用户名: 密码: 验证码:
基于纤维蛋白胶支架材料的可注射组织工程化心肌的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究旨在以脂肪来源的干细胞(ADSCs)作为种子细胞来源,并以纤维蛋白胶可注射支架材料作为载体,开展用于可注射性心肌组织工程修复心肌梗死的研究。本研究包括:1)体外分离培养大鼠脂肪干细胞(ADSCs)并研究其基本生物学特性,探讨其为可注射的组织工程化心肌治疗心肌梗死提供种子细胞的可行性;2)探讨体外纤维蛋白胶中三维培养的大鼠脂肪干细胞(ADSCs)的增殖和存活性,并进行纤维蛋白胶体内组织形容性研究和生物降解性能评价,为可注射的组织工程化心肌治疗心肌梗死提供实验依据;3)以可注射纤维蛋白胶作为载体携带大鼠脂肪干细胞心梗部位移植,对其心梗损伤修复能力进行进一步的研究。
     方法:1)本课题第一部分体外分离培养大鼠脂肪来源的干细胞并进行传代培养,流式细胞术鉴定CD90、CD29、CD34及CD45的表达及检测细胞周期;绘制ADSCs的生长曲线;通过细胞形态观察、特异性染色及免疫组化方法来检测脂肪干细胞向成骨、成脂肪细胞及心肌细胞诱导分化的能力;2)本课题第二部分采用不同浓度的凝血酶与纤维蛋白原进行配比,摸索最佳的浓度与胶凝固时间;体外将ADSCs与不同浓度的纤维蛋白胶共培养,摸索最适宜的纤维蛋白原浓度;用噻唑蓝(MTT)比色法及LIVE/DEAD荧光双染色检测ADSCs在纤维蛋白胶中的增殖和存活性;随机选取SD大鼠8只,将纤维蛋白胶注射于大鼠心尖部,不同时间点取材,通过组织学染色检测其组织相容性及体内生物降解性。3)课题第三部分以可注射性纤维蛋白胶为载体,脂肪干细胞为种子细胞,体外构建可注射性工程化心肌并进行大鼠心梗部位移植。90只SD大鼠建立心梗模型,存活动物随机分为4组:单纯注射PBS组(10只)、单纯注射Fibrin组(10只)、单纯注射ADSCs组(18只)、注射Fibrin+ADSCs组(18只)。模型建立后1周,于梗死边缘区移植4,6二乙酰基-2-苯基吲哚(DAPI)标记的100uL 5×106个ADSCs、单纯的纤维蛋白胶和PBS。Fibrin+ADSCs组用纤维蛋白胶加ADSCs注射。术后24小时,ADSCs组和Fibrin+ADSCs组各有8只动物处死取材,观察移植细胞24h滞留率;余下所有各组动物则在术后4w,应用血流动力学方法和心脏超声方法检查心功能,随后处死动物取心肌标本做冰冻切片,测量心肌梗死面积、左心室室壁厚度、用DAPI、肌节辅肌动蛋白免疫组化双染法确定4周细胞的存活,免疫荧光检测心肌肌钙蛋白T(cTnT)、八因子相关抗原(vWAg)、α-平滑肌肌动蛋白(SMA)抗体;八因子染色法检测微血管密度。
     结果:1)结果表明大鼠ADSCs表型特征为CD90、CD29阳性,CD34、CD45阴性;ADSCs能连续传代达15代以上,且在第7代仍保持较强的增殖能力;流式细胞术显示各代次的ADSCs约80%左右处于细胞周期的G0-G1期;ADSCs体外具有向成骨、成脂肪细胞分化的潜能,但向心肌细胞诱导分化的能力差。2)纤维蛋白原浓度为10mg/ml及凝血酶浓度为50iu/mL时成胶时间适宜,细胞生长状态好;MTT结果显示,纤维蛋白胶上的ADSCs增殖活性高于对照组(P<0.05),LIVE/DEAD荧光双染色显示ADSCs在纤维蛋白胶中生长良好,24h和72h的细胞存活率均在90%以上,死亡率小于7%;体内生物学评价结果说明纤维蛋白胶具有良好的组织相容性及生物降解性。3)移植后24h,纤维蛋白胶联合ADSCs移植显著提高了移植细胞在注射区域的滞留率(P<0.01),移植后4周,Fibrin+ADSCs组心肌梗死区的存活细胞数量多于单纯细胞移植组(P<0.01)。Fibrin+ADSCs组心脏超声的各个指标及血流动力学显示的LVSP,+dp/dtmax均高于其他三组(P<0.01)。Fibrin+ADSCs组心肌梗死面积明显低于ADSCs组和Fibrin组(均P<0.01),室壁厚度大于ADSCs组和Fibrin组(均P<0.01);Fibrin+ADSCs组胶原纤维的面积较其他组明显减少;免疫荧光结果表明脂肪干细胞移植大鼠心脏4周后,可以分化为cTnT阳性细胞、vWAg阳性细胞及SMA阳性细胞。Fibrin+ADSCs组梗死区的毛细血管密度显著高于ADSCs组、Fibrin组和对照组(均P<0.01)。
     结论:1)大鼠脂肪干细胞体外易于分离培养、扩增迅速、增殖能力强,具有向成骨、成脂肪细胞诱导分化的潜能,第7代之前的细胞可以作为组织工程的种子细胞来源;2)大鼠脂肪干细胞在纤维蛋白胶中增殖和存活良好,纤维蛋白胶具有良好的细胞相容性、组织相容性及生物降解性,是心肌组织工程种子细胞较为理想的载体材料;3)以可注射纤维蛋白胶为载体携带脂肪干细胞心梗移植验证了纤维蛋白胶作为可注射性组织工程化心肌载体的可行性。这种基于可注射性支架材料的心肌组织工程研究对于缺血性心肌病的治疗具有潜在的临床应用价值。
Objective:The research is aimed at studying the usefulness of the combination of fibrin glue (as scaffold) and adiposederived stem cells (ADSCs) to treat myocardial infarction. The present study focuses on the following issues:1) To investigate a method of culture and isolation of rat adipose tissue-derived stem cells in vitro and explore their biological properties, and to discuss the feasibility of ADSCs as seed cells in injectable myocardial tissue engineering.2) To investigate the effects of the fibrin glue on the proliferation and viability of adipose tissue-derived stem cell of rat, and to evaluate the biocompatibility and biodegradability of the fibrin glue using histopathology staining in vivo, which provided the experiment evidence of injectable myocardial tissue engineering.3) Injectable cardiac tissue engineering aims to support cell-based therapies and enhance their efficacy for cardiac diseases. No research is devoted to studying the usefulness of the combination of fibrin glue (as scaffold) and adipose-derived stem cells (ADSCs) to treat myocardial infarction.
