用户名: 密码: 验证码:
小麦内在品质近红外光谱无损检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是一个人口大国,小麦是我国最重要的粮食之一,如何快速的、有效的、无损的检测小麦中的各种化学成分,并对多项指标进行评价,一直是各国研究的问题。国内许多行业对高品质小麦的需求促进了小麦无损检测技术的发展,但是现有的近红外光谱分析仪器多数体积庞大,价格昂贵,不适合做现场分析及在线检测,从而使近红外光谱技术推广应用存在明显障碍。另外,虽然目前水分、粉碎谷物蛋白、整粒谷物蛋白等的近红外光谱方法已被国际标准化委员会所认可,但是,在近红外光谱数据处理过程中,由于样本的复杂性使得物理层交叠信息的解释性较弱,校正模型的传递性和普适性差,因此,近红外光谱技术和仪器至今尚未在全球范围内广泛应用,建模过程中的思想和方法仍是努力探索的前沿课题,而小麦的近红外光谱数据具有组份复杂,变异度高,自然采样不受控等特点,使其近红外光谱分析问题成为一个亟待解决的问题,本文是在这一背景开展小麦内在品质无损检测技术研究,主要研究内容如卜:
     1、首先,简单介绍了现有的近红外光谱分析仪器,详细论述了常用的近红外光谱预处理方法及建模方法,其中,光谱预处理方法包括平滑、求导、小波变换(WT)多元散射校正(MSC)、标准正态变换(SNV)、正交投影方法(OSC)等,建模方法主要包括偏最小二乘方法(PLS)、支持向量机方法(SVM)等,并给出了模型评价理论。其次,基于目前小麦近红外光谱测试的主要方法,自行设计了近红外漫反射光谱测试系统和近红外漫透反射光谱测试系统,其主要包括光纤耦合系统、光源系统等。对于光纤耦合系统,基于光学扩展量和分布加权平均采样的思想,提出利用分层环带光纤耦合的形式收集样品的漫射光,设计了一个分立式双层环带分布收集结构,该结构主要将整个光接收面分为两层环带,每层环带的接收点数量不同,其中,一层为9个接收点,另一层为10个接收点,共计19个接收点,9个接收点的环带层与受照表面成30°角,而10个接收点的环带层与受照表面成60°角,并且每个接收点的光能量收集方式均采用光纤耦合收集(可配耦合透镜增加接收立体角),解决了传统积分球采样结构存在的开孔小、样品装样姿态对测试影响大等问题;对于光源系统,采用长寿命卤钨杯灯作为光源的灯泡,聚光结构采用反射聚光器配合前置准直透镜的聚光结构,再辅以滤光片使光线集中,定向性好,辐射效果理想。
     2、针对于小麦水分模型,基于信息粒化思想,在有监督学习方式,利用小波多尺度分解,实现小麦近红外光谱的特征提取,选择具有代表性的小波系数,重构光谱,建立预测模型,使小麦近红外光谱水分预测模型的校正均方根误差(RMSECV)扫全光谱的0.4887降低到0.2910,降低了40.5%,极大程度优化了模型,提高了模型预测精度。
     3、基于常用的变量选择方法,主要包括无信息变量消除算法(UVE)、连续投影算法(SPA)、无信息变量消除算法结合连续投影算法(UVE-SPA),针对于小麦蛋白质模型,采用连续小波变换(CWT)和多元散射校正(MSC)对原始光谱进行预处理,分析了不同的变量选择方法的变量选择结果,并提出了基于特征投影图(LPG)的变量选择方法,并给出了具体处理步骤。其次,分别对SVM模型、CWT-SVM模型、CWT-MSC-SVM模型、CWT-MSC-UVE-SVM模型、CWT-MSC-SPA-SVM模型、CWT-MSC-UVE-SPA-SVM模型、CWT-LPG-SVM模型和CWT-MSC-LPG-SVM模型的建模结果进行了讨论,并给出了相应模型评价,其中,CWT-MSC-LPG-SVM模型效果最好,使变量数目减少了90%,预测均方根误差(RMSEP)降低了34%,极大程度提高了小麦蛋白质预测模型的预测精度。
     4、给出了模型集群分析(MPA)思想,MPA思想是首先根据所收集样本,利用蒙特卡洛采样技术(MCS),进行子训练集的划分,本文将收集到的93个小麦样本,按照2:1的原则,采用蒙特卡洛采样技术分别建立500个子建模集和子预测集;其次,针对于每个子训练集建立子回归模型,本文利用特征投影图方法结合偏最小二乘方法针对于每个子建模集和子预测集进行建模分析,并得出500个子预测集的均方根误差;最后,根据所建子模型,分别在样本空间、变量空间、参数空间、模型空间进行讨论,并对子模型的参数进行统计分析,从而选择感兴趣的信息,本文是将500个子预测集的均方根误差(RMSE)进行统计分析,删除预测均方根误差大的模型42个,在剩余的458个子模型中,将每个子模型中所选择的变量进行统计分析,统计出现频次高的特征变量,共计12个。比较分析不同变量选择方法的建模结果,其中,基于MPA思想的CWT-MSC-MC-LPG-PLS模型将变量数减少了95%,模型精度提高了51%,可以更好的应用于小麦蛋白质近红外光谱建模。
China is a big country with large population and wheat is one of the most important foods. It is a popular topic among countries as how to detect the chemical components of wheat and evaluate a number of indicators fast, efficiently and nondestructive. The development of nondestructive testing of wheat has been promoted by the demand of high quality wheat in many domestic industries. However, many existing near infrared (NIR) instrument are bulky and expensive which are not suitable for on-site analysis and on-line testing. Obviously, it is a great barrier for the promotion and application of NIR spectroscopy. Although the NIR measurement method of water, crushed grain protein, and whole grain protein have been recognized by the International Committee for Standardization, in the NIR data processing, the weak information of overlapping peak of NIR spectrum and the poor model transfer and universal ability of the calibration model are induced by the complexity of the sample. Therefore, NIR spectroscopy techniques and instruments are not widely used in the global scale. The ideas and methods in the modeling process are hot topics which require great efforts to explore. While the wheat NIR spectral data have the characteristics with complex components, high variations and uncontrolled natural sampling, therefore the NIR spectroscopy problem is eager to be solved. This paper covers the research of wheat nondestructive technology in such background. The main contents are as follows:
     1. Firstly, a brief introduction to the existing NIR instrument is introduced and the commonly used NIR spectral preprocessing methods and modeling methods are discussed in detail. Those spectroscopy pretreatment methods contain smooth method, derivation method, wavelet transform (WT) method, multiplicative scatter correction (MSC) method, standard normal variate (SNV) method, and orthogonal signal correction (OSC) method. Modeling methods include partial least squares (PLS) method, and support vector machine (SVM) method. The principles of modeling evaluation are given in this paper. Further, the NIR diffuse reflectance spectrum measurement system and NIR diffuse transmission reflectance spectrum measurement system has been designed based on the main testing methods of NIR spectrum of wheat currently. These systems include optical fiber coupling system and light source. As for the optical fiber