧化形成铁沉淀物过程中,在反应1-10d内,产物均为四方纤铁矿,反应产物3d后的结晶度明显比1d时要好。
     生物β-FeOOH样品BiO-Aka用于去除污染水体中的Cr(Ⅵ),比化学方法所制备FeOOH的去除效果有明显优势。该生物四方纤铁矿在pH3-12条件下均不会发生溶解现象,且在较宽的pH范围(pH3-8)内对Cr(Ⅵ)的去除效果较好。生物四方纤铁矿对Cr(Ⅵ)的吸附容量在pH5.5和pH7.0条件下分别约为58.5 mg g~(-1)和42.2 mg g~(-1),约是化学法合成FeOOH中吸附效果(吸附容量约为26 mg g~(-1))较好的四方纤铁矿A1和针铁矿G4的2倍或1.5倍。该矿物与Cr(Ⅵ)的作用机理主要为配位络合作用,随时间变化,反应符合Lagergren二级速度方程。
     用凝胶网格沉淀法,即明胶含量为12%,且铁盐浓度为0.6M时,可制备颗粒分散、大小均一的纳米结晶针铁矿微粒,其为短棒状形,轴长约110nm,直径平均约35nm。
Chromium, existing in two major oxidation states such as Cr(Ⅲ) and Cr(Ⅵ), mainly arising from the discharge wastewater of various industries including mining operation, metal plating, leather tanning, and pigment manufacturing, is among the common and persistent surface and ground water contamination. And Cr(Ⅵ) is most toxic and carcinogenic to organism.
     Presently, it is hot topic noticed by researchers that the biology and mineral materials such as alumino-silicates minerals, carbonate minerals and iron oxyhydroxides, are utilized to remove the heavy metals. Iron oxyhydroxides (FeOOH), as a group ofα,β,γ-FeOOH polymorphs, are commonly found in some soils, sedmiments of water bodies, and acid mine drainage natural environments. They can availably remove the heavy metals from the contaminated environments by the approachs of coprecipitation, ions exchange and adsorption. Due to holding the stable chemistry properties, more large specific surface areas and fine particle structures, iron oxyhydroxides, as the adsorbent materials of heavy metals and other contaminants in environment media, are doubly noticed. However, little information is available on the FeOOH prepared under various conditions, existed differences in their phases and structural properties, inducing some differences in their environmental functions.
     Therefore, the objective of the paper firstly is to systematically investigate the synthesis of iron oxyhydroxides by the various methods, for example, ferric hydrolysis and neutralization , ferrous oxidation by air, ferrous biooxidation and gel-network precipitation methods, under the different conditions such as the kind of iron salt, pH, temperature, exterior ion, biological oxidation, and fixation by organic biological molecule. The resulting products are characterized by spectral methods to examine the phases and structural properties of iron oxyhydroxides. The other objective is that some of the characterized FeOOH are applied to remove Cr(Ⅵ). In the present works, it is especially important work to formation of the bio-akaganeite and its application in removal of Cr(Ⅵ), which provides a scientific proof for searching the potential adsorbent materials. The results of all works are presented as following.
     The iron oxyhydroxides were prepared by hydrolysis and neutralization of ferric ion from FeCl_3, Fe(NO_3)_3 and Fe_2(SO_4)_3 salts, under the conditions of the various pH values and aging for about 6 days at 60℃.Results showed that ferrihydrite formed in the ferric solutions containing Cl~-, NO_3~- and SO_4~(2-) at pH values of 8 and 10, except that the poor crystalline akaganeite phase generated in the FeCl_3 solution at pH10.It testified that the presence of Cl~- was favorable for the formation of akaganéite. Meanwhile, the poor crystalline goethite phase was observed to be formed in FeCl_3 or Fe(NO_3)_3 solution, but not be formed in Fe_2(SO_4)_3 solution at pH12.It indicated that the presence of SO_4~(2-) obviously inhibited the formation of goethite. However, the goethite phase formed in Fe_2(SO_4)_3 solution when addition of ferrous ion, indicating ferrous ion could promote the formation of goethite in SO_4~(2-)-rich solution. In addition, it was usually easy to the crystalline goethite be transformed from the above generated ferrihydrite precipitates by aging at 60℃. Furthermore, the phase of akaganeite also was obtained in the Cl~--rich acid (pH<5) solution by aging at 60℃.Tthe resulting akaganeite (A1 and A2) and goethite (G1 and G4) comprised of fine particle, with large specific surface area, and interface property, were valid and potential adsorbents for removal of Cr(Ⅵ), with a maximal sorption capacity of 24-27mg g~(-1).
     Iron oxyhydroxides were also prepared from ferrous chemical oxidation by air at room temperature, with various reaction pH values, the H_2PO_4~- ion or Acidithiobacillus ferrooxidans. Results showed that lepidocrocite for sample Lep(~6.7), the mixture of lepidocrocite and goethite for samples of Gth+Lep(6.7) and Gth+Lep(7.0), and goethite for samples of Gth(8.5), Gth(11) and Gth(12), were obtained from FeSO_4 solution with a constant pH of 6.7, a final pH of 6.7 or 7.0, and a final pH of 8.5,11 or 12, respectively. And all the above FeOOH were composed of small particles with the short-rod shaped morphologis. At one time, in the (NH_4)_2Fe(SO_4)_2 solution with a reaction pH range of 6.7-4.0, lepidocrocite phase generated, while ferrihydrite formed in the solution when the exterior H_2PO_4~- ion was added. It indicated that H_2PO_4~- ion inhibited the formation of lepidocrocite phase. In addition, in the FeSO_4 solution with a constant pH of 4.0, goethite phase could form in the solution with/without Acidithiobacillus ferrooxidans cells, but the microbe obviously accelerated the oxidation of ferrous ion. Furthermore, it was noticed that the similar morphologies of sphere shaped for the resulting particles with the diameter of 20nm, were obtained from the solutions, though the pH of the reaction solutions are 6.7-4.0 and 4.0, respectively.
     Furthermore, during testing the stability of sample Lep(-6.7) withγ-FeOOH phase, it was observed not to be transformed to goethite in aqueous solution with a solid/liquid weight ratio of 1/1000 and a pH of 5.5 or 7.0,when the resulting suspensions were placed undisturbedly at 24℃for 70 days, but better crystallineγ-FeOOH be indentified for solid sample at the 70th day than at the 30th day. Moreover, in the above similar experimental conditions, the capacities of keeping Cr(Ⅵ) for sample Lep(-6.7) withγ-FeOOH phase and sample of Gth(8.5) withα-FeOOH were determined by the released percentages of Cr(Ⅵ) from the saturated Cr(Ⅵ)-loading samples. Results showed that the quantities of Cr(Ⅵ) released fromγ-FeOOH(pH7.0),γ-FeOOH(pH5.5),α-FeOOH(pH7.0) andα-FeOOH(pH5.5) orderly were 0.72, 0.82, 0.87 and 0.96 mg g~(-1), resulting a increasing order. In addition, at the 70th day, the corresponding released percentages of Cr(Ⅵ) for the above samples were 17.9, 15.7, 31.1 and 15.3%, respectively. Obviously, the released percentage of Cr(Ⅵ) forα-FeOOH(pH7.0) is about two times of those of other samples. It proved that Gth(8.5) withα-FeOOH had a lower ability of keeping Cr(Ⅵ) in aqueous solution with a pH of 7.0, following higher risk to the ambient.