     Methods:1) Firstly, the isolated ADSCs were cultured in vitro. The cell phenotype and generation cycle were detected by flow cytometry;growth curves of the cells were drawn with help of MTT assay;the characteristics of osteogenic and adipogenic and cardiomyocytes differentiation potential were investigated.2) Fibrin glue were prepared by combining fibrinogen with thrombin of different concentration for exploring suitable concentration and time. To Culture adipose tissue-derived stem cell and fibrin glue in vitro, the suitable concentration of fibrinogen was explored. The proliferation was tested by MTT assay and cell viability was assessed with LIVE/DEAD stain between ADSCs culture alone and ADSCs seeded fibrin glue. Fibrin glue was injected into the cardiac apex of 8 Rats, histopathology staining was performed to evaluate the biocompatibility and biodegradability of fibrin glue at different point in vivo.3) Fibrin glue was co-injected with ADSCs into the left ventricular wall of rat infarction models. Myocardial infarction was induced in 90 female rats using coronary artery ligation. Surviving rats that underwent ligation were randomly divided into 4 equal group, injections were performed along the border zone. 100μL of PBS was injected into the ischemic LV in control group (n=10).50μL of fibrinogen and 50μL of thrombin were simultaneously injected into ischemic myocardium in Fibrin group (n=10).5×106ADSCs in 100μL of PBS were injected into the infract in ADSCs group (n= 18,8 for 24-h cell retention observation).5×106ADSCs in 100uL of fibrin glue were injected into the infract in Fibrin+ADSCs group (n=18,8 for 24-h cell retention observation). Four weeks after the injection, the surviving rats underwent examination of heart functions by the echocardiography and hemodynamics. The rats were killed and their hearts were taken out to undergo immunohistochemistry with 4'6-diamidino-2-phenylindole (DAPI) and actin to measure the area of cardiac infarction. The heart infarcted size and wall thickness were calculated by masson trichrome staining. The differentiation of ADSCs in the infarcted heart was identified using cardiac troponin T (cTnT), vWAg antibody and smooth muscle a-actin (SMA). Blood vessel formation was detected by vWAg antibody.
     Results:1) The ADSCs were positive for CD90 and CD29, but negative for CD34 and CD45;The ADSCs could be expanded for 15 passages, and showed active proliferation on generation 7 (P7), more than 80%cells of ADSCs were found at G0-G1 phase. The ADSCs were differentiate into osteogenic and adipogenic cells. However, ADSCs may not have the ability to differentiate into cardiomyocytes in vitro.2) The fibrin glue prepared by using l0mg/mL fibrinogen and 50iu/mL thrombin is suitable for the application in cardiac tissue engineering. ADSCs showed fast proliferation in fibrin glue group than the control group (P<0.05);ADSCs were successfully cultured in fibrin glue in vitro. The viability of ADSCs maintain>90%and the mortality of ADSCs maintain<7%at 24h and 72h. The biocompatibility and biodegradability of fibrin glue are good in the myocardium.3) After injection, both the.24h-cell retention and 4-week graft size were significantly higher and larger in the Fibrin+ADSCs group than those of the ADSCs group alone (P<0.1). The heart function improved significantly in the Fibrin+ ADSCs group compared with that of the ADSCs group 4 weeks after transplantation (P     Conclusion:1) The Rat ADSCs was easy to isolate and culture in vitro. The proliferation ability of ADSCs was strong, especially before 7th passage. The ADSCs have the potential for osteogenic and adipogenic differentiation. The ADSCs would be a promising source of stem cells for tissue engineering.2) The proliferation and viability of ADSCs with fibrin glue were good. The biocompatibility and biodegradability of fibrin glue are good in the myocardium. Fibrin glue may work as a vehicle in deliverying ADSCs for injectable myocardial tissue engineering.3) The result from this study indicate that fibrin glue was potential injectable scaffolds that can be used to deliver stem cells to infarcted myocardium. The ADSCs with fibrin glue has the therapeutic potential to improve the function of infarcted hearts. The method of in situ injectable tissue engineering combining fibrin glue with ADSCs is promising clinically.
引文
[1]American Heart Association. Heart and Stroke Statistical Update. Datas:American Heart Association[J],1999.
    [2]Ballard JC, Wood LL, Lansing AM. Transmyocardial revascularization:criteria for selecting patients, treatment, and nursing care[J]. Crit Care Nurs,1997,17:42-49.
    [3]Kantor B, McKenna CJ, Caccitolo JA, et al. Transmyocardial and percutaneous myocardial revascularization:current and future role in the treatment of coronary artery disease[J]. Mayo Clin Proc,1999,74:585-592.
    [4]Tateishi K, Takehara N, Matsubara H, et al. Stemming heart failure with cardiac or reprogrammed-stem cells[J]. J Cell Mol Med.2008,12:2217-32.
    [5]Bel A, Messas E, Agbulut O, et al. Transplantation of autologous fresh bone marrow into infarcted myocardium:a word of caution[J]. Circulation,2003,108:247-252.
    [6]Anversa P, Nadal, Ginard B. Myocyte renewal and ventricular remodeling[J]. Nature,2002,41:240-243.
    [7]Sutton MG, Sharpe N. Left ventrivular remodeling after myocardial infarction:pathophysiology and therapy [J]. Circulation,2000,101: 2981-2988
    [8]Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart[J]. N Eng1 J Med,2002,346:5-15.
    [9]Smits AM, van Vliet P, Hassink RJ, et al. The role of stem cells in cardiac regeneration J]. J Cell Mol Med,2005,9:25-36.
    [10]顾东风,黄广勇.中国心力衰竭流行病学调查及其患病率[J].中华心血管病杂志,2003,31(1):3-6.
    [11]Zimmermann WH, Cesnjevar R. Cardiac Tissue Engineering:Implications for Pediatric Heart Surgery[J]. Pediatr Cardiol,2009,30:716-23.
    [12]Ghostine S, Carrion C, Souza LC, eta.1 Long-term efficacy of myoblast transplan-tation on regional structure and function aftermyocardial infarction[J]. Circulation,2002,106:1131-1136.
    [13]MangiAA, NoiseuxN, KongD, et a.1 Mesenchymal stem cells modified withAkt-prevent remodeling and restore performance of infarcted hearts[J]. NatMed, 2003,9:1195-1201.
    [14]Murry CE, Field LJ, Menasche P. Cell-based cardiac repair reflections at the 10-year poin[J]t. Circulation,2005,112:3174-83.
    [15]Laflamme MA, Murry CE. Regenerating the heart[J]. Nat Biotechnol,2005, 23:845-856.
    [16]Zimmermann WH, Didie M, Doker K, et al. Heart muscle engineering:An update on cardiac muscle replacement therapy[J]. Cardiovascular Research,2003,3:11-21.
    [17]SchachingerV, AssmusB, BrittenMB, eta.1 Transplantation of progenitor cells and regeneration enhancement in acutemyocardial infarction:final one-year results of the TOPCARE-AMITrial[J]. JAm College Cardiol,2004,44:1690-1699.
    [18]AssmusB, Honold J, SchachingerV, etal. Transcoronary transplantation ofprogenitor cells aftermyocardial infarction[J]. N Engl J Med,2006,355:1222-1232.
    [19]WollertKC, MeyerGP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer aftermyocardial infarction:the BOOST randomised controlled clinical trial [J]. Lancet,2004,364:141-148.
    [20]Xu C, Police S, Rao N, et al. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells[J]. Circ Res,2002,91:501-508
    [21]Lee N, Thorne T, Losordo DW, et al. Repair of ischemic heart disease with novel bone marrow-derived multipotent stem cells[J]. Cell Cycle,2005,4:861-64.