coupling system, a discrete collection of double ring structure with distributed is designed based on optical fiber coupled with the use of hierarchical ring samples collected in the form of diffuse light. This optical fiber coupling system is based on the ideas of optical expansion and weighted average sampling distribution. The structure consists of19points of the directive reception and all the19points are divided into two layers distribution ring. Respectively, the angel of the first layer distribution ring with illuminated surface is30°(9points) and the second layer distribution ring with illuminated surface is60°(10Points). Each receiving point is optical fiber collection (In order to increase the receiver solid angle, it can be equipped with a coupling lens). The problems such as the small hole of the integrating sphere which exist the traditional structure sample and the sample attitude which have great impact on test have been solved. For the light source system, long-life halogen cup lamp as a light source is used. Condenser structure is designed to use reflex condenser with pre-collimator lens. The filters and condenser structure are also used to ensure the light is concentrated with good orientation and satisfactory radiation effects.
     2. For the wheat moisture model, based on the ideas of granular computing (GrC) and the ways of supervised learning, the feature extraction of NIR spectrum of wheat has been successively achieved with wavelet multi-scale decomposition. The representative wavelet coefficients have been selected to reconstruct the spectrum and establish the prediction model. The root mean square error of cross validation (RMSECV) of wheat NIR moisture prediction model decreased from0.4887in raw spectrums to0.2910, decreased by40.5%. It optimizes the model and improves the prediction accuracy of the model greatly.
     3. Commonly used variable selection methods are introduced. These methods include uninformation variable elimination algorithm (UVE), successive projection algorithm (SPA), and uninformation variables elimination algorithm with successive projection algorithm (UVE-SPA). As for the model for protein in wheat, continuous wavelet transform (CWT) and MSC are adopted to preprocess the raw spectrum. Variable selection results in different variable selection methods are carefully analyzed. The variable selection method based on latent projection graph (LPG) is introduced, and the processing steps are given in detail. Further, the modeling results are discussed in this paper and all the discussions are based on SVM model, CWT-SVM model, CWT-MSC-SVM model, CWT-MSC-UVE-SVM model, CWT-MSC-SPA-SVM model, CWT-MSC-UVE-SPA-SVM model, CWT-LPG-SVM model and CWT-MSC-LPG-SVM model. The relevant modeling evaluation has been given. Within all the models, CWT-MSC-LPG-SVM model works best. The number of variables reduces by90%, the root mean square error of prediction (RMSEP) reduces by34%. Prediction accuracy of wheat protein prediction model is greatly enhanced.
     4. The idea of Model Population Analysis (MPA) has been elaborated. The MPA is based on the collected samples on the first hand and then used Monte Carlo sampling technique (MCS) to divide them into sub-datasets. In this paper, all the collected93wheat samples are used to establish500sub-datasets by MCS. Further, the sub-models are created for each sub-datasets. The LPG method and PLS method are used in modeling. The500RMSEP of sub-models are concluded. Finally, the discussion has been given in the sample space, variable space, parameter space and model space respectively. Thereby the information of interest could be selected by statistic analysis in these spaces. In this paper, the500root mean square error (RMSE) has been statistical analyzed. There are42sub-models which have large RMSE are deleted. In the remaining458sub-models, the variables selected are used for statistical analysis. There are12variables with high frequency as characteristic variables. Comparing and analyzing the modeling results of different variables selecting methods. Wherein, CWT-MSC-MC-LPG-PLS model based on the idea of MPA creates a95%reduction of variables. Model accuracy is improved by51%. It can be better used in NIR spectral modeling of wheat protein prediction.
引文
[1].魏益民.谷物品质与食品品质—小麦籽粒品质与食品品质.西安:陕西人民出版社,2002.
    [2].刘钟栋.面粉品质改良技术及应用.北京:中国轻工业出版社,2006.
    [3].赵会杰,段藏禄,毛风梧.小麦品质形成机理与调优技术.北京:中国农业科学技术出版社,2003.
    [4].徐兆飞等.小麦品质及其改良.北京:气象出版社,2000.