     Akaganeite biosynthesis from FeCl_2 solution oxidized by chrolide-acclimated Acidithiobacillus ferrooxidans LX5 cells at 28℃,with spindle-shape approximately 200 nm in length with an axial ratio of about 5 and the spindles having a rough surface, its chemical formula of the crystalloid akaganeite could be expressed as Fe_8O_8(OH)_(7.1)(Cl)_(0.9) with Fe/Cl molar ratio of 8.93. The biogenic akaganeite had a specific surface area of about 100 m~2 g~(-1)by BET method. In addition, the results of effect of Cl~-/SO_4~(2-) mole ratio showed that sulfate inhibited drastically the formation of akaganeite, resulting in only schwertmannite occurrence in the ferrous solution containing both sulfate and chloride. The presence of chloride in ferrous solution containing sulfate would enable the obtained schwertmannite possess different morphologies and characteristics depending on Cl~-/SO_4~(2-) mole ratio in initial reaction system. It implied that iron(Ⅲ) oxyhydroxysulfate might be the only iron mineral phase in acidic ferrous and Acidithiobacillus ferrooxidans -rich solutions as long as the presences of trace sulfate. Finally, in the reaction time of 0-10 days, the resulting precipitates were always the phase ofβ-FeOOH,except that it had a better crystallinity after reaction for 3 days than ahead.
     The above obtained bio-akaganeite had a notable advantage in removal of Cr(Ⅵ), comparing the chemo-akaganeite. Firstly, the bio-akaganeite didn't dissolve in the aqueous solutions with the pH ranges of 3-12. Furthermore, it was testified that the bio-akaganeite had a similar removal efficiency of Cr(Ⅵ) in a wide pH rangs of 3-8. In addition, under the pH of 5.5 and 7.0, the bio-akaganeite had a maximal load capacity of 58.5 and 42.2 mg g~(-1), respectively, correspondly being about 2 and 1.5 times of the load capacities of chemo-akaganeite (A1) and chemo-goethite (G4). It concluded that the adsorption of Cr(Ⅵ) on bio-akaganeite by the major adsorption mechanism of surface complexiation models and the kinetic model of Lagergren secord order rate equation for Cr(Ⅵ) in aqueous solution with a pH of 7.0.
     In the last work, a novel gel-network precipitation method was developed to synthesize goethite in the presence of the optimum concentrations of glutin (12%) and FeCl_3 solution (0.6 M). Resulting particle had better monodispersity, and had a short rod-type shape approximately 110 run in length with an average diameter of about 35 run.
引文
Abdel-Samad H, Watson P R. An XPS study of the adsorption of chromate on goethite (α-FeOOH)[J].Applied Surface Science, 1997,108:371-377.
    Alasdair P. Lee- Lesley R. Brooker et al.A new biomineral identified in the cores of teeth from the chiton plaxiphora albida. Biology Inorganic Chemistry, 2003, 8: 256-262.
    Bakoyannakis D N, Deliyanni E A, Zouboulis A I, et al. Akaganeite and goethite-type nanocrystals:synthesis and characterization. Microporous and Mesoporous Materials, 2003, 59(1): 35-42.
    Barham R J. Schwertmannite: A unique mineral, contains a replaceable ligand, transforms to jarosites,hematites, and/or basic iron sulfate. Materials Research, 1997,12,2751-2758.
    Bigham J M, Carlson L, Murad E. Schwertmannite, a new iron oxyhydroxysulphate from Pyhasalmi,Finland and other localities. Mineral Magazine, 1994, 58,641-648.
    Bigham J M, Schwertmann U,Carlson L, Murad E, A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(Ⅱ) in acid mine waters. Geochimica et Cosmochimica Acta,1990,54,2743-2758.
    Char C S, Stasio G D, Welch S A, et al. Microbial polysaccharides template assembly of nanocrystal fibers. Science, 2004, 303: 1656-1658.
    Childs C W,Inoue K, Mizota C. Natural and anthropogenic schwertmannites from Towada-Hachimantai National Park, Honshu, Japan[J].Chemical Geology, 1998, 144(1-2): 81-86.
    Chitrakar R, Tezuka S, Sonoda A, et al. Phosphate adsorption on synthetic goethite and akaganeite.Journal of Colloid and Interface Science, 2006, 298, 602-608.
    Cornell R M, Schwertmann U. Iron Oxides in the Laboratory, VCH Publishers, New York, 1991.
    Davis J A, Kent D B. Surface complexation modeling in aqueous geochemistry [A].In: Hochella M F,
    White A F, eds. Mineral-Water Interface Geochemistry: Reviews in Mineralogy, Vol.23[C]. Washington, D C: Mineral Society of American, 1990,177-259.
    Deliyanni E A, Peleka E N, Lazaridis N K. Comparative study of phosphates removal from aqueous solutions by nanocrystalline akaganeite and hybrid surfactant-akaganeite. Separation and Purification Technology, 2007,52,478-486.
    Dixit S, Hering J G Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science and Technology, 2003, 37, 4182-4189.
    Felmy A R, Rustad J R. Molecular statics calculation of proton binding to goethite surfaces: Thermodynamic modeling of the charging and protonation of goethite of goethite in aqueous solution. Geochimica et Cosmochimica Acta, 1998,62(1): 25-31.
    Fortin D, Langley S. Formation and occurrence of biogenic iron-rich minerals. Earth-Science Reviews, 2005,72(1-2): 1-19.
    Fu H B, Quan X. Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation. Chemosphere, 2006,63,403-410.
    Garman S M, Luxton T P, Eick M J. Kinetics of chromate adsorption on goethite in the presence of sorbed silicic acid. Journal of Environmental Quality, 2004,33:1703-1708.
    Hayes K F, Redden G, Ela W, et al. Surface complexation models: An evaluation of model parameter estimation using FITEQL and oxide mineral titration data [J]. Journal of Colloid Interface and Science, 1991,142(2): 449-469.
    Hsia T, Lo S, Lin C, Lee D. Chemical and spectroscopic evidence for specific adsorption of chromate on hydrous iron-oxide. Chemosphere, 1993,26:1897-1904.
    Huang Y H, Zhang T C. Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe [J]. Water Research, 2005, 39(9): 1751-1760.
    Hug S J, Bahnemann D. Infrared spectra of oxalate, malonate and succinate adsorbed on the aqueous surface of rutile, anatase and lepidocrocite measured with in situ ATR-FTIR [J]. Journal of Electron Spectroscopy and Related Phenomena Science and Spectroscopy of Environmentally Important Interfaces, 2006,150(2-3): 208-219.
    Ishikawa T, Katoh R, Yasukawa A, et al. Influences of metal ions on the formation of p-FeOOH particles. Corrosion Science, 2001,43(9): 1727-1738.
    Ishikawa T, Kondo Y, Yasukawa A, Kandori K. Formation of magnetite in the presence of ferric oxyhydroxides. Corrosion Science, 1998, 40,1239-1251.
    Ishikawa T, Kumagai M, Yasukawa A, et al. Influences of metal ions on the formation of γ-FeOOH and magnetite rusts. Corrosion Science, 2002,44(5): 1073-1086.
    Ishikawa T, Miyamoto S, Kandori K, et al. Influence of anions on the formation of P-FeOOH rusts. Corrosion Science, 2005,47(10): 2510-2520.
    Ishikawa T, Motoki T, Kandori K, et al. Influence of hydrolyzed and nonhydrolyzed Ti, Cr, and Al ions on the formation of P-FeOOH particles. Journal of Colloid Interface and Science, 2003, 265(2): 320-326.
    Ishikawa T, Takeuchi K, Kandori K, et al. Transformation of γ-FeOOH to a-FeOOH in acidic solutions containing metal ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 266(1-3): 155-159.
    Kamimura T, Nasu S, Segi T, et al. Corrosion behavior of steel under wet and dry cycles containing Cr~(3+)ion [J]. Corrosion Science, 2003, 45(8): 1863-1879.