    [22]Laflamme MA, Gold J, Xu CH, et al. Formation of Human Myocardium in the Rat Heart from Human Embryonic Stem Cells[J]. J Ame Pat,2005,167:663-71.
    [23]Xue, T. et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes:insights into the development of cell-based pacem-akers[J]. Circulation,2005,111:11-20.
    [24]Temenoff JS, Park H, Jabbari E, et al. In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels[J]. J Biomed Mater Res A, 2004,70:235-244.
    [25]Abdel-Latif A, Bolli R, Tleyjeh IM, et al. Adult bone marrow-derived cells for cardiac repair:a systematic review and meta-analysis[J]. Arch Intern Med,2007, 167:989-97.
    [26]Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges[J]. J Cell Biochem,2001,82:583-90.
    [27]高连如,唐朝枢,朱智明,等.经冠状动脉骨髓单个核细胞移植治疗重度心力衰竭[J].中华心血管病杂志,2006,34(7):582-58.
    [28]王建安,谢小洁,何红,等.骨髓间质干细胞移植治疗原发性扩张型心肌病的疗效与安全性[J].中华心血管病杂志,2006,34(2):107-110.
    [29]Tokcaer-Keskin Z, Akar AR, Ayaloglu-Butun F, et al. Timing of induction of cardiomyocyte differentiation for in vitro cultured mesenchymal stem cells:a perspective for emergencies[J]. Can J Physiol Pharmacol,2009,87(2):143-50.
    [30]Stenderup K, Justesen J, Clausen C, et al. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells[J]. Bone,2003,33:919-26.
    [31]Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells of therapeutic neovascularization[J]. Proc Natl Acad Sci USA,2000,97:3422-3427.
    [32]Fraser J K, Wulur I, Alfonso Z, et al. Fat tissue:an underappreciated source of stem cells for biotechnology [J]. Trends Biotechnol,2006,24(4):150-154
    [33]Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:implications for cell-based therapies[J]. Tissue Eng,2001,7:211-28.
    [34]Nakagami H, Maeda K, Morishita R, et al. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells[J]. Arterioscler Thromb Vasc Biol,2005,25:2542-2547.
    [35]Peister A, Mellad J A, Larson B L, et al. Adult stem cells from bone marrow in surface epitopes, rates of proliferation, and differentiation potential [J]. Blood,2004, 103:1662-1628.
    [36]刘相名,杨立业,苗宏生,等.脂肪组织来源的多能干细胞培养和外源性基因的表达[J].中华实验外科杂志,2003,20:162-163.
    [37]Rehman J, Traktuev D, Li J, et al Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells[J]. Circulation,2004,109:1292-1298.
    [38]Katz A J, Tholpady A, Tholpady S S, et al. Cell surface and transcriptional characterization of human adipose-derived adherent stromal(hADAS)cells[J]. Stem Cells,2005,23:412-423.
    [39]Yamada Y, Wang X D, Yokoyama S, et al. Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium[J]. Biochem Biophys Res Commun,2006, 342(2):662-670
    [40]Miranville A, Heeschen C, Sengenes C, et al. Improvement of postnatal neovascularization by human adipose tissue derived stem cell[J]s. Circulation,2004, 110:349-55.
    [41]Planat-Benard V, Silvestre JS, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells:physiological and therapeutic perspectives [J]. Circul-ation,2004,109:656-63.
    [42]Mazo M, Planat-Benard V, Abizanda G, et al. Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction[J]. Eur J Heart Fail,2008,10:454-62.
    [43]Zhang M, Methot D, Poppa V, et al. Cardiomyocyte grafting for cardiac repair:graft cell death and antideath strategies [J]. J Mol Cell Cardiol,2001, 33:907-921.
    [44]Hofmann M, Wollert KC, Meyer GP, et al. Monitoring of bone marrow cell homing into the infracted human myocardium [J]. Circulation,2005,111:2198-2202.
    [45]Muller-Ehmsen J, Whittaker P, Kloner RA, et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium[J]. J Mol Cell Cardiol,2002,34:107-116.
    [46]邢万红,徐志伟.心肌组织工程研究新进展[J].中华小儿外科杂志,2006,27(4)207-209.
    [47]Shinoka T, Imai Y, I kada Y. Transplantation of a tissue engineered[J]. Pulmonary-artery. N Engl J Med,2001,344:532-533.
    [48]Jawad H, Ali NN, Lyon AR, et al. Myocardial tissue engineering:a review[J]. J Tissue Eng Med,2007,1:327-342.
    [49]Di Felice V, De Luca A, Serradifalco C, et al. Adult stem cells, scaffolds for in vivo and in vitro myocardial tissue engineering[J]. Ital J Anat Embryol,2010, 115(1-2):65-9
    [50]应志强,徐耕.组织工程相关技术在心肌梗死治疗中的应用[J].国际心血管病杂志,2008,35(1):22-25
    [51]Dar A, Shachar M,'Leor J, et al. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds[J]. Biotechnol Bioeng,2002, (80):305-312.
    [52]Bursac N, Papadaki M, Cohen RJ, et al. Cardiac muscle tissue engineering:toward an in vitro model for electrophysiological studies[J]. Am J Physiol,1999, 277:H433-4.4.
    [53]Bursac N, Papadaki M, White JA, et al. Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties [J]. Tissue Eng,2003(9):1243-1253.
    [54]Kofidis T, Akhyari P, Boublik J, et al. In vitro engineering of heart muscle artificial myocardial tissue[J]. J Thorac Cardiovasc Surg,2002,124:63-9.
    [55]Zimmermann WH, Fink C, Kralisch D, et al. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng[J].2002, (68):106-114.
    [56]Zimmermann WH, Melnychenko I, Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts[J]. Biomaterials,2004, (25):1639-1647.
    [57]Zimmermann WH, Schneiderbanger K, Schubert P, et al. Tissue engineering of a differentiated cardiac muscle construct[J]. Circ Res,2002, (90):223-230.
    [58]Guo XM, Zhao YS, Chang HX, et al. Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells[J]. Circulation,2006,113(18):2229-2237.
    [59]Shimizu T, Yamato M, Isoi Y, et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces[J]. Circ Res,2002(90):e40.
    [60]Shimizu T, Yamato M, Akutsu T, et al. Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets[J]. J Biomed Mater Res,2002, (60):110-117.
    [61]Zimmermann WH, DidieM, Wasmeier GH, et al. Cardiac grafting of engineered heart tissue in syngenic rats[J]. Circulation,2002,106(12 Suppl 1):I 151-157.
    [62]Leor J, Aboulafia-Etzion S, Dar A, et al. Bioengineered cardiac grafts:A new approach to repair the infarcted myocardium?[J]. Circulation,2000,102(19Supp13): 1156-1161.
    [63]Thompson CA, Nasseri BA, Makower J, et al. Percutaneous transvenous cellular cardiomyoplasty. A novel nonsurgical approach for myocardial cell transplant-tation[J]. J Am Coll Cardiol,2003,41:1964-71
    [64]Jin J, Jeong SI, Shin YM, et al. Transplantation of mesenchymal stem cells within poly(lactide-co-{varepsilon}-caprolactone)scaffold improves cardiac function in a rat myocardial infarction model[J]. Eur J Heart Fail,2009,11(2):147-53.