    [5].昝香存.我国小麦品质现状分析.麦类作物学报,2006,26(6):46-49.
    [6].刘志华,胡尚连.小麦蛋白质组分与加工品质关系.粮食与油脂,2003,(10):7-9.
    [7].张宝军,李碧硕.两地小麦籽粒蛋白质品质的特点表现.水土保持研究,2002,2(9):124-127.
    [8].石培春等.小麦籽粒蛋白质组分的研究进展.种子,2005,24(10):38-41.
    [9].王月福.施氮量对小麦粒蛋白质组分含量及加工品质的影响.中国农业科学,2002,35(9):]07]-1078.
    [10].王银银,张保军.不同类型小麦籽粒蛋白质及其组分的地域性表现.西藏科技,2001,(8):18-22.
    [11].金善宝.中国小麦学.北京:中国农业出版社,1996:503-515.
    [12].蒋纪云.冬小麦籽粒蛋白质组分形成规律及调控研究.西北农业大学学报,1993,(3):1-5.
    [13].荆奇,姜东.基因型与生态环境对小麦籽粒品质与蛋白质组分的影响.应用生态学报,2003,14(10):1649-1653.
    [14].许振柱,于振文.灌溉条件对小麦籽粒蛋白质组分积累及品质的影响.作物学报,2003,(9):682-687.
    [15].王月福,于振文.土壤肥力对小麦蛋白质组分含量及加工品质的影响.西北植物学报,2002,22(6):1318-1324.
    [16].张宝军,蒋纪云.施氮时期对小麦产量和蛋白质品质的影响.西北农林科技大学学报,1996,24(1):33-35.
    [17].陆婉珍,袁洪福,徐广通等.现代近红外光谱分析技术.北京:中国石化出版社,2000.
    [18].芦永军.近红外光谱分析技术及其在人参成份分析中的应用研究:[博士学位论文].吉林:中国科学院长春光学精密机械与物理研究所,2004.
    [19]. Norris K H. History of NIR. J Near Infrared Spectroscopy,1996,64:31-37.
    [20]. Iwamoto M, Kawano S, Ozaki Y. An overview of research and development of near-infrared spectroscopy in Japan, J Near-Infrared Spectrosc.1995:179-189.
    [21]. Williams P, Norris K. Near-Infrared Technology in the Agricultural and Food Industries, USA,1987.
    [22]. Norris K. Early history of near-infrared for agricultural applications, NIR News.1992:12-13.
    [23]. Hart J R, Norris, K H. Golumbic, determination of the moisture content of seeds by near-infrared spectrophotometry of their methanol extracts, Cereal Chem.1962,39:94-99.
    [24]. Norris K H, Hart J R. Direct spectrophotometric determination of moisture content of grain and seeds, in Proc.1963 Int. Symp. Humidity Moisture, vol.4, Reinhold, New York.1965:19-25.
    [25]. Roggo Y, Duponchel L, Huvenne J P. Quality Evaluation of Sugar Beet (Beta vulgaris) by Near-Infrared Spectroscopy. J Agriculture and Food Chemistry,2004,52:1051-1061.
    [26]. Larrechi M S, Callao M P. Strategy for introducing NIR spectroscopy and multivariate calibration techniques in industry. Trends in Analytical Chemistry,2003,22(10):634-640.
    [27]. Miller C E. The use of chemometric techniques in process development and operation analytical method. Chemometrics and Intelligent Laboratory Systems,1994,30:11-22.
    [28]. Luypaert J, Massart D L, Vander Heyden Y. Near-Infrared Spectroscopy Applications in Pharmaceutical Analysis. Talanta,2007,72:865-883.
    [29]. Zhou X, Hines P, Borer M E. Moisture determination in hygroscopic drug substances by near infrared spectroscopy. J Pharm Biomed Anal,1998,17:219-225.
    [30]. O'Neil A J, Jee R D, Moffat A C. Measurement of cumulative particle size distribution of microcrystalline cellulose using near infrared reflectance spectroscopy. Analyst,1999,124:33-36.
    [31]. Freitas M P, Sabadin A, Silva L M, etal. Prediction of drug dissolution profiles from tablets using NIR diffuse reflectance spectroscopy:A rapid and nondestructive method. J Pharm Biomed Anal,2005, 39:17-21.
    [32]. Williams P C. Application of near-infrared reflectance spectroscopy to analysis of cereal grains and oilseeds, Cereal Chem.1975,52(4):561-576.
    [33]. Shenk J S. Westerhaus M O, Hoover M R. Analysis of forages by infrared reflectance, J Dairy Sci. 1979,62:807-812.
    [34]. Williams P C. Screening wheat for protein and hardness by near-infrared reflectance spectroscopy, Cereal Chem.1979.56(3):169-172.
    [35]. Norris K H. Near-infrared reflectance spectroscopy-the ptesent and future. Cereals' 78:better nutrition for the world's millions,6th Int. Cereal Bread Congr. pub. AACC.1978:245-252.
    [36]. SLefanis E,De' Sgntlefa D. Use of NIT(near infrared transmission)spectroscopy for semolina analysis. Tecnicamolitria.1996,47(9):861-866.
    [37]. Velasco L., Begona, et al. Use of near-infrared reflectance spectroscopy for Selecting for High Stearic Acid Concentration in Single Husked Achenes of Sunflower. Crop Science.2004,44(1):93-97.
    [38].王文真,蒋自强,林夕.近红外光谱分析及其在我国的应用.国外科学仪器,1989,3.
    [39]. Burns D A, Ciurczak E W. Handbook of Near-Infrared Analysis. New York:CRC Press,2008.