    Kamimura T, Nasu S, Segi T, et al. Influence of cations and anions on the formation of P-FeOOH. Corrosion Science, 2005,47(10): 2531-2542.
    Kappler A, Newman D K. Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochimica et Cosmochimica Acta, 2004,68(6): 1217-1226.
    Karathanasis A D, Thompson Y L. Mineralogy of iron precipitates in a constructed acid-mine drainage wetland. Soil Science Society of American Journal, 1995,59,1773-1781.
    
    Kurt O K. Bacterial iron biomineralisation in nature [J] .FEMS Microbiology Rev. 1997, 20: 315-326.
    Kwon S K, Shinoda K, Suzuki S, et al. Influence of silicon on local structure and morphology of γ-FeOOH and a-FeOOH particles. Corrosion Science, 2007,49(3): 1513-1526.
    Lazaridis N K, Bakoyannakis D N, Deliyanni E A. Chromium(VI) sorptive removal from aqueous solutions by nanocrystalline akaganeite. Chemosphere, 2005, 58,65-73.
    Lazaridis N K, Charalambous Ch. Sorptive removal of trivalent and hexavalent chromium from binary aqueous solutions by composite alginate-goethite beads. Water Research, 2005, 39, 4385-4396.
    Lee A P, Brooker L R,et al. Apatite mineralization in teeth of the chiton acanthopleura echinata. Calcif Tissue Int, 2000, 67: 408-415.
    Masue Y, Loeppert R H, Kramer T A. Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum:iron hydroxides. Environmental Science and Technology, 2007, 41, 837-842.
    Mesuere K, Fish W. Chromate and oxalate adsorption on goethite: 2. Surface complexation modeling of competitive adsorption. Environmental Science and Technology, 1992, 26: 2365-2370.
    Morales M P, Gonzalez Z, Carreno T. Serna C J. Characterization of hematite sols: correlation of size, shape and percentage yield. Journal of Material Research, 1992,7,2538-2546.
    Music S, Gotic M, Ljubesic N. Influence of sodium polyanethol sulphonate on the morphology of β-FeOOH particles obtained from the hydrolysis of a FeCl_3 solution. Materials Letters, 1995, 25(1-2): 69-74.
    
    Music S, Krehula S, Popovic S, et al. Some factors influencing forced hydrolysis of FeCl_3 solutions. Materials Letters, 2003, 57(5-6): 1096-1102.
    Music S, Krehula S, Popovic S. Effect of HC1 additions on forced hydrolysis of FeCl_3 solutions. Materials Letters, 2004, 58(21): 2640-2645.
    Music S, Saric A, Popovic S. Effects of urotropin on the formation of P-FeOOH. Journal of Molecular Spectroscopy and Molecular Structure, 1997, (410-411): 153-156.
    Nesterova M, Moreau J, Banfield J F. Model biomimetic studies of templated growth and assembly of nanocrystalline FeOOH. Geochimica et Cosmochimica Acta, 2003,67(6): 1177-1187.
    Nordstrom, D. K. Worldwide occurrences of arsenic in ground water. Science, 2002, 296, 2143-2145.
    Pedersen H D, Postma D, Jakobsen R, et al. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochimica et Cosmochimica Acta, 2005,69(16): 3967-3977.
    Post J E, Buchwald V F. Crystal structure refinement of akaganeite. American Mineral, 1991, 76, 272-277.
    Refait P, Genin J -. The mechanisms of oxidation of ferrous hydroxychloride β-Fe_2(OH)_3Cl in aqueous solution: The formation of akaganeite vs goethite. Corrosion Science, 1997, 39(3): 539-553.
    Refait P, Reffass M, Landoulsi J, et al. Role of phosphate species during the formation and transformation of the Fe(II-III) hydroxycarbonate green rust [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. In Press, Corrected Proof: 623.
    Remazeilles C, Refait P. On the formation of β-FeOOH (akaganeite) in chloride-containing environments. Corrosion Science, 2007,49(2): 844-857.
    Ristic M, Music S, Godec M. Properties of γ-FeOOH, α-FeOOH and α-Fe_2O_3 particles precipitated by hydrolysis of Fe~(3+) ions in perchlorate containing aqueous solutions. Journal of Alloys and Compounds, 2006,417(1-2): 292-299.
    Sabot R, Jeannin M, Gadouleau M, et al. Influence of lactate ions on the formation of rust [J]. Corrosion Science, 2007, 49(3): 1610-1624.
    Sahai N, Sverjensky D A. Evaluation of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titration data [J]. Geochimica et Cosmochimica Acta, 1997, 61(14): 2801-2826.
    Saric A, Nomura K, Popovic S, et al. Effects of urotropin on the chemical and microstructural properties of Fe-oxide powders prepared by the hydrolysis of aqueous FeCl_3 solutions. Materials Chemistry and Physics, 1998, 52(3): 214-220.
    Sei J, Oh D C, Cook H E. Atmospheric corrosion of different steels in marine, rural and industrial environments. Corrosion Science, 1999, 41: 1687-1702.
    Selim H M, Amacher M C, Iskandar I K. Modeling the transport of chromium(VT) in soil columns. Soil Science Society of American Journal, 1989. 53: 996-1004.
    Sharma Y C. Cr(VI) from industrial effluents by adsorption on an indigenous low-cost material [J]. Colloids Surf. A Physiochem. Engineering Aspects, 2003, 215: 155-162.
    Stollenwerk K G, Grove D B. Adsorption and desorption of hexavalent chromium in an alluvial aquifer near Telluride, Colorado. Journal of Environmental Quality, 1985,14: 150-155.
    Sudakar C, Subbanna G N, Kutty T R. Effect of anions on the phase stability of a-FeOOH nanoparticles and the magnetic properties of a-ferric oxide derived from lepidocrocite [J]. Journal of Physics and Chemistry of Solids, 2003, 64(12): 2337-2349.
    Taylor R W, Shen S Y, Bleam W F, et al. Chromate removal by dithionite-reduced clays: Evidence from direct X-ray adsorption near edge spectroscopy (XANES) of chromate reduction at clay surfaces [J]. Clays Clay Mineral, 2000,48(6): 648-654.
    Tzou Y M, Wang M K, Loeppert R H. Effects of phosphate, HEDTA, and light sources on Cr(VI) retention by goethite. Soil and Sediment Contamination, 2003,12(1): 69-84.
    Waychunas G A, Fuller C C, Rea B A, Davis J A. Wide angle X-ray scattering (WAXS) study of "two-line" ferrihydrite structure: Effect of arsenate sorption and counterion variation and comparison with EXAFS results. Geochimica et Cosmochimica Acta, 1996,60,1765-1781.
    Waychunas G A, Rea B A, Fuller C C, Davis J A. Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochimica et Cosmochimica Acta. 1993,57,2251-2269.
    Weerasooriya R, Tobschall H J. Mechanistic modeling of chromate adsorption onto goethite [J]. Colloids Surf. A Physiochem. Engineering Aspects, 2000, 162:167-175.
    Wendy V B, Johannes C L, Meeussen W H. Competitive sorption and diffusion of chromate and sulphate in a flow system with goethite in gel beads. Journal of Contaminant Hydrology, 2006, 86, 262-278.
    Wu W C, Wang S L, Tzou Y M, et al. The adsorption and catalytic transformations of chromium on Mn substituted goethite. Applied Catalysis B: Environmental, 2007,75, 272-280.
    Yuan Z Y, Ren T Z, Su B L, Surfactant mediated nanoparticle assembly of catalytic mesoporous crystalline iron oxide materials .Catalysis Today, 2004, (93-95): 743-750.