    [65]Davis ME, Motion JP, Narmoneva DA, et al. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells[J]. Circulation,2005, 111(4):442-450.
    [66]Hsieh PC, Davis ME, Gannon J, et al. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers [J]. J Clin Invest,2006,116(1):237-248.
    [67]Nian M, Lee P, Khaper N, et al. Inflammatory cytokines and postmyocardial infarction remodeling[J]. Circ Res,2004, (94):1543-553.
    [68]Takano H, Ohtsuka M, Akazawa H Toko, et al. Pleiotropic effects of cytokines on acute myocardial infarction:G-CSF as a novel therapy for acute myocardial infarction[J].Curr Pharm Des,2003, (9):1121-1127.
    [69]Hiasa K, Ishibashi M, Ohtani K, et al. Gene transfer of stromal cell-derived factor-1{alpha} enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: Next-generation chemokine therapy for therapeutic neovascularization[J]. Circulation,2004, (109):2454-2461.
    [70]Zou Y, Takano H, Mizukami M, et al. Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction[J]. Circulation,2003, (108):748-753.
    [71]Musaro A, Giacinti C, Borsellino G, et al. Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1[J]. Proc Natl Acad Sci USA,2004, (101):1206-1210.
    [72]Calvillo L, Latini R, Kajstura J et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling[J]. Proc Natl Acad Sci U S A,2003, (100):4802-4806.
    [73]Davis ME, Hsieh PC, GrodzinskyAJ, et al. Customdesign of the cardiac microenvironment with biomaterials[J]. Circ Res,2005,97(1):8-15.
    [74]Christman KL, Vardanian AJ, Fang Q, et al. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium[J]. J Am Coll Cardiol,2004,44:654-60.
    [75]Kofidis T, Lebl DR, Martinez EC, et al. Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury[J]. Circulation,2005,112:1173-7.
    [76]Kutschka I, Chen IY, Kofidis T, et al. Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts[J]. Circulation,2006,114:167-73.
    [77]Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts[J]. Nat Biotechnol,2007,25:1015-24.
    [78]Leor J, Tuvia S, Guetta V, et al. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine[J]. J Am Coll Cardiol,2009,54:1014-23.
    [79]Chekanov V, Akhtar M, Tchekanov G, et al. Transplantation of autologous endothelial cells induces angiogenesis[J]. Pacing Clin Electrophysiol,2003, 26(1Pt2):496-499.
    [80]Dai W, Wold LE, Dow JS, et al. Thickening of the infarcted wall by collagen injection improves left ventricular function in rats:a novel approach to preserve cardiac function after myocardial infarction[J]. J Am Coll Cardiol,2005, 46(4):714-719.
    [81]Ryu JH, Kim IK, Cho SW, et al. Implantation of bone marrow mono-nuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium [J]. Biomaterials,2005,26(3):319-326.
    [82]Huang NF, Yu J, Sievers R, et al. Injectable biopolymers enhance angiogenesis after myocardial infarction[J]. Tissue Eng,2005,11(11-12):1860-1866.
    [83]Liu J, Hu Q, Wang Z, et al. Autologous stem cell transplantation for myocardial repair[J]. Am J Physiol Heart Circ Physiol,2004,287(2):H501-H511.
    [84]Black LD, Meyers JD, Weinbaum JS, et al. Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification[J]. Tissue Eng Part A,2009,[Epub ahead of print].
    [85]Birla R, Dhawan V, Huang YC, et al. Force characteristics of in vivo tissue engineered myocardial constructs using varying cell seeding densities[J]. Artif Organs,2008,32(9):684-691.
    [86]Terashima M, Fujiwara S, Yaginuma GY, et al. Outcome of percutaneous intrapericardial fibrin-glue injection therapy for left ventricular free wall rupture secondary to acute myocardial infarction[J]. Am J Cardiol,2008,101 (4):419-421.
    [87]Parker A M, Katz A J. Adipose-derived stem cells for the regeneration of damaged tissues[J]. Expert Opin Biol Ther,2006,6(6):567-578
    [88]Guilak F, Lott K E, et al. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells[J]. J Cell Physiol,2006,206(1):229-237
    [89]Zhu Y, Liu T, Song K, et, al. Adipose-derived stem cel:l a better stem cell than BMSC[J]. Cell Biochem Funct,2008,26(6):664-675.
    [90]Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/ progenitor cells in human first-trimester fetal blood, liver, and bone arrow[J]. Blood, 2001,98:2396-2402.
    [91]崔磊,尹烁,杨平,等.脂肪干细胞HLA分了表达与体外抑制淋巴细胞增殖的实验研究[J].中华医学杂志,2005,85(27):1890-1894.
    [92]郝伟,姜明,钱淑琴,等.脂肪干细胞/1型胶原凝胶/聚乳酸聚乙醇酸一p一磷酸三钙骨组织工程复合体的构建及其异位成骨研究.中华实验外科杂志,2008,25(6):691-693.
    [93]马钰,李青,赵大庆,等.脂肪基质干细胞的分离培养及其作为软骨种子细胞的研究[J].细胞与分子免疫学杂志,2007,23(5):463-465.
    [94]杨震,简月奎,安荣泽,等.SD大鼠脂肪干细胞的体外分离培养及实验研究[J].贵州医药,2008,32(5):402-404.
    [95]程文丹,赵宇,何金生,等.大鼠脂肪干细胞体外定向诱导分化为脂肪细胞和成骨细胞的研究[J].安徽医科大学学报,2007,42(5):501-504.
    [96]江丽,朱家恺,刘小林,登.大鼠脂肪干细胞生物学特性的研究[J].中华显微外科杂志,2007,30(3):189-192.
    [97]屈长青,朱茂英,刘生杰,等.脂肪间充质干细胞的分离培养、多向分化及其应用前景[J].中国生物化学与分子生物学报,2007,23(10):811-816.
    [98]杨民,徐祝军,董利军,等.大鼠脂肪间充质干细胞体外培养及其分化研究[J].皖南医学院学报,2009,28(1):4-8.
    [99]张国华,屈长青,杨公社.猪脂肪间充质干细胞的分离培养及其成脂分化[J].动物学报,2006,52(5):934-941.
    [100]袁启龙,曾晓勇,李平,等.兔不同部位脂肪干细胞体外培养的生物学特性比较[J].中国组织工程研究与临床康复,2008,12(38);7511-7513.
    [101]Planat-Benard V, Silvestre JS, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial sells:physiological and therapeutic perspectives[J]. Circulation,2004,109:656-663.
    [102]Dragoo JL, Samini B, Zhu M, et al. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads[J]. J Bone Joint Surg Br,2003, 85:740-747.
    [103]Hicok KC, Du Laney TV, Zhou YS, et al. Human adipose-derived adult stem cells produce osteoid in vivo[J]. Tissue Eng,2004,10:371-380.
    [104]Ogawa R, Mizuni H, Watanabe A, et al. Osteogenic and chondrogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice[J]. Biochem Biophy Res Commun,2004,313:871-877.
    [105]陈英,原林译.干细胞研究进展与未来[M].北京:人民卫生出版社,2003,270-274.