    [40].严国光,严衍禄.仪器分析原理及其在农业中的应用.北京:科学出版社,1982.
    [41].吴秀琴.应用51A型近红外s测定小麦种子中氨基酸的含量.农业测试分析,1985,2(2).
    [42]. Delwiche S R and Norris K H. Classification of hard wheat by near-infrared diffuse spectroscopy. Cereal Chem,1993,70(1):29-35.
    [43]. Delwiche S R and Weaver G. Bread quality of wheat flour by near-infrared spectrphotometry:feasibility of modeling. J of Food Science,1994,59(2):410-415.
    [44]. Dewiche, S, R. Single wheat kernel analysis by near-infrared Protein content. Cereal Chem.1995.72: 11-16.
    [45]. Delwiche S R and David R M. Classification of wheat by visible and near-infrared reflectance from single kernels. Cereal Chem,1996,73(3):399-405.
    [46]. Delwiche S R and Williams R H. Protein content of bulk wheat from near-infrared reflectance. Cereal Chem,2000,(77):86-89.
    [47]. Delwiche S R, Graybosch. Identification of waxy wheat by near-infrared reflectance spectroscopy. Cereall Science.2002,35:29-38.
    [48]. Fontaine J, Schirmer B, Horr J. Near-infrino acid contents.2.Results for wheat, barley,corn, tri-ticale, wheat ared reflectance spectroscopy(NIRS) enables the fast and accurate prediction of the essential ambran/middlings, rice bran, and sorghum. Agric. Food Chem.2002,50:3902-3911.
    [49]. Pasikatan MC., Dowell FE., High-Speed NIR Segregation of High-and Low-Protein Signle Wheat Seeds.Cereal Chemistry. Jan/Feb 2004,Vol.81,No.1:145-149.
    [50].高文淑,景茂,严衍禄.傅里叶变换近红外漫反射光谱法测定谷子、玉米中多种氨基酸含量.北京农业大学学报,1990,增刊:88-93.
    [51].高文淑,张录达,王万军.应用傅里叶变换近红外反射光谱法测定几种谷物籽粒中蛋白质含量.北京农业大学学报,1990,16(增刊):72-79.
    [52].李大群,近红外漫反射光谱分析中新的数据处理方法.分析仪器,1990(3):39-42.
    [53].彭玉魁,李菊英,祁振秀.近红外光谱分析技术在小麦营养成分鉴定上的应用.麦类作物,1997,17(2):33-35.
    [54].景茂,严衍禄,刘广田.傅里叶变换近红外漫反射光谱法测定小麦单籽粒中蛋白质含量.光谱学与光谱分析,1991,(3):20-22.
    [55].李庆春等.近红外漫反射光谱分析法(NIRDRSA)同时测定小麦中的粗蛋白质、粗脂肪及赖氨酸含量.卫生研究,1991(1):34-38.
    [56]. Cozzolino D C, Fassio and Gimenez A. The use of near-infrared reflectance spectroscopy(NIRS) to predict the composition of whole maize plants. J Sci Food Agric,2000,(81) :142-146.
    [57].严衍禄等.近红外光谱分析基础与应用.北京:中国轻工业出版社,2005.
    [58].刘建学.实用近红外光谱分析技术.北京:科学出版社,2008.
    [59].梁逸曾,俞汝勤.分析化学手册:第十分册—化学计量学.北京:化学工业出版社,2000.
    [60].梁逸曾.白灰黑复杂多组分分析体系及其化学计量学方法.长沙:湖南科技出版社,1996.
    [61].梁逸曾,俞汝勤.化学计量学.北京:高等教育出版社.2003.
    [62].许禄,邵学广.化学计量学.第2版.北京:科学出版社,2004.
    [63].李民赞,韩东海,王秀.光谱分析技术及其应用.北京:科学出版社.2006.
    [64].褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用.化学进展,2004,16(4):528-542.
    [65]. Park B, J.A. Abbott, K.J.Lee, C.H. Choi, and K.H. Choi. Near-infrared diffuse reflectance for quantitative and qualitative measurement of soluble solids and firmness of Delicious and Gala apples. Transactions of the ASAE,2003,46(6):1721-1731.
    [66].杜一平,潘铁英,张玉兰.化学计量学应用.北京:化学工业出版社.2008,148-157.
    [67].杨建国.小波分析及其工程应用.北京:机械工业出版社.2005,1.
    [68]. Ehrentreich F. Wavelet transform applications in analytical chemistry. Analytical and Bioanalytical Chemistry,2002,372:115-121.
    [69]. Jouan-Rimbaud D, Walczak B, Poppi R J, etal. Application of Wavelet Transform to Extract the Relevant Component from Spectral Data for Multivariate Calibration. Analytical Chemistry,1997, 69:4317-4223.
    [70]孙延奎.小波分析及其应用.北京:机械工业出版社.2005,31.
    [71]. Trygg J, Wold S. PLS regression on wavelet compressed NIR spectral. Chemometrics and Intelligent Laboratory Systems,1998,42:209-220.
    [72]. Depczynski U, Jetter K, Molt K, etal. Quantitative analysis of near infrared spectral by wavelet coefficient regression using a genetic algorithm. Chemometrics and Intelligent Laboratory Systems,1999, 47:179-187.
    [73]. Fu X, Yan G, Chen B, Li H J. Application of wavelet transforms to improve prediction precision of near infrared spectral. Food Engineering,2005,69:461-466.
    [74].杨福生.小波变换的工程分析与应用.北京:科学出版社.1999,32-33.