    Yuan Z Y, Su B L Surfactant-assisted nanoparticle assembly of mesoporous β-FeOOH (akaganeite). Chemical Physics Letters, 2003,381:710-714.
    Zachara J M, Ainsworth C C, Cowan C E, Resch C T. Adsorption of chromate by subsurface soil horizons. Soil Science Society of American Journal, 1989,53:418-428.
    Zouboulis A I,Matis K A, Lazaridis N K, Golyshin P N. The use of biosurfactants in flotation:application for the removal of metal ions. Minerals Engineering, 2003,16,1231-1236.
    车遥,孙振亚等.现代沉积环境中铁的微生物矿化作用.高校地质学报,2000,6(2):278-291.
    程光伟,陈邦林,韩庆平.凝胶网格法制备CdS超细颗粒.华东师范大学学报(自然科学版),1999,4:57-62.
    戴永定,王家珍等.生物矿物学[M].北京:石油工业出版社,1994,572.
    郭辉,魏雨.氢氧化铁和羟基氧化铁的催化相转化机理研究[D].河北师范大学,2006.
    黄江波,孙振亚.多糖/蛋白质调控纳米铁矿物生物矿化作用机理研究[M].武汉理工大学,2006.
    刘国光,谢友海等.纳米TiO_2的凝胶网格沉淀法制备及其光催化性能.中国环境科学,2006,26(6):713-717.
    鲁安怀.环境矿物材料基本性能-无机界矿物天然自净化功能.岩石矿物学杂志,2001,20(4):371-381.
    鲁安怀.环境矿物材料研究方向探讨.岩石矿物学杂志,1997,16(3):184-187.
    鲁安怀.环境矿物材料在土壤、水体、大气污染治理中的利用.岩石矿物学杂志,1999,18(4):292-301.
    欧阳健明,吴秀梅.生物体内铁和硅的生物矿化及其研究进展.化学世界,2005(6):371-376.
    沈钟,王果庭.胶体与表面化学.北京:化工出版社,1997.
    孙振亚,黄江波.葡聚糖分子对氢氧化铁矿化结晶的调制作用.物理化学学报,2006,22(2):172-177.
    魏俊峰,吴大清.矿物-水界面的表面离子化和络合反应模式.地球科学进展,2000,15(1):90-96.
    谢玉群.环氧氯丙烷法制备超细β-FeOOH粒子.无机化学学报,1999,15:49-53.
    殷华茄,姜继森.纳米氧化铁-聚合物复合材料的研究进展.材料导报,2003,17:121-124.
    张杰等.地下水除铁除锰现代观.1996.
    张霞,赵岩,张彩碚.纺锤形β-FeOOH的形成过程研究.化学物理学报,2004,17(5):613-617.
    张修华.均匀纺锤形β-FeOOH超微粒的制备与表征.湖北大学学报(自然科学版),2006,28(1):48-50.
    周建国,汪应灵,赵凤英,李振泉,高世扬.凝胶网格沉淀法制备Mgo纳米晶.无机化学学报,2005,21(2):221-225.
    周顺桂,周立祥.施氏矿物Schwertmannite的微生物法合成、鉴定及其对重金属的吸附性能.光谱学与光谱分析,2007,27(12):367-370.
    Abdel-Samad H, Watson P R. An XPS study of the adsorption of chromate on goethite (α-FeOOH) [J]. Applied Surface Science, 1997,108: 371-377.
    Chitrakar R, Tezuka S, Sonoda A, et al. Phosphate adsorption on synthetic goethite and akaganeite[J]. Journal of Colloid Interface and Science, 2006, 298: 602-608.
    
    Cornell R M, Schwertmann U. The Iron Oxides. VCH Publishers, New York (USA), 1996.
    Cornell R M, Schwertmann U, Iron Oxides in the Laboratory [M]. VCH Publishers, New York, 1991.
    Deng Y W, Stjernstro M, Banwart S. Accumulation and remobilization of aqueous chromium(VI) at iron oxide surfaces: Application of a thin-film containuous flow-through reactor [J]. Journal of Contamination and Hydrology, 1996, 21:141-151.
    Grossl P R, Eick M, Sparks D L, et al. Arsenate and chromate retention mechanisms on goethite 2: Kinetic evaluation using a pressure-jump relaxation technique [J]. Environmental Science and Technology, 1997,31: 321-326.
    Hiemstra T, Riemsdijk W H. A surface structural approach to ion adsorption: the charge distribution (Cd) model [J]. Journal of Colloid Interface and Science, 1996,179: 488-508.
    JCPDS (Joint Committee on Powder Diffraction Standards), Mineral powder diffraction files. International Center for Diffraction Data, Swarthmore: Pennsyvania. 2002.
    Johnson B. B. Effect of pH, temperature and concentration the adsorption of cadmium on goethite [J]. Environmental Science and Technology, 1990, 24(1): 112-116.
    
    Kowalski Z. Treatment of chromic tannery wastes [J]. J. Hazardous Material, 1994, 37: 137-144.
    Lazaridis N K, Bakoyannakis D N, Deliyanni E A. Chromium(VI) sorptive removal from aqueous solutions by nanocrystalline akaganeite [J]. Chemosphere, 2005, 58: 65-73.
    Lazaridis N K, Charalambous Ch. Sorptive removal of trivalent and hexavalent chromium from binary aqueous solutions by composite alginate-goethite beads [J]. Water Research, 2005, 39: 4385-4396.
    Lehmann M, Zouboulis A I, Matis K A. Modeling the sorption of metals from aqueous solutions on goethite fixed-beds [J]. Environmental Pollution, 2001,113: 121-128.
    Lehmann M, Zouboulis A I, Matis K A. Removal of metal ions from dilute aqueous solutions: a comparative study of inorganic sorbent materials [J]. Chemosphere, 1999, 39 (6): 881-892.
    Murad E, Bishop J L. The infrared spectrum of synthetic akaganeite, β-FeOOH. American Mineral, 2000, 85,716-721.
    Randall S R, Sherman D M, Ragnarsdottir K V, Collins C R. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochimica et Cosmochimica Acta, 1999, 63: 2971-2987.
    Ruan H D,Frost R L, Kloprogge J T. The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite. Spectrochimica Acta,Part A, 2001,57: 2575-2586.
    Sharma Y C. Cr(Ⅵ) from industrial effluents by adsorption on an indigenous low-cost material [J].Colloids Surface A Physiochemistry. Engineering Aspects, 2003,215:155-162.
    Stumm W. Chemistry of the Solid-Water Interface [M]. John Wiley and Sons, New York, 1992.
    Taylor R W, Shen S Y, Bleam W F, et al.Chromate removal by dithionite-reduced clays: Evidence from direct X-ray adsorption near edge spectroscopy (XANES) of chromate reduction at clay surfaces [J].Clays Clay Mineral, 2000, 48(6):648-654.
    Tzou Y M, Wang M K, Loeppert R H. Effects of phosphate, HEDTA, and light sources on Cr(Ⅵ) retention by goethite [J]. Soil and Sediment Contamination, 2003,12(1):69-84.
    Tzou Y M, Wang M K, Loeppert R H. Sorption of phosphate and Cr(Ⅵ) by Fe(Ⅲ) and Cr(Ⅲ) hydroxides [J]. Archives of Environmental Contamination and Toxicology, 2003, 44:445-453.
    Weerasooriya R, Tobschall H J. Mechanistic modeling of chromate adsorption onto goethite [J].Colloids Surface. A Physiochem.Engineering Aspects, 2000,162:167-175.
    陈福星,周立祥.生物催化合成的施氏矿物对废水中Cr(Ⅵ)的吸附[J].中国环境科学,2006,26(1):11-15.