    [106]Schaffler A, Biichler C. Concise review:adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies[J]. Stem Cells,2007, 25(4):818-827.
    [107]李宾公,曾秋棠,王红祥,等.脂肪来源与骨髓来源的基质干细胞的比较[J].中华器官移植杂志,2006,27(3):142-144.
    [108]袁方,雷永红,付小兵,等.脂肪干细胞促进人表皮角质形成细胞创面模型愈合的研究[J].中华外科杂志,2008,46(20):1575-1578.
    [109]Planat-Benard V, Silvestre J S, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells:physiological and therapeutic perspectives [J]. Circulation,2004,109:656-663.
    [110]Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/ progenitor cells in human first-trimester fetal blood, liver, and bone arrow[J]. Blood, 2001,98:2396-2402.
    [111]刘相名,杨立业,苗宏生,等.脂肪组织来源的多能干细胞的培养和外源基因的表达[J].中华实验外科杂志,2003,20(2):162-163.
    [112]杨立业,刘相名,孙兵,等.脂肪源性基质细胞表达神经元表型的实验研究[J].中华神经医学杂志,2002,1(1):45-48.
    [113]屈长青,张国华,赵丽丽,等.猪脂肪基质细胞成骨与成脂分化潜能的研究,中国生物工程杂志,2005,25(11):37-40.
    [114]Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration[J]. Cell,2003,114:763-76.
    [115]Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium:homing, differentiation, and fusion after infarction[J]. Proc Natl Acad Sci US A,2003,100:12313-8.
    [116]Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium[J]. Nature,2001,410:701-5.
    [117]Oh H, Taffet GE, Youker KA, et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival [J]. Proc Natl Acad Sci US A,2001,98:10308-13.
    [118]Deb A. et al. Bone marrow-derived cardiomyocytes are present in adult human heart:a study o.f gender-mismatched bone marrow transplantation patients[J]. Circulation,2003, (107):1247-1249.
    [119]Ferrari G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors [J]. Science,1998,279:1528-1530.
    [120]Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts[J]. Nature,2004, 428:664-8.
    [121]Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation[J]. Nat Med,2004,10:494-501.
    [122]袁岩,陈连凤,张抒扬,等.心肌细胞裂解液对骨髓间充质干细胞向心肌细胞分化诱导作用的研究.中华心血管病杂志,2005,33(2):170-173.
    [123]张端珍,盖鲁粤,刘宏伟,等.脂肪干细胞诱导成心肌细胞研究[J].心脏杂志,2005,17(5):405-408.
    [124]张卫泽,陈跃武,陈永清,等.5一氮胞昔体外诱导成人脂肪间充质干细胞分化为心肌样细胞的初步研究[J].中国循环杂志,2006,21(3):228-231.
    [125]Gaustad KG, Boquest AC, Anderson BE, et al. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes[J]. Biochem Biophys Res Commun,2004,314(2):420-427.
    [126]Rangappa S, Entwistle JW, Wechsler AS, et al. Cardiomyocytemediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg,2003,126:124-132.
    [127]Fukuhara S, Tomita S, Yamashiro S, et al. Direct cell-cell interaction of cardiomyocytes is key for bone marrow stromal cells to go into cardiac lineage in vitro. J Thorac Cardiovasc Surg,2003,125:1470-1480.
    [128]姚康,黄榕翀,葛雷,等.经冠状动脉自体骨髓单个核细胞移植治疗急性心肌梗死的安全性观察[J].中华心血管病杂志,2006,34(7):577-581.
    [129]李宾公曾秋棠王红祥,等.脂肪基质干细胞移植治疗大鼠急性心肌梗死[J].中华急诊医学杂志,2006,15(4):306-309
    [130]Schachinger V, Erbs S, Elsasser A, et al. Intracoronary Bone Marrow—Derived Progenitor Cells in Acute Myocardial Infarction [J]. N Engl J Med,2006, 355:1210-1221.
    [131]Lu WN, Lu SH, Wang HB, et al. Functional Improvement of Infarcted Heart by Co-Injection of Embryonic Stem Cells with Temperature-Responsive Chitosan Hydrogel[J]. Tissue Eng Part A,2009,15:1437-1447.
    [132]Leor J, Amsalem Y, Cohen S. Cells, scaffolds, and molecules for myocardial tissue engineering[J]. PharmacolTher,2005,105(2):151-163.
    [133]Catelas I, Sese N, Wu BM, et al. Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro[J]. Tissue Eng 2006,12:2385-2396.
    [134]Catelas I, Dwyer JF, Helgerson S. Controlled Release of Bioactive Transforming Growth Factor Beta-1 from Fibrin Gels In Vitro[J]. Tissue Eng Part C,2008, 14(2):1-9.
    [135]Willerth SM, Faxel TE, Gottlieb DI, et al. The Effects of Soluble Growth Factors on Embryonic Stem Cell Differentiation Inside of Fibrin Scaffolds[J]. Stem Cells, 2007,25:2235-2244.
    [136]张云松,高建华,鲁峰,等.人脂肪来源干细胞复合纤维蛋白胶构建可注射型工程化脂肪组织的实验研究[J].中华医学杂志,2008,88(38):2705-2709.
    [137]张云松,高建华,鲁峰,等.人脂肪来源干细胞构建工程化脂肪组织的体内外实验研究[J].中华整形外科杂志,2008,24:407-411.
    [138]王涛,蒋学俊.智能化水凝胶在原位心肌组织工程的应用[J].心血管病学进展.2008,29(5):683-685.
    [139]Park JS, AkiyamaY, W innik FM, et al. Versatile synthesis of end-functionalized thermosensitive poly(2-isopropyl-2-oxazolines)[J]. Macromolecules,2004, 37:6786-6792.
    [140]ClarkRA. FibrinsealantinwoundrePair:asystematiesurveyof the literature[J]. Expert OPin Investig Drugs,2000,9(10):2371-2392
    [141]HaisehA, SehultzO, PerkaC, etal. Tissue engineering of human Cartilage tissue for reconstructive surgery using biocompatible resorbable fibring for gel and Polymer carriers[J]. HNO,1996,44:642-642.
    [142]ChrismanKL, LeeRJ. Biomaterials for the treatmentofmyocardial infarction [J]. JAm CollCardio,12006,48:907-913.
    [143]闫志伟,杨耀武,雷德林.成年兔成纤维细胞在纤维蛋白胶表面生长的初步观察.中国口腔颌面外科杂志,2007,5(4):301-305.
    [144]杨中华,王行环,杨海超,等.猪膀胱移行上皮细胞培养及其在纤维蛋白凝胶表面生长的评价.中国临床康复.2006,6(7):61-64.
    [145]Eyrich D, Brandle F, Appel B, et al. Long-term stable fibrin gels for cartilage engineering [J]. Biomaterials,2007,28(1):55-65.
    [146]李健,赵家宏.新型外用生物止血剂纤维蛋白胶[J].消化外科,2003,2(1):72-74.
    [147]Ahmed TA, Dare EV, Hincke M. Fibrin:A Versatile Scaffold for Tissue Engineering Applications[J]. Tissue Eng Part B Rev,2008,14(2):199-215.