    [75]. Maleki M R, Mouazen A M, Ramon H, etal. Multiplicative Scatter Correction during On-line Measurement with Near Infrared Spectroscopy. Bilsystems Engineering,2007,96(3):427-433.
    [76]. Helland I S, Naes T, Isaksson T. Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data. Chemometrics and Intelligent Laboratory Systems,1995,29:233-241.
    [77].俞汝勤.化学计量学导论.长沙:湖南教育出版社,1991.
    [78]. Wold S, Antti H, Lindgren F, etal. Orthogonal signal correction of near infrared spectral. Chemom Intell Lab Syst,1998,44:175-185.
    [79]. Fearn T. On orthogonal signal correction. Chemom Intell Lab Syst,2000,50:47-52.
    [80]. Westerhuis J A, de Jong S, Smide A K. Direct orthogonal signal correction. Chemom Intell Lab Syst, 2001,56:13-25.
    [81]. Trygg J, Wold S. Orthogonal projections to latent structures(O-PLS). J Chemom,2002,16:119-128.
    [82]. Sjoblom J, Svensson O, Josefson M, etal. An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectral. Chemom Intell Lab Syst,1999,44:229-244.
    [83]. Anfersson C A. Direct orthogonalization. Chemom Intell Lab Syst,1999,47:51-63.
    [84]. Li B, Morris A J, Martin E B. Orthogonal signal correction:algorithmic aspects and properties. J Chemom,2002,16:556-561.
    [85]. Trygg J, Wold S. O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter. J Chemom,2003,17:53-64.
    [86]. Svensson O, Kourti T, MacGregor J F. An investigation of orthogonal signal correction algorithms and their characteristics, J Chemom,2002,16:176-188.
    [87]. Naes T, Isaksson T, Fearn T, Davies T. A User-Friendly Guide to Multivariate Calibration and Classification. Chichester, UK:NIR Publications,2004.
    [88]. M. Jing, W. S. Cai and X. G. Shao, Multiblock partial least squares regression based on wavelet transform for quantitative analysis of near infrared spectra. Chemom. Intell. Lab. Syst.2010,100,22-27.
    [89].任玉林,邴春亭,逯家辉等.近红外漫反射光谱的主成分分析.光谱学与光谱分析.1996,6(16):31~35.
    [90].史忠福.神经计算.北京:电子工业出版社.1993.
    [91].焦李成.神经网络计算.西安:西安电子科技大学出版社.1993.
    [92]. Keerhti S S, Lin C J. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computer,2003,15:1667-1689.
    [93]. Lin H T, Lin C J. Department of Computer Science and Information Engineering, National Taiwan University,2003, http://www.csie.ntu.edu.tw/cjlin/papers/tanh.pdf.
    [94]. Van G T, Suykens J A K, Baesens B, etal. Benchmarking least squares support vector machine classifiersm. Machine Learning.2004,54:5-32.
    [95]. Suykens J A K, Vandewalle J. Least Squares Support Vector Machine Classifiers. Neural Processing Letters,1999,9(3):293-300.
    [96]. Li H D, Liang Y Z, Xu Q S. Support vector machines and its applications in chemistry. Chemom Intell Lab Sys,2009,95:188-198.
    [97].王惠文.偏最小二乘法回归方法及其应用.北京:国防工业出版社.1999.
    [98]. X. G. Shao, X. H. Bian and W. S. Cai, An improved boosting partial least squares method for near-infrared spectroscopic quantitative analysis, Anal. Chim. Acta,2010,666,32-37.
    [99]. N. Hernandez, I. Talavera, R. J. Biscay, D. Porro and M. M. C. Ferreira, Support vector regression for functional data in multivariate calibration problems, Anal. Chim. Acta,2009,642, 110-116.
    [100].田英杰.支持向量回归机及其应用研究[博士学位论文].中国农业大学.2005.
    [101].刘晓宣.近红外光谱定性定量技术在中药质量控制中的应用研究[硕士学位论文].浙江大学.2004.
    [102]. Chih-Wei Hsu, Chilh-Chung Chang, and Chih-Jen Lin. A Practical Guide to Support Vector Classification. Technical Report.2001.
    [103].傅霞萍.水果内部品质可见/近红外光谱无损检测方法的实验研究[博士学位论文].浙江大学.2008.
    [104].刘燕德.水果糖度和酸度的近红外光谱无损检测研究[博士学位论文].浙江大学.2006.
    [105].胡昌华,张军波,夏军.基于MATLAB的系统分析与设计.西安:西安电子科技大学出版社,2000.
    [106].葛哲学,沙威.小波分析理论与MATLAB R2007实现.电子工业出版社.2007,01.
    [107].谢中华MATLAB统计分析与应用:40个案例分析.北京航空航天大学出版社.2010,06.
    [108].许国根,许萍萍.化学化工中的数学方法及MATLAB实现.化学工业出版社.2008,01.
    [109].史永刚,粟斌,田高友.化学计量学方法及MATLAB实现.中国石化出版社.2010,04.
    [110]].张德丰MATLAB神经网络编程.化学工业出版社.2011,12.
    [111].张录选,吴振良.化学计量学定量分析模型的评价及应用.分析化学,1996,24(1):97-100.
    [112].齐小明,张录达.主成分-逐步回归法在近红外光谱定量分析中应用的研究.北京农学院学报,1999,14(2):45-49
    [113]田高友,袁洪福,刘慧颖等.小波变换在近红外光谱分析中的应用进展.光谱学与光谱分析,2003,23(6):1111-1114.