    陈天虎,冯有亮等.层状双氢氧化物即时合成处理含Cr(Ⅵ)废水[J].环境科学,2004,25(2):89-93.
    廖立兵,Fraser D G.铬酸根离子在羟基铁离子.蒙脱石体系中的吸附行为研究.地球科学:中国地质大学学报,2002,5:584-591.
    孙振亚,祝春水,等.几种不同类型的FeOOH吸附水溶液中铬离子研究[J].岩石矿物学杂志,2003,22(4):352-354.
    魏俊峰,吴大清.矿物-水界面的表面离子化和络合反应模式[J].地球科学进展,2000,15(1):90-96.
    周顺桂,周立祥,黄焕忠.黄钾铁矾的生物合成与鉴定.光谱学与光谱分析,2004,124(19):1140-1143.
    周顺桂,周立祥.施氏矿物Schwertmannite的微生物法合成、鉴定及其对重金属的吸附性能[J].光谱学与光谱分析,2007,27(2):367-370.
    周顺桂,周立祥.污泥生物淋滤过程中黄铁矾对重金属离子的吸附与共沉淀作用的模拟研究.光谱学与光谱分析,2006,126(15):966-970.
    祝春水,孙振亚,龚文琪,陈和生.生物矿化针铁矿吸附废水中铬的实验研究.环境科学研究,2003,16(6):57-59.
    Bakoyannakis D N, Deliyanni E A, Zouboulis A I, Matis, K A. Akaganeite and goethite-type nanocrystals: Synthesis and characterization. Microporous Mesoporous Material, 2003, 59, 35-42.
    Cornell R M, Schwertmann U. The Iron Oxides. VCH Publishers, New York (USA), 1996.
    Detournay J, Miranda L de, Derie R, Ghodsi M. The region of stability of green rust II in the electrochemical potential-pH equilibrium diagram of iron in sulphate medium. Corrosion Science, 1975,15,295-306
    Frini A, Maaoui M E. Kinetics of the Formation of Goethite in the Presence of Sulfates and Chlorides of Monovalent Cations [J]. Journal of Colloid and Interface Science, 1997, 190(2): 269-277.
    Harahuc L, Lizama H M, Suzuki I. Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillus ferrooxidans. Applied Environmental Microbiology, 2000, 66,1031-1037.
    Ishikawa T, Kumagai M, Yasukawa A, et al. Influences of metal ions on the formation of γ-FeOOH and magnetite rusts [J]. Corrosion Science, 2002, 44(5): 1073-1086.
    Ishikawa T, Miyamoto S, Kandori K, et al. Influence of anions on the formation of P-FeOOH rusts [J]. Corrosion Science, 2005, 47(10): 2510-2520.
    Ishikawa T, Motoki T, Kandori K, et al. Influence of hydrolyzed and nonhydrolyzed Ti, Cr, and Al ions on the formation of P-FeOOH particles [J]. Journal of Colloid and Interface Science, 2003, 265(2): 320-326.
    Ishikawa T, Motoki T, Katoh R, et al. Structures of P-FeOOH Particles Formed in the Presence of Ti(IV), Cr(III), and Cu(II) Ions [J]. Journal of Colloid and Interface Science, 2002,250(1): 74-81.
    Ishikawa T, Takeuchi K, Kandori K, et al. Transformation of γ-FeOOH to a-FeOOH in acidic solutions containing metal ions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 266(1-3): 155-159.
    JCPDS (Joint Committee on Powder Diffraction Standards), Mineral powder diffraction files. International Center for Diffraction Data, Swarthmore: Pennsyvania. 2002.
    Jensen A B, Webb C. Ferrous sulphate oxidation using Thiobacillus ferrooxidans: A review. Process Biochemistry, 1995, 30, 225-236.
    Misawa T, Hashimoto K, Shimodaira S. The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature [J]. Corrosion Science, 1974, 14(2): 131-149.
    Murad E, Bishop J L. The infrared spectrum of synthetic akaganeite, P-FeOOH. American Mineral, 2000, 85,716-721.
    Olowe A, Pauron B, Genin J M. The influence of temperature on the oxidation of ferrous hydroxide in sulphated aqueous medium: Activation energies of formation of the products and hyperfine structure of magnetite [J]. Corrosion Science, 1991,32(9): 985-1001.
    Randall S R, Sherman D M, Ragnarsdottir K V, Collins C R. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochimica et Cosmochimica Acta, 1999, 63:2971-2987.
    Ruan H D, Frost R L,Kloprogge J T. The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite. Spectrochimica Acta,Part A, 2001, 57: 2575-2586.
    Sudakar C, Subbanna G N, Kutty T R. Effect of anions on the phase stability of γ-FeOOH nanoparticles and the magnetic properties of y-ferric oxide derived from lepidocrocite [J]. Journal of Physics and Chemistry of Solids, 2003, 64(12):2337-2349.
    Yuan Z Y, Su B L. Surfactant-assisted nanoparticle assembly of mesoporous p-FeOOH (akaganeite).Chemistry and Physics Letters, 2003,381,710-714.
    Zhou,L.X.;Fang,D.;Wang, S. M.; Wong, J. W. C; Wang, D. Z. Bioleaching of Cr from tannery sludge: The effects of initial acid addition and recycling of acidified bioleached sludge.Environmental Technology, 2005, 26, 277-284.
    都有为,李正宇,陆怀先等.FeOOH生成条件的研究(Ⅰ).物理学报,1979,28(5):705-711.
    都有为,陆怀先等.FeOOH生成条件的研究(Ⅱ),物理学报,1980,29(7):889-896.
    关成信,安玉玲.γ-FeOOH晶种成因分析及合成γ-Fe_2O_3的历程探讨.信息记录材料,1994,12(2):21-24.
    关成信,孙宜顺,许春生.制各γ-Fe_2O_3磁粉的新工艺.信息记录材料,1984,2(3):7-11.
    韩今依,李春忠,胡黎明.超微粒γ-FeOOH的制备工艺研究.高等学校化学学报,1997.2,270-274.
    胡鸿飞,李大成等.微碱法制备超细α-FeOOH反应的动力学研究.四川大学学报,2000,32(5):62-66.
    黄江波,孙振亚.多糖/蛋白质调控纳米铁矿物生物矿化作用机理研究[M].武汉理工大学,2006.
    廖立兵,Fraser D G.铬酸根离子在羟基铁离子-蒙脱石体系中的吸附行为研究.地球科学:中国地质大学学报,2002,5:584-591.
    马子川,魏雨,郑学忠等.亚铁盐空气氧化生成反应的动力学研究.化学研究与应用,1998,10(2):213-216.
    魏俊峰,吴大清.矿物-水界面的表面离子化和络合反应模式[J].地球科学进展,2000,15(1):90-96.
    张霞.纺锤形β-FeOOH的形成过程研究.化学物理学报,2004,17(5):613-617.
    张懿,王颖霞,华彤文,酸法合成α-FeOOH的反应动力学研究,物理化学学报,1990,6(6):673-680
    Alagha M R, Burley S D, Curtis C D, Esson J. Complex cementation textures and authigenic mineral assemblages in recent concretions from the Lincolnshire Wash (east coast, U.K.) driven by Fe(0) to Fe(II) oxidation. Journal of Geology and Society, 1995,152, 157-171.
    APHA, Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington, DC, 1995.
    Bakoyannakis D N, Deliyanni E A, Zouboulis A I, Matis, K A. Akaganeite and goethite-type nanocrystals: Synthesis and characterization. Microporous Mesoporous Material, 2003, 59, 35-42.
    Bellamy L J. The Infra-red Spectra of Complex Molecules. 2nd Ed. Wiley, New York, 1958.