    [148]Cho SW, Kim I, Kim SH, et at Enhancement of adipose tissue formation by implantation of adipngenic-differentiated preadipocytes[J]. Biechem Biophys Res Commun,2006,345:588-594.
    [149]Bucker JC, Domschkc W, Pohh T. Biological in vitro effects of fibrin glue:fibroblast proliferation, expression and binding of growth factors[J]. Scand J Gastroenterol,2004,39:927-932.
    [150]Karacal N, Cobanoglu O, Ambarcioglu O, et at. The effect of fibrin glue on fat graft survival[J]. J Phast Reconstr Aesthet Surg,2007,60:300-303.
    [151]聂绍平,蒋桔泉,刘小青,等.心肌内控制释放碱性成纤维细胞生长因子促进血管再生与侧支重构[J].中华老年心脑血管病杂志,2006,8(2):119-121.
    [152]雷伟,崔赓,胡蕴玉,等.以纤维蛋白胶为载体复合BMP和bFGF的注射型骨修复材料诱导异位成骨的实验研究[J].中国矫形外科杂志,2004,12(10):765-767.
    [153]Kofidis T, Lenz A, Boublik J, et al. Pulsatile perfusion and cardiomyocyte viability in a solid three-dimensional matrix [J]. Biomaterials,2003,24(27):5009-5014.
    [154]崔赓,李洁,雷伟,等.可注射性纤维蛋白胶对兔骨髓基质细胞增殖和分化的影响[J].临床骨科杂志,2007,10(1):60-63.
    [155]Standeven KF, Ariens RAS, Grant PJ. The molecular physiology and pathology of fibrin structure/function[J]. Blood Rev,2005,19:275-288.
    [156]王九现,朱立新,靳安民,等.抑肽酶/氨甲环酸改良可注射性纤维蛋白凝胶的体外实验.中国组织工程研究与临床康复,2008,12(49):9703-9708.
    [157]Anita M, Marjolein I, Christa G, et al. Fibrin as a cell carrier in cardiovascular tissue engineering applications [J]. Biomaterials,2005,26:3113-3121.
    [158]Wu X, Rabkin-Aikawa E, Guleserian KJ, et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells[J]. Am J Physiol Heart Circ Physiol,2004,87, H480-487.
    [159]Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts[J]. Nature,2004, 428:664-8.
    [160]Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts[J]. Nat Med,2003, 9:1195-201.
    [161]Beltrami AP, barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration[J]. Cell,2003,114:763-76.
    [162]Doss MX, Koehler CI, Gissel C, et al. Embryonic stem cells:a promising tool for cell replacement therapy[J]. J Cell Mol Med,2004,8:465-73.
    [163]Park SH, Park SR, Chung SI, et a.1 Tissue-engineered cartilage using fibrin/ hyaluronan composite gel and itsin vivoimplantation[J]. Artif Organs,2005, 29(10):838-845.
    [164]Kamolz LP, LuegmairM, W ick N, et a.1 The Viennese culturemethod:cultured human epithelium obtained on adermal matrix based on fibroblast containing fibrin gluegels[J]. Burns,2005,31(1):25-29.
    [165]ItabashiY, Miyoshi S, KawaguchiH, et al. A new method formanufacturing cardiac cell sheets using fibrin-coated dishes and its electrophysiological studies by optical mapping[J]. ArtifOrgans,2005,29(2):95-103.
    [166]TalbotM, CarrierP, Giasson CJ, et al. Autologous transplantation of rabbit limbal epithelia cultured on fibrin gels for ocular surface reconstruction[J]. MolVis,2006, 12(1):65-75.
    [167]HiqaK, Shimmura S, Kato N, et al. Proliferation and differentiation of transplantable rabbit epithelial sheets engineered with orwithout an amniotic-membrane carrier[J]. InvestOphthalmolVis Sci,2007,48(2):597-604.
    [168]赵芳,陈剑,吴静,等.纤维蛋白胶为载体构建人羊膜上皮细胞植片的实验研究[J].中国病理生理杂志,2008,24(6):1199-1204.
    [169]卢文宁,谢晓华,段翠密,等.纤维蛋白胶对于细胞心肌梗死修复移植影响的研究[J].军事医学科学院院刊,2008,32:257-260.
    [170]Pfeffer MA, Pfeffer JM, Fishbein MC. Myocardial infarct size and ventricular function in rats[J]. Circ Res,1979,44:503-512.
    [171]Teng CJ, Luo J, Chiu RC, et al. Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart:implications for cellular cardiomyoplasty[J]. J Thorac Cardiovasc Surg,2006,132:628-32.
    [172]Muller-Ehmsen J, Whittaker P, Kloner RA, et al. Sur-vival and development of neonatal rat cardiomyocytestransplanted into adult myocardium[J]. J Mol Cell Cardiol,2002,34(2):107-116.
    [173]Retuerto MA, Schalch P, Patejunas G, et al. Angiogenicpretreatment improves the efficacy of cellular cardiomyo-plasty performed with fetal cardiomyocyte implantation[J]. J Thorac Cardiovasc Surg,2004,127(4):1041-1049; discussion 1049-1051.
    [174]张书宁,孙爱军,葛均波,等.经冠状动脉自体骨髓干细胞移植对急性心肌梗死患者左心室功能影响的系统评价[J].中国介入心脏病学杂志,2008,16(6):317-322.
    [175]黄浙勇,葛均波,杨姗,等.超顺磁性氧化铁标记间充质干细胞心肌移植的磁共振成像研究[J].中华心血管病杂志,2007,35(4):344-349.
    [176]Yoon E, Dhar S, Chun DE, et al. In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model[J]. Tissue Eng,2007,13:619-27.
    [177]Jackson KA, Majka SM, Wang H. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells[J]. J Clin Invest,2001,107:1395-1402.
    [178]Kinnaird T, Stabile E, Burnett MS. Local delivery of marrow-derived st romal cells augments collateral perfusion through paracrine mechanisms [J]. Circulation, 2004;109:1543-1549.
    [179]Silva GV, Litovsky S, Assad JA, et al. Mesenchymal Stem Cells Differentiate into an Endothelial Phenotype, EnhanceVascular Density, and Improve Heart Function in a Canine Chronic Ischemia Model[J]. Circulation,2005, 111:150-56.
    [180]Jayasankar V, Woo YJ, Pirolli TJ, et al. Induction of angiogenesis and inhibition of apoptosis by hepatocyte growth factor effectively treats postischemic heart failure[J]. J Card Surg, k 2005,20:93-101.
    [181]Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells[J]. Circulation,2004,109(10):1292-1298.
    [182]Davis ME, Motion JP, Narmoneva DA, et al. Injectable selfassembling peptide nano fibers create intramyocardial microenvironments for-endothelial cells [J]. Circulation,2005,111:442-50.
    [183]Tsur-Gang O, Ruvinov E, Landa N, et al. The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction[J]. Biomaterials,2009,30:189-95.
    [184]LI Yong-shun, GAO Bing-re. Transplantation of neonatal cardiomyocytes plus fibrin sealant restores myocardial function in a rat model of myocardial infarction[J]. Chin Med J,2007,120:2022-2027.