    [114]唐晓初.小波分析及其应用.重庆:重庆大学出版社.2006,10-11.
    [115]陈孝敬.小波分析在光谱和多光谱图像的应用与研究[博士学位论文].福建:厦门大学,2009.
    [116].赵鹏飞.多分辨分析理论与小波预测[硕士学位论文].吉林:吉林大学,2007.
    [117]].戴士杰等.小波变换信号消噪技术研究.河北工业大学学报,2003,32(1):34~37.
    [118].赵凯,王宗花.小波变换及其在分析化学当中的应用.北京:地质出版社,2000:162-168
    [119]. M.L.Hilton, wavelet and wavelet packet compression of electrocardiagrams, IEEE Transactionson Biomedieal Engineering,1997,44(5):394-402.
    [120]. B.Walezak, E.Bouveress, D.L.Massart, Standardization of near-infrared spectra in the wavelet domain, Chemometrics and Intelligent Laboratory Systems,1997,36:41-51.
    [121].邵学广,庞春艳,孙莉,小波变换与分析化学信号处理.化学进展.2000,12(3):233.
    [122].潘忠孝,邵学广,仲红波,刘卫,王洪,张惫森,小波变换用于高效液相色谱的基线校正.分析化学.1996,24(2):149-153.
    [123]. Mallat, Multifrequency channel decomposition of images and wavelet models, IEEE Transactions on Acoustic, Speech, Signal Proeessing.1989,37(12):2091-2110.
    [124].郑治真.小波变换及其MATLAB工具的应用.北京:地震出版社,2001:1-26.
    [125]. Shao X G, Pang C Y, Su Q D. A novel method to calculate the approximate derivative photoacoustic spectrum using continuous wavelet transform. Fresenius J Anal Chem,2000,367:525-529.
    [126]. BeataWalezak, BasvandenBogaert, DesireLueMassart, Application of wavelet packet transform in pattern recognition of near-IR data, AnalChem,1996,68(10):1742-1747.
    [127]. Aballe.A, Betheneourt.M, Botana.F·J, Mareos·M, Sanehez-Amaya.J.M, Use of wavelets to Study electrochemical noise transients, Electrochemical Acta,46(15),2001.
    [128]. Jouan-Rimbaud, B.Walczak, R.J.Poppi, O.E.deNoord, D.L.Massart, Application of wavelet transform to extract the Relevant component from Spectral data formultivariate calibration, AnalChem, 1997,69(21):4317-4323.
    [129]. Jeongah Yoon, Byungwoo Lee, Chonghun Han. Calibration transfer of near-infrared spectra based on compression of wavelet coefficients, Chemometries and Intelligent Laboratory Systems,2002,64: 1-14.
    [130].李弼程,罗建文.小波分析及其应用.北京:清华大学出版社,2003:47-82.
    [131].程伟.石扬,张燕平.粒度计算的三种主要方法.计算机技术与发展.2007,17(3),91-94.
    [132]. L. Norgaard, A. Saudland. J. Wagner, J. P. Nielsen, L. Munck and S. B. Engelsen. Interval partial least-squares regression (iPLS):A comparative chemometric study with an example from near-infrared spectroscopy.Applied Spectroscopy,2000,54(3):413-419.
    [133]. X.B. Zou, J.W. Zhao, Y.X. Li. Selection of the efficient wavelength regions in FT-NIR spectroscopy for determination of SSCof'Fuji'apple based on BiPLS and FiPLS models. Vibration Spectroscopy.2007, 44:220-227.
    [134].石吉勇,邹小波,赵杰文,等. BiPLS结合模拟退火算法的近红外光谱特征波长选择研究.红外与毫米波学报.2011,30(5):458-462.
    [135]. W.S. Cai, Y.K. Li and X.G. Shao. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemometries and Intelligent Laboratory Systems [J].2008,90:188-194.
    [136]. Zou Xiaobo, Zhao Jiewen, Malcolm J.W. Povey, et al. Variables selection methods in near-infrared spectroscopy[J]. Analytica Chimica Acta,2010,667:14-32.
    [137]. Centner V, Massart D-L, Noord O E de, Jong S de, Vandeginste B M, Sterna C. Elimination of Uninformative Variables for Multivariate Calibration. Anal Chem,1996,68:3851-3858.
    [138]. J. Koljonen, T.E.M. Nordling. J.T. Alander. A review of genetic algorithms in near infrared spectroscopy and chemometries:past and future. Journal of Near Infrared Spectroscopy [J].2008, 16:189-197.
    [139]马世榜,汤修映,徐杨,等.可见/近红外光谱结合遗传算法无损检测牛肉pH值.农业工程学报,2012,28(10):263-268.
    [140]. Horchner U, Kalivas J H. Further Investigation on A Comparative Study of Simulated Annealing and Genetic Algorithm for Wavelength Selection. Anal Chem Acta,1995.311:1.
    [141]. Jouan-Rimbaud D, Massart D L, Leardi R. De Noord O E. Genetic algorithms as a tool for wavelength selection in multivariate calibration. Anal Chem,1995,67:4295.
    [142].廖宜涛,樊玉霞,成芳,等.连续投影算法在猪肉pH值无损检测中的应用.农业工程学报,2010,26(S1):379-382.
    [143]. Araujo M C U, Saldanha T C B, Galvao R K H, etal. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst.2001,57(2): 65-73.
    [144]. Galvao R K H, Araujo M C U, Fragoso W D, etal. A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm. Chemom. Intell. Lab. Syst.2008, 92(1):83-91.
    [145].陈斌,孟祥龙,王豪.连续投影算法在近红外光谱校正模型优化中的应用.分析测试学报.2007,26(1):66-69.