    Bigham J M, Carlson L, Murad E. Schwertmannite, a new iron oxyhydroxysulphate from Pyhasalmi, Finland and other localities. Mineral Magazine, 1994, 58, 641-648.
    Bigham J M, Schwertmann U, Pfab G. Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Applied Geochemistry, 1996, 11, 845-849.
    Bigham J M, Schwertmann U, Traina S J, Winland R L, Wolf M. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta, 1996,60,2111-2121.
    Bigham J M., Schwertmann U, Carlson L, Murad E. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochimica et Cosmochimica Acta, 1990, 54, 2743-2758.
    Cai J, Liu J, Gao Z, Navrotsky A, Suib S L. Synthesis and anion exchange of tunnel structure akaganeite. Chemistry Material, 2001, 13, 4595-4602.
    Chen J C, Yao Y C. Geochemistry of manganese nodules from offshore areas of Mariana Islands and Johnston Island. Journal of Southeast Asian Earth Science, 1995, 11, 61-70.
    Colmer A R, Temple K L, Hinkle M E. An iron-oxidizing bacterium from the drainage of some bituminous coal mines. Journal of Bacteriology, 1950, 59, 317-328.
    Cornell R M, Schwertmann U. The Iron Oxides; Wiley-VCH: Weinheim. 1996.
    Deliyanni E A, Bakoyannakis D N, Zouboulis A I, Matis K A. Sorption of As(V) ions by akaganeite-type nanocrystals. Chemosphere, 2003, 50, 155-163.
    Deliyanni E A, Bakoyannakis D N, Zouboulis A I. Akaganeite-type P-FeOOH nanocrystals: preparation and characterization. Microporous Mesoporous Material, 2001, 42: 49-57.
    Drobner E, Huber H, Stetter K O. Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Applied Environmental Microbiology, 1990, 56, 2922-2923.
    Gagllano W B, Brill M R, Bigham J M, Jones F S, Traina S J. Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochimica et Cosmochimica Acta, 2004, 68(9): 2119-2128.
    Gonzalez-Calbet J M, Alario-Franco M A, Gayoso-Andrade M. The porous structure of synthetic akaganeite. Journal of Inorganic Nuclear Chemistry, 1981,43,257-264.
    Gu X Y, Wong J W C. Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge. Environmental Science and Technology, 2004, 38, 2934-2939.
    Harahuc L, Lizama H M, Suzuki I. Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillus ferrooxidans. Applied Environmental Microbiology, 2000, 66, 1031-1037.
    Harneit K, Goksel A, Kock D, Klock J H, Gehrke T, Sand W. Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy, 2006, 83, 245-254.
    Holm N G, Dowler M J, Wadsten T, Arrhenius G. p-FeOOH·Cl_n (akaganeite) and Fe_(1-x)O (wustite) in hotbrine from the Atlantis II deep (Red Sea) and the uptake of amino acids by synthetic P-FeOOH·Cl_n. Geochimica et Cosmochimica Acta, 1983,47,1465-1470.
    
    ICDD. Powder Diffraction File. International Centre for Diffraction Data, Newtown Square, 1997. Ishikawa T, Katoh R, Yasukawa A, Kandori K, Nakayama T, Yuse F. Influences of metal ions on the formation of P-FeOOH particles. Corrosion Science, 2001, 43,1727-1738.
    Ishikawa T, Miyamoto S, Kandori K, Nakayama T. Influence of anions on the formation of P-FeOOH rusts. Corrosion Science, 2005,47,2510-2520.
    JCPDS (Joint Committee on Powder Diffraction Standards), Mineral powder diffraction files. International Center for Diffraction Data, Swarthmore: Pennsyvania. 2002.
    Jensen A B, Webb C. Ferrous sulphate oxidation using Thiobacillus ferrooxidans: A review. Process Biochemistry, 1995, 30, 225-236.
    Jonsson J, Lovgren L. Precipitation of secondary Fe(III) minerals from acid mine drainage. Applied Geochemistry, 2006, 21,437-445.
    Jonsson J, Persson P, Sjoberg S, Lovgren L. Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Applied Geochemistry, 2005, 20, 179-191.
    Kamimura T S, Nasu T, Segi T, Tazaki H, Miyuki S. Morimoto, T. Influence of cations and anions on the formation of p-FeOOH. Kudo. Corrosion Science, 2005, 47: 2531-2542.
    Kan S H, Yu S, Li D M, Zhang X T, Xiao L Z. Structural development sequence for uniform prismatical β-FeOOH single crystals. Journal of Colloid Interface and Science, 1996, 180, 111-115.
    Karathanasis A D, Thompson Y L. Mineralogy of iron precipitates in a constructed acid-mine drainage wetland. Soil Science Society of American Journal, 1995, 59, 1773-1781.
    Kinzler K, Gehrke T, Telegdi J, Sand W. Bioleaching-a result of interfacial processes caused by extracellular polymeric substances (EPS) Hydrometallurgy, 2003, 71: 83-88.
    Lazaridis N K, Bakoyannakis D N, Deliyanni E A. Chromium(VI) sorptive removal from aqueous solutions by nanocrystalline akaganeite. Chemosphere, 2005, 58, 65-73.
    Lazaroff N. Sulfate requirement for iron oxidation by Thiobacillus ferrooxidans. Journal of Bacteriology. 1963, 85, 78-83.
    Loan M, Cowley J M, Hart R, Parkinson G M. Evidence on the structure of synthetic schwertmannite. American Mineral, 2004, 89,1735-1742.
    Maeda T, Negishi A, Komoto H. Isolation of iron-oxidizing bacteria from corroded concretes of sewage treatment plants. Journal of Bioscience and Bioengineering, 1999, 88(3): 300-305.
    Murad E, Bishop J L. The infrared spectrum of synthetic akaganeite, β-FeOOH. American Mineral, 2000, 85,716-721.
    Music S, Gotic M, Ljubesic N. Influence of sodium polyanethol sulphonate on the morphology of β-FeOOH particles obtained from the hydrolysis of a FeCl_3 solution. Material Letters 1995, 25, 69-74.
    Pradel J, Castillo S, Traverse J P, Grezes-Besset R, Darcy M. Ferric hydroxide oxide from the goethiteprocess: Characterization and potential use. Ind. Eng. Chem. Res. 1993, 32,1801-1804.
    Pye K. An occurrence of akaganeite (P-FeOOH·Cl) in recent oxidized carbonate concretions, Norfolk, England. Mineral Magazine, 1988, 52,125-126.
    Refait P, Genin J M R. The mechanisms of oxidation of ferrous hydroxychloride β-Fe_2(OH)_3Cl in aqueous solution: The formation of akaganeite vs goethite. Corrosion Science, 1997, 39, 539-553.
    Regenspurg S, Brand A, Peiffer S. Formation and stability of schwertmannite in acidic mining lakes. Geochimica et Cosmochimica Acta, 2004, 68(6): 1185-1197.
    Remazeilles C, Refait Ph. On the formation of β-FeOOH (akaganeite) in chloride-containing environments. Corrosion Science, 2007, 49, 844-857.
    Reynolds D.M., Laishley E.J., Costerton J.W. Physiological and ultrastructural characterization of a new acidophilic Thiobacillus species (T. kabobis). Canadian Journal of Microbiology, 1981, 27(59): 151-161.
    Schwertmann U, Cornell R M. Iron oxides in the laboratory: preparation and characterization; Wiley-VCH: Weinheim. 2000.
    Schwertmann U, Friedl J, Pfab G. A new iron(III) oxyhydroxynitrate. Journal of Solid State Chemistry, 1996,126, 336.