    [185]张雪莲,马依彤.纤维蛋白凝胶在心肌梗死治疗中的应用进展[J].心血管病学进展,2010,31:245-247.
    [186]Christman KL, Fok HH, Sievers RE, et al. Myoblasts delivered in an injectable fibrin scaffold improve cardiac function and preserve left ventricular geometry in a chronic myocardial infarction model(abstr)[J]. Circulation,2003,108:S246-S247.
    [187]Bootle-Wilbraham CA, Tazzyman S, Thompson WD, et al. Fibrin fragment E stimulates the proliferation, migration and differentiation of human microvascular endothelial cells in vitro [J]. Angiogenesis,2001,4:269-275.
    [188]Naito M, Stirk CM, Smith EB, et al. Smooth muscle cell outgrowth stimulated by fibrin degradation products:The potential role of fibrin fragment E in restenosis and atherogenesis[J]. Thromb Res,2000,98:165-174.
    [189]Davani S, Marandin A, Mersin N, et al. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardio myoplastymodel[J]. Circulation,2003,108(Suppl ⅡI):253-258.
    [190]Leiker M, Suzuki G, Iyer VS, et al. Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells[J]. Cell Transplant,2008,17:911-22.
    [191]Thompson CA, Nasseri BA, Makower J, etal. Percutaneous transvenous cellular cardiomyoplasty. A novel nonsurgical approach for myocardial cell transplantation. J Am Coll Cardiol.2003 Jun 4;41(11):1964-71
    [192]Martens TP, Godier AF, Parks JJ, etal. Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplant.2009;18(3):297-304.
    [1]Smits AM, van Vliet P, Hassink RJ, Goumans MJ, Doevendans PA. The role of stem cells in cardiac regeneration[J]. J Cell Mol Med,2005,9:25-36.
    [2]Tateishi K, Takehara N, Matsubara H, et al. Stemming heart failure with cardiac or reprogrammed-stem cells[J]. J Cell Mol Med.2008,12:2217-32.
    [3]Zimmermann WH, Cesnjevar R. Cardiac Tissue Engineering:Implications for Pediatric Heart Surgery[J]. Pediatr Cardiol,2009,30:716-23.
    [4]Ghostine S, Carrion C, Souza LC, eta.l Long-term efficacy of myoblast transplan-tation on regional structure and function aftermyocardial infarction[J].Circulation, 2002,106:1131-1136.
    [5]MangiAA, NoiseuxN, KongD, et al.Mesenchymal stem cells modified withAktprev-ent remodeling and restore performance of infarcted hearts[J]. NatMed,2003, 9:1195-1201.
    [6]Murry CE, Field LJ, Menasche P. Cell-based cardiac repair:reflections at the 10-year poin[J]t. Circulation,2005,112:3174-83.
    [7]Laflamme MA, Murry CE. Regenerating the heart[J]. Nat Biotechnol,2005,23:845-856.
    [8]Zimmermann WH, Didie M, Doker K, et al. Heart muscle engineering:An update on cardiac muscle replacement therapy [J]. Cardiovascular Research,2003,3:11-21.
    [9]Zhang M, Methot D, Poppa V, et al. Cardiomyocyte grafting for cardiac repair:graft cell death and antideath strategies [J]. J Mol Cell Cardiol.2001;33:907-921.
    [10]Hofmann M, Wollert KC, Meyer GP, et al.Monitoring of bone marrow cell homing into the infracted human myocardium[J]. Circulation 2005;111: 2198-2202.
    [11]Muller-Ehmsen J, Whittaker P, Kloner RA, et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium [J]. J Mol Cell Cardiol.2002;34:107-116.
    [12]Laflamme MA, Murry CE. Regenerating the heart[J]. Nat Biotechnol,2005, 23:845-856.
    [13]Zhang M, Methot D, Poppa V, et al. Cardiomyocyte grafting for cardiac repair:graft cell death and antideath strategies [J]. J Mol Cell Cardiol,2001,33:907-921.
    [14]Hofmann M, Wollert KC, Meyer GP, et al.Monitoring of bone marrow cell homing into the infracted human myocardium[J]. Circulation,2005,111:2198-2202.
    [15]Muller-Ehmsen J, Whittaker P, Kloner RA, et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium[J]. J Mol Cell Cardiol,2002,34:107-116.
    [16]Dar A, Shachar M, Leor J, et al. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds[J]. Biotechnol Bioeng,2002, (80):305-312.
    [17]Bursac N, Papadaki M, Cohen RJ, et al. Cardiac muscle tissue engineering:toward an in vitro model for electrophysiological studies[J], Am J Physiol,1999,277:H433-44.
    [18]Bursac N, Papadaki M, White JA, et al. Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties[J]. Tissue Eng,2003(9):1243-1253.
    [19]Kofidis T, Akhyari P, Boublik J, et al. In vitro engineering of heart muscle:artificial myocardial tissue[J]. J Thorac Cardiovasc Surg,2002,124:63-9.
    [20]Zimmermann WH, Fink C, Kralisch D, et al. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng[J].2002, (68):106-114.
    [21]Zimmermann WH, Melnychenko I, Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts [J]. Biomaterials,2004, (25):1639-1647.
    [22]Zimmermann WH, Schneiderbanger K, Schubert P, et al. Tissue engineering of a differentiated cardiac muscle construct[J].Circ Res,2002, (90):223-230.
    [23]Guo XM, Zhao YS, Chang HX, et al.Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells[J]. Circulation,2006,113(18):2229-2237.
    [24]Shimizu T, Yamato M, Isoi Y, et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces [J]. Circ Res,2002(90):e40.
    [25]Shimizu T, Yamato M, Akutsu T, et al.Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets[J]. J Biomed Mater Res,2002, (60):110-117.
    [26]Zimmermann WH, DidieM, Wasmeier GH, et al. Cardiac grafting of engineered heart tissue in syngenic rats[J]. Circulation,2002,106(12 Suppl 1):Ⅰ151-157.
    [27]Leor J, Aboulafia-Etzion S, Dar A, et al. Bioengineered cardiac grafts:A new approach to repair the infarcted myocardium? [J]. Circulation,2000, 102(19Suppl3):I156-I161.
    [28]Christman KL, Vardanian AJ, Fang Q, et al. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium[J]. J Am Coll Cardiol,2004,44:654-60.
    [29]Kofidis T, Lebl DR, Martinez EC, et al. Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury[J]. Circulation,2005,112:I173-7.
    [30]Kutschka I, Chen IY, Kofidis T, et al. Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts[J]. Circulation,2006,114:167-73.
    [31]Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts[J]. Nat Biotechnol,2007,25:1015-24.
    [32]Leor J, Tuvia S, Guetta V, et al. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine[J]. J Am Coll Cardiol,2009,54:1014-23.
    [33]ClarkRA.FibrinsealantinwoundrePair:asystematiesurveyof the literature [J]. Expert OPin Investig Drugs,2000,9(10):2371-2392
    [34]HaisehA, SehultzO, PerkaC, etal.Tissue engineering of human Cartilage tissue for reconstructive surgery using biocompatible resorbable fibring for gel and Polymer carriers[J].HNO,1996,44:642-642.