    [146]. Q.J. Han, H.L. Wu, C.B. Cai, L. Xu, R.Q. Yu. An ensemble of Monte Carlo uninformative variable elimination for wavelength selection. Analytica Chimica Acta.2008,612(2):121-125.
    [147]].石吉勇,殷晓平,邹小波,等.基于模拟退火波长优化的草莓坚实度近红外光谱检测.农业机械学报,2010,41(9):99-103.
    [148]. Kirk Patrick S. Gellat C D Jr, Vecchi M P. Optimization by simulated annealing. Science.1983.220: 671-680.
    [149]. H. Xu, Z. C. Liu, W. S. Cai and X. G. Shao, A wavelength selection method based on randomization test for near-infrared spectral analysis. Chemom. Intell. Lab. Syst.,2009,97,189-193.
    [150]. Van der Voet H. Comparing the predictive accuracy of models using a simple randomization test. Chemom Intell Lab Syst.1994,25:313-323.
    [151]. H.D. Li, Y.Z. Liang, Q.S. Xu, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Analytica Chimica Acta.2009,648:77-84.
    [152]. J.H. Jiang, Berry R J. Siesler H W, Ozaki Y. Wavelength interval selection in multicomponent spectral analysis by moving window partial least squares regression with applications to mid-infrared spectroscopic data. Analytical Chemistry,2002,74:3555.
    [153]. Wu D, Chen X J, Shi P Y, et al. Determination of alpha-linolenic acid and linoleic acid in edible oils using near-infrared spectroscopy. Spectroscopy and Spectral Analysis,2009,29(12):3295-3299.
    [154]. Koshoubu J, Iwata T, Minami S. Application of the Modified UVE-PLS Method for a Mid-Infrared Absorption Spectral Data Set of Water-Ethanol Mixtures. Applied Spectroscopy.2000.54(2):148-151.
    [155]. Put R, Daszykowski M, Baczek T, Vander Heyden Y. Retention Prediction of Peptides Based on Uninformative Variable Elimination by Partial Least Squares, Journal of Proteome Research.2006,5(7): 1618-1625.
    [156]. Koshoubu J, Iwata T, Minami S. Elimination of the Uninformative Calibration Sample Subset in the Modified UVE-PLS Method. Analytical Sciences.2001.17(22):319-322.
    [157]. Polanski J, Gieleiak R. The Comparative Molecular Surface Analysis (CoMSA) with Modified Uniformative Variable Elimination-PLS (UVE-PLS) Method:Application to the Steroids Binding the Aromatase Enzyme. Journal of Chemical Information and Computer Sciences.2003,43(2):656-666.
    [158]. Tan C, Wang J, Wu T, Qin X, Li M. An ensemble method based on uninformative variable elimination and mutual information for spectral multivariate calibration. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.77(5):960-964.
    [159].成忠,张立庆,刘赫扬,诸爱士.连续投影算法及其在小麦近红外光谱波长选择中的应用.光谱学与光谱分析.2010,30(4):949-952.
    [160]. Roman M, Balabin, Sergery V. Smirnov. Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on bipdiesel data. Analytica Chimica Acta.2011,692:63-72.
    [161]. Xiaochun Guan, Xiaojing Chen and Jun Jiang. Integration of modified uninformative variable elimination and successive projections algorithm for determination harvest time of laver by using visible and near infrared spectra. African Journal of Agricultural Research.2011,6(27):5987-5991.
    [162].高洪智,卢启鹏,丁海泉,等.基于连续投影算法的土壤总氮近红外特征波长的选取.光谱学与光谱分析,2009,29(11):2951-2954.
    [163].钱海波.孙来军,王乐凯,徐璐璐,戴常军.基于连续投影算法的小麦湿面筋近红外校正模型优化.中国农学通报.2011,27(18):51-56.
    [164].郝勇,孙旭东,王豪.基于改进连续投影算法的光谱定量模型优化.江苏大学学报(自然科学版).2013,34(1):49-53.
    [165]. Mario Cesar Ugulino Araujo, Teresa Cristina Bezerra Saldanha, Roberto Kawakami Harrop Galvao. et al. The successive projections algorithm for variable selection for variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory Systems,2011,57(2):65-73.
    [166]. Spfacles Figueredo Carreiro Soares, Roberto Kawakami Hrrop Galvao, Mario Cesar Ugulino Araujo, et al. A modification of the successive projections algorithm for spectral variable selection in the presence of unknown interferents. Analytica Chimica Acta,2011,689(1):22-28.
    [167]. Ye S, Wang D, Min S, Successive projections algorithm combined with uninformative variable elimination for spectral variable selection. Chemometrics and intelligent laboratory systems,2008,91(2): 194-199.
    [168].吴迪,吴洪喜,蔡景波,黄振华,何勇.基于无信息变量消除法和连续投影算法的可见-近红外光谱技术白虾种分类方法研究.红外与毫米波学报.2009,28(6):423-427.
    [169]. Di Wu, Xiaojing Chen. Xiangou Zhu. Xiaochun Guan and Guichu Wu. Uninformative variable elimination for improvement of successive projections algorithm on spectral multivariable selection with different calibration algorithms for the rapid and non-destructive determination of protein content in dried laver. Analytical Methods.2011.3,1790-1796.
    [170].马世榜,彭彦昆,徐杨,汤修映,田潇瑜.可见近红外光谱结合变量选择方法检测牛肉挥发性盐基氮.江苏大学学报(自然科学版).2013,34(1):44-48.