    Shao H F, Qian X F, Yin J, Zhu Z K. Controlled morphology synthesis of β-FeOOH and the phase transition to Fe_2O_3. Journal of Solid State Chemistry, 2005,178, 3130-3136.
    Sharma P K, Das A, Rao K H, Forssberg K S E. Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions. Hydrometallurgy, 2003, 71,285-292.
    Siverstein R M, Bassler G C. Spectrometric Identification of Organic Compounds. Wiley, New York,1964.
    Wang H M, Bigham J M, Tuovinen O H. Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms. Material Science and Engineering, C, 2006, 26, 588-598.
    Wang S M, Zhou L X. A renovated approach for increasing colony count efficiency of Thiobacillus ferrooxidans and Thiobacillus thiooxidans: double-layer plates. Acta Scientiae Circumstaniae, 2005, 25,1418-1420.
    Xia J L, Peng A A, He F. A new strain Acidithiobacillus albertensis BY-05 for bioleaching of metal sulfides ores. Transactions of Nonferrous Metals Society of China, 2007,17, 168-175.
    Xiong H X, Liao Y H, Zhou L X, Xu Y Q. Wang S.M. Biosynthesis of nanocrystal akaganeite from FeCl_2 solution oxidized by Acidithiobacillus ferrooxidans cells. Environmental Science and Technology, 2007. (Accepted)
    Yu J Y, Heo B, Cho J P, Chang H W. Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage. Geochimica et Cosmochimica Acta, 1999,63,3407-3416.
    Yuan Z Y, Su B L. Surfactant-assisted nanoparticle assembly of mesoporous β-FeOOH (akaganeite). Chemistry and Physics Letters, 2003, 381, 710-714.
    Zhou L X, Fang D, Wang S M, Wong J W C, Wang D Z. Bioleaching of Cr from tannery sludge: The effects of initial acid addition and recycling of acidified bioleached sludge. Environmental Technology, 2005, 26, 277-284.
    Zhou S G, Zhou L X, Chen F X. Characterization and heavy metal adsorption properties of schwertmannite synthesized by bacterial oxidation of ferrous sulfate solution. Spectroscopy and Spectral Analysis, 2007, 27, 367-370.
    Zhou S G, Zhou L X. Adsorption and coprecipitation of dissolved metals with jarosite under conditions simulating sewage sludge bioleaching. Spectroscopy and Spectral Analysis, 2006, 26,966-970.
    Abdel-Samad H, Watson P R. An XPS study of the adsorption of chromate on goethite (α-FeOOH) [J].Applied Surface Science, 1997, 108:371-377.
    Arienzo M, Adamo P, Chiarenzelli J, et al.Retention of arsenic on hydrous ferric oxides generated by electrochemical peroxidation. Chemosphere, 2002,48(10): 1009-1018.
    Blesa M A, Morando P J, Regazzoni A E. Chemical dissolution of metal oxides CRC Press Inc. 1994,269-308.
    Boddu V M, Abburi K, Talbott J L, Smith E D. Removal of Hexavalent Chromium from Wastewater Using a New Composite Chitosan Biosorbent. Environmental Science and Technology, 2003, 37 (19):4449-4456.
    Cornell R M, Schwertmann U. The Iron Oxides. VCH Publishers, New York (USA), 1996.
    Costa M.Potential hazards of hexavalent chromate in our drinking water. Reg. Toxicology Pharmacology, 2003,188,1-5.
    Deliyanni E A, Bakoyannakis D N, Zouboulis A I.Sorption of As(Ⅴ) ions by akaganeite-type nanocrystals. Chemosphere, 2003, 50(1):155-163.
    Deliyanni E A, Matis K A. Sorption of Cd ions onto akaganeite-type nanocrystals. Separation and Purification Technology, 2005,45(2): 96-102.
    Deliyanni E A, Nalbandian L, Matis K A. Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant-akaganeite sorbent. Journal of Colloid and Interface Science, 2006, 302(2): 458-466.
    Deng Y W, Stjernstr(?) M, Banwart S. Accumulation and remobilization of aqueous chromium(Ⅵ) at iron oxide surfaces: Application of a thin-film containuous flow-through reactor [J]. Journal of Contamination and Hydrology, 1996, 21:141-151.
    Fu H B, Quan X. Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite:FTIR observation. Chemosphere, 2006, 63, 403-410.
    Grossl P R, Eick M, Sparks D L, et al. Arsenate and chromate retention mechanisms on goethite 2:Kinetic evaluation using a pressure-jump relaxation technique [J]. Environmental Science and Technology, 1997, 31:321-326.
    Hansel C M, Wielinga B W, et al. Structural and compositional evolution of Cr/Fe solids after indirect chromate reduction by dissimilatory iron-reducing bacteria. Geochimica et Cosmochimica Acta,2003,67(3): 401-412.
    Kamimura T,Nasu S, Segi T, et al. Corrosion behavior of steel under wet and dry cycles containing Cr~(3+) ion [J]. Corrosion Science, 2003,45(8): 1863-1879.
    Kanungo S B. Adsorption of Cations on Hydrous Oxides of Iron: III. Adsorption of Mn, Co, Ni, and Zn on β-FeOOH from Simple Electrolyte Solutions as Well as from a Complex Electrolyte Solution Resembling Seawater in Major Ion Content. Journal of Colloid and Interface Science, 1994a, 162(1): 103-109.
    Karathanasis A D, Thompson Y L. Mineralogy of iron precipitates in a constructed acid-mine drainage wetland. Soil Science Society of American Journal, 1995, 59, 1773-1781.
    
    Katz S A, Salem H. The Biologicaland Environmental Chemistry of Chromium; VCH: New York, 1994.
    
    Kavanaugh M C. Alternatives for Groundwater Cleanup; National Academy Press: Washington, DC, 1994.
    Lazaridis N K, Bakoyannakis D N, Deliyanni E A. Chromium(VI) sorptive removal from aqueous solutions by nanocrystalline akaganeite. Chemosphere, 2005, 58, 65-73.
    Lazaridis N K, Charalambous Ch. Sorptive removal of trivalent and hexavalent chromium from binary aqueous solutions by composite alginate-goethite beads [J]. Water Research, 2005, 39: 4385-4396.
    Lehmann M, Zouboulis A I, Matis K A. Modeling the sorption of metals from aqueous solutions on goethite fixed-beds [J]. Environmental Pollution, 2001,113:121-128.
    Lehmann M, Zouboulis A I, Matis K A. Removal of metal ions from dilute aqueous solutions: a comparative study of inorganic sorbent materials [J]. Chemosphere, 1999, 39 (6): 881-892.
    Lu A H, Zhong S J, Chen J. Removal of Cr(VI) and Cr(III) from Aqueous Solutions and Industrial Wastewaters by Natural Clino-pyrrhotite. Environmental Science and Technology, 2006, 40, 3064-3069.
    Raji C, Anirudhan T S. Batch Cr(VI) removal by polyacrylamide-grafted sawdust: kinetics and thermodynamics. Water Research, 1998, 32, 3772-3780.
    Randall S R, Sherman D M, Ragnarsdottir K V, et al. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochimica et Cosmochimica Acta, 1999, 63(19-20): 2971-2987.
    Sei J, Oh D C, Cook H E. Atmospheric corrosion of different steels in marine, rural and industrial environments. Corrosion Science, 1999, 41: 1687-1702.
    Singh T S, Pant K K. Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Separation and Purification Technology, 2004, 36, 139-147.
    Stumm W. Chemistry of the Solid-Water Interface [M]. John Wiley and Sons, New York, 1992.
    Teermann I P, Jekel M R. Adsorption of humic substances onto [beta]-FeOOH and its chemical regeneration. Water Science and Technology, 1999, 40(9): 199-206.