    [171].梁逸曾,许青松.复杂体系仪器分析-白、灰、黑分析体系及其多变量解析方法.北京:化学工业出版社,2012.
    [172]. Y.Z. Liang, Olav M. Kvalheim, Resolution of two-way data:theoretical background and practical problem-solving Part 1:theoretical background and methodology. Fresenius' Journal of Analytical Chemistry,2001,370:694-704.
    [173]. KVALHEIM O M, LIANG Y Z. Heuristic evolving latent projections:resolving two-way multicomponent data.1. Selectivity, latent-projective graph, datascope, local. Rank, unique resolution. Anal Chem,1992,64:936-946.
    [174]. Y.Z. Liang, Olav M. Kvalheim, Hans R. Keller, et al. Heuristic Evolving Latent Projection: Resolving Two-Way Multicomponent Data.2. Detection and Resolution of Minor Constituents. Anal. Chem.,1992,64:946-953
    [175]. LIANG Y Z, KVALHEIM O M, RAHMANI A, et al. Resolution of strongly overlapping two-way multicomponent data by means of heuristic evolving latent projections. J Chemom,1993,7:15-43.
    [176]. BOOKSH K S, KOWALSKI B R. Theory of analytical chemistry. Anal Chem,1994, 66:A782-A791.
    [177]. MAEDER M, ZILIAN A. Multivariate technique in chromatography. Chemom Intell Lab Syst, 1988,3:205-215.
    [178].杨阳.核方法在近红外光谱中的应用研究[硕士学位论文].吉林:长春理工大学,2012.
    [179]. M. Zhang, W.S. Cai, X.G. Shao. Wavelet unfolded partial least squares for near-infrared spectral quantitative analysis of blood and tobacco powder samples. Analyst.2011,136:4217-4221.
    [180].宦克为,郑峰,刘小溪,等.基于特征投影图的小麦近红外光谱变量选择方法研究.光谱学与光谱分析.2012,32(11):2962-2965.
    [181]. X.G. Shao, G.R. Du, M. Jing, W.S. Cai. Application of latent projective graph in variable selection for near infrared spectral analysis. Chemometrics and Intelligent Laboratory Systems.2012,114:44-49.
    [182]. Candes E, Tao T. The Dantzig selector:statistical estimation when p is much larger than n. Ann Statist 2007,35(6):2313-2351.
    [183]. Li H-D, Liang Y-Z, Xu Q-S, Cao D-S. Model population analysis for variable selection. J Chemometrics,2009,24(7-8):418-423.
    [184]. Bart Selman. A hard statistical view. Nature,2008,45:639-640.
    [185]. Hong-Dong Li, Yi-Zeng Liang, Dong-Sheng Cao, et al. Model-population analysis and its applications in chemical and biological modeling. Trends in Analytical Chemistry.2012,38:154-162.
    [186]. Rajalahti T, Arneberg R, Kroksveen A C, Berle M, Myhr K-M, Kvalheim O M. Discriminating Variable Test and Selectivity Ratio Plot:Quantitative Tools for Interpretation and Variable(Biomarker) Selection in Complex Spectral or Chromatographic Profiles. Anal Chem,2009,81(7):2581-2590.
    [187]. Li G, Chen Z, Projection-pursuit approach to robust dispersion matrices and principal components: primary theory and Monte Carlo. Journal of the American Statistical Association.1985.80(391):759-766.
    [188]. Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering, Statistics and Computing.2000,10(3):197-208.
    [189]. Booth J G, Sarkar S. Monte Carlo approximation of bootstrap variances. Am Statist,1998,52: 354-357.
    [190]. Efron B. Bootstrap methods:another look at the jackknife. Ann Statist,1979.7:1-26.
    [191]. Mooney C Z, Duval R D. Bootstrapping:A Nonparametric Approach to Statistical Inference. London:Sage Publications,1993.
    [192]. Phillip I. Good. Introduction to statistics through resampling methods and Rs-plus. John Wiley & Sons.2005.
    [193]. Quenouille M H. Approximate test of correlation in time series. Journal of the Royal Statistical Society, Series B,1949,11:18-84.
    [194]. Quenouille M H. Notes on bias in estimation. Biometrika,1954,43:353-360.
    [195]. Shao J, Tu D. The Jackknife and Bootstrap. New York:Springer-Verlag,1995.
    [196]. Efron B, Tibshirani R. An Introduction to the Bootstrap. New York:Chapman & Hall Ltd.1993.
    [197]. Good P. Permutation, Parametric and Bootstrap Tests of Hypotheses.3rd Edition. New York: Springer-Verlag,2005.
    [198]. Breiman L. Random Forests. Mach Learn,2001,45(1):5-32.
    [199]. Li H D, Liang Y Z, Xu Q S. Recipe for Uncovering Predictive Genes using Support Vector Machines based on Model Population Analysis, IEEE/ACM Transactions on Computational Biology and Bioinformatics.2011, http://doi.ieeecomputersocietv.org/10.1109/TCBB.2011.36.
    [200]. Li H D, Zeng M M, Tan B B, Liang Y Z. Xu Q S, Cao D S. Recipe for revealing informative metabolites based on model population analysis, Metabolomics,2010.
    [201]. Cao D S, Liang Y Z, Xu Q S, Li H D, Chen X. A new strategy of outlier detection for QSAR/QSPR, Journal of Computational Chemistry,31(3):592-602.
    [202].宦克为,刘小溪,郑峰.石晓光等.基于蒙特卡罗特征投影法的小麦蛋白质近红外光谱测量变量选择.农业工程学报.2013,29(4):266-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700