    Tzou Y M, Wang M K, Loeppert R H. Effects of phosphate, HEDTA, and light sources on Cr(VI) retention by goethite [J]. Soil and Sediment Contamination, 2003, 12(1): 69-84.
    Ucun H, Bayhan Y K,Kaya Y. Biosorption of chromium(Ⅵ) from aqueous solution by cone biomass of Pinus sylvestris. Bioresource Technology, 2002, 85 (2): 155-158.
    Weerasooriya R, Tobschall H J. Mechanistic modeling of chromate adsorption onto goethite [J].Colloids Surface. A Physiochem.Engineering Aspects, 2000,162:167-175.
    Xiong H X, Liao Y H, Zhou L X, Xu Y Q. Wang S.M. Biosynthesis of nanocrystal akaganeite from FeCl_2 solution oxidized by Acidithiobacillus ferrooxidans cells. Environmental Science and Technology, 2007.
    陈福星,周立祥.生物催化合成的施氏矿物对废水中Cr(Ⅵ)的吸附[J].中国环境科学,2006,26(1):11-15.
    廖立兵,Fraser D G.铬酸根离子在羟基铁离子-蒙脱石体系中的吸附行为研究.地球科学:中国地质大学学报,2002,5:584-591.
    刘瑞霞,王亚雄,汤鸿霄.新型离子交换纤维去除水中砷酸根离子的研究.环境科学,2002,23(5):88-91.
    孙振亚,祝春水,等.几种不同类型的FeOOH吸附水溶液中铬离子研究[J].岩石矿物学杂志,2003,22(4):352-354.
    魏俊峰,吴大清.矿物-水界面的表面离子化和络合反应模式[J].地球科学进展,2000,15(1):90-96.
    周顺桂,周立祥.施氏矿物Schwertmannite的微生物法合成、鉴定及其对重金属的吸附性能[J].光谱学与光谱分析,2007,27(2):367-370.
    周顺桂,周立祥.污泥生物淋滤过程中黄铁矾对重金属离子的吸附与共沉淀作用的模拟研究.光谱学与光谱分析,2006,126(15):966-970.
    祝春水,孙振亚,龚文琪,陈和生.生物矿化针铁矿吸附废水中铬的实验研究.环境科学研究,2003,16(6):57-59.
    Abdel-Samad H,Watson P R. An XPS study of the adsorption of chromate on goethite (α-FeOOH) [J].Applied Surface Science, 1997, 108: 371-377.
    Bakoyannakis D N, Deliyanni E A, Zouboulis A I, Matis K A, Nalbandian L, Kehagias Th. Akaganéite and goethite-type nanocrystals: Synthesis and characterization. Microporous Mesoporous Material, 2003, 59, 35-412.
    
    Bellamy L J. The Infrared Spectra of Complex Molecules. 2nd Ed. Wiley, New York, 1958.
    Carlson L, Bigham J M, Schwertmann U, Kyek A, Wagner F. Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: A comparison with synthetic analogues. Environmental Science and Technology, 2002, 36,1712-1719.
    Cornell R M, Schwertmann U. The Iron Oxides. VCH, Weinheim. 1996.
    Fortin D, Langley S. Formation and occurrence of biogenic iron-rich minerals. Earth-Science Review, 2005, 72: 1-19.
    JCPDS (Joint Committee on Powder Diffraction Standards), Mineral powder diffraction files. International Center for Diffraction Data, Swarthrnore: Pennsyvania. 2002.
    Karathanasis, A D, Thompson Y L. Mineralogy of iron precipitates in a constructed acid-mine drainage wetland. Soil Science Society of American Journal, 1995, 59, 1773-1781.
    Lehmann M, Zouboulis A I, Matis K A. Modeling the sorption of metals from aqueous solutions on goethite fixed-beds [J]. Environmental Pollution. 2001, 113: 121-128.Lazaridis N K, Bakoyannakis D N, Deliyanni E A. Chromium(VI) sorptive removal from aqueous solutions by nanocrystalline akaganeite [J]. Chemosphere, 2005, 58: 65-73.
    Murad E, Bishop J L. The infrared spectrum of synthetic akaganeite, P-FeOOH. American Mineral, 2000, 85,716-721.
    Nesterova M, Moreau J, Banfield J F. Model biomimetic studies of templated growth and assembly of nanocrystalline FeOOH. Geochimica et Cosmochimica Acta, 2003, 67(6): 1177-1187.
    Prasad P S R, Prasad K S, Chaitanya V K, et al. In situ FTIR study on the dehydration of natural goethite. Journal of Asian Earth Science, 2006, 27: 503-511.
    Randall S R, Sherman D M, Ragnarsdottir K V, Collins C R. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochimica et Cosmochimica Acta, 1999, 63: 2971-2987.
    Ruan H D, Frost R L, Kloprogge J T. The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite. Spectrochimica Acta, Part A 2001, 57: 2575-2586.
    Siverstein R M, Bassler G C. Spectrometric Identification of Organic Compounds. Wiley, New York, 1964.
    Skovbjerg L L, Stipp S L S, Utsunomiya S, Ewing R C. The mechanisms of reduction of hexavalent chromium by green rust sodium sulphate: Formation of Cr-goethite. Geochimica et Cosmochimica Acta, 2006, 70: 3582-3592.
    Taylor R W, Shen S Y,Bleam W F, et al.Chromate removal by dithionite-reduced clays: Evidence from direct X-ray adsorption near edge spectroscopy (XANES) of chromate reduction at clay surfaces [J].Clays Clay Mineral, 2000,48(6): 648-654.
    Tzou Y M, Wang M K, Loeppert R H. Effects of phosphate, HEDTA, and light sources on Cr(Ⅵ) retention by goethite [J]. Soil Sediment Contamination, 2003,12(1):69-84.
    Villalobos M, Trotz M A, Leckie J O.Surface Complexation Modeling of Carbonate Effects on the Adsorption of Cr(Ⅵ), Pb(Ⅱ), and U(Ⅵ) on Goethite. Environmental Science and Technology, 2001,35:3849-3856.
    Yuan Z Y, Su B L. Surfactant-assisted nanoparticle assembly of mesoporous β-FeOOH (akaganéite).Chemistry and Physics Letters, 2003, 38,710-714.
    程光伟,陈邦林,韩庆平.凝胶网格法制备CdS超细颗粒.华东师范大学学报(自然科学版),1999,4:57-62.
    刘国光,谢友海等.纳米TiO_2的凝胶网格沉淀法制备及其光催化性能.中国环境科学,2006,26(6):713-717.
    沈钟,王果庭.胶体与表面化学.北京:化工出版社,1997.
    孙振亚,祝春水,等.几种不同类型的FeOOH吸附水溶液中铬离子研究[J].岩石矿物学杂志,2003,22(4):352-354.
    殷华茄,姜继森.纳米氧化铁-聚合物复合材料的研究进展.材料导报,2003,17:121-124.
    周建国,汪应灵,赵凤英,李振泉,高世扬.凝胶网格沉淀法制备MgO纳米晶.无机化学学报,2005,21(2):22 1-225.
    周顺桂,周立祥,黄焕忠.黄钾铁矾的生物合成与鉴定.光谱学与光谱分析,2004,124(19):1140-1143.
    周顺桂,周立祥.施氏矿物Schwertmannite的微生物法合成、鉴定及其对重金属的吸附性能.光谱学与光谱分析,2007,27(2):367-370.
    周顺桂,周立祥.污泥生物淋滤过程中黄铁矾对重金属离子的吸附与共沉淀作用的模拟研究.光谱学与光谱分析,2006,126(15):966-970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700