    [35]Rosso F, Marino G, Giordano A, et al. Smart materials as scaffolds for tissue engineering(review)[J]. J Cell Physiol,2005,203(3):465-470.
    [36]Mosesson MW. Fibrinogen and fibrin structure and functions(review)[J]. J Thromb Haemost,2005,3(8):1894-1904.
    [37]Swartz DD, Russel JA, Andreadis ST. Engineering of fibrin-based functional and implantable small-diameter blood vessels[J]. Am J Physiol Heart Circ Physiol,2005, 288(3):H1451-H1460.
    [38]Eyrich D, Brandle F, Appel B, et al. Long-term stable fibrin gels for cartilage engineering[J]. Biomaterials,2007,28(1):55-65.
    [39]Buchta C, Dettke M, Funovics PT, et al. Fibrin sealants produced by the cryoseal FS system:product chemistry, material properties and poss-ible preparation in the autologous preoperative setting[J]. Vox San,2004,86(4):257-262.
    [40]Carless PA, Anthony DM, Henry DA. Systematic review of the use of fibrin sealant to minimize perioperative allogeneic blood transfusion[J]. Br J Surg,2002, 89(6):695-703.
    [41]Christman KL, Vardanian AJ, Fang Q, et al. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium[J]. J Am Coll Cardio,2004,144:654-660.
    [42]Ryu JH, Kim IK, Cho SW, et al. Implantation of bone marrow mono-nuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium[J]. Biomaterials,2005,26(3):319-326.
    [43]Liu J, Hu Q, Wang Z, et al. Autologous stem cell transplantation for myocardial repair[J]. Am J Physiol Heart Circ Physiol,2004,287(2):H501-H511.
    [44]Zhang G, Hu Q, Braunlin EA, et al. Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix[J]. Tissue Eng Part A,2008, 14(6):1025-1036.
    [45]Li YS, Gao BR.Transplantation of neonatal cardiomyocytes plus fibrin sealant restores myocardial function in a rat model of myocardial infarction[J]. Chin Med J(Engl),2007,120(22):2022-2027.
    [46]Catelas I, Dwyer JF, Helgerson S. Controlled Release of Bioactive Transforming Growth Factor Beta-1 from Fibrin Gels In Vitro[J].Tissue Eng Part C Methods, 2008,14(2):119-128.
    [47]Christman KL, Fang Q, Yee MS, et al. Enhanced neovasculature for-mation in ischemic myocardium following delivery of pleiotrophin plasmid in a biopolymer[J]. Biomaterials,2005,26(10):1139-1144.
    [48]Zhang G, Nakamura Y, Wang X, et al. Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit+cell homing to the inf-arcted heart[J]. Tissue Eng,2007,13(8):2063-2071.
    [49]Christman KL, Fok HH, Sievers RE, et al. Myoblasts delivered in an injectable fibrin scaffold improve cardiac function and preserve left ventr-icular geometry in a chronic myocardial infarction model(abstr)[J]. Circulation,2003,108:S246-S247.
    [50]Huang NF, Yu J, Severs R, et al. Injectable biopolymers enhance angiogenesis after myocardial infarction[J]. Tissue Eng,2005,11(11-12):1860-1866.
    [51]Yu J, Christman KL, Chin E, et al. Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy[J]. J Thorac Cardiovasc Surg,2009,137(1):180-187.
    [52]Bootle-Wilbraham CA, Tazzyman S, Thompson WD, et al. Fibrin fragment E stimulates the proliferation, migration and differentiation of human microvascular endothelial cells in vitro[J]. Angiogenesis,2001,4(4):269-275.
    [53]Naito M, Stirk CM, Smith EB, et al. Smooth muscle cell outgrowth stimulated by fibrin degradation products:The potential role of fibrin fra-gment E in restenosis and atherogenesis[J]. Thromb Res,2000,98(2):165-174.
    [54]Kofidis T, Lenz A, Boublik J, et al. Pulsatile perfusion and cardiomyocyte viability in a solid three-dimensional matrix[J]. Biomaterials,2003,24(27):5009-5014.
    [55]Chekanov V, Akhtar M, Tchekanov G, et al. Transplantation of autologous endothelial cells induces angiogenesis[J]. Pacing Clin Electrophysiol,2003,26(1 Pt 2):496-499.
    [56]Birla RK, Borschel GH, Dennis RG, et al. Myocardial engineering in vivo:formation and characterization of contractile, vascularized three-dimensional cardiac tissue[J]. Tissue Eng,2005,11(5-6):803-813.
    [57]Black LD, Meyers JD, Weinbaum JS, et al. Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification[J]. Tissue Eng Part A,2009,15(10):3099-108.
    [58]Zhang G, Wang X, Wang Z, et al. A PEGylated fibrin patch for mesenchymal stem cell delivery[J]. Tissue Eng,2006,12(1):9-19.
    [59]Birla R, Dhawan V, Huang YC, et al.Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities[J]. Artif Organs,2008,32(9):684-691.
    [60]Terashima M, Fujiwara S, Yaginuma GY, et al. Outcome of percutaneous intrapericardial fibrin-glue injection therapy for left ventricular free wall rupture secondary to acute myocardial infarction[J]. Am J Cardiol,2008,101 (4):419-421.
    [1]Ghostine S, Carrion C, Souza LC, et al. Long-term efficacy of myoblast transplan-tation on regional structure and function aftermyocardial infarction[J]. Circulation,2002,106:1131-1136.
    [2]MangiAA, NoiseuxN, KongD, et al. Mesenchymal stem cells modified withAktp-revent remodeling and restore performance of infarcted hearts[J]. NatMed, 2003,9:1195-1201.
    [3]Murry CE, Field LJ, Menasche P. Cell-based cardiac repair:reflections at the 10-year poin[J]t. Circulation,2005,112:3174-83.
    [4]Laflamme MA, Murry CE. Regenerating the heart [J]. Nat Biotechnol,2005,23: 845-856.
    [5]Zimmermann WH, Didie M, Doker K, et al. Heart muscle engineering:An update on cardiac muscle replacement therapy [J]. Cardiovascular Research,2003,3:11-21.
    [6]SchachingerV, AssmusB, BrittenMB, et al. Transplantation of progenitor cells and regeneration enhancement in acutemyocardial infarction:final one-year results of the TOPCARE-AMITrial[J]. JAm College Cardiol,2004,44:1690-1699.
    [7]AssmusB, Honold J, SchachingerV, et al. Transcoronary transplantation ofprogenitor cells aftermyocardial infarction [J]. N Engl J Med,2006,355:1222-1232.
    [8]WollertKC, MeyerGP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer aftermyocardial infarction:the BOOST randomised controlled clinical trial [J]. Lancet,2004,364:141-148.
    [9]Smits AM, van Vliet P, Hassink RJ, et al. The role of stem cells in cardiac regeneration. J Cell Mol Med.2005; 9:25-36.
    [10]Xue, T. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes:insights into the development of cell-based pacemakers[J]. Circulation,2005,111:11-20.
    [11]Temenoff JS, Park H, Jabbari E, et al. In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels[J]. J Biomed Mater Res A, 2004,70:235-244.
    [12]KANG H J, LEE H Y, NA S H, et al. Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction:the MAGIC Cell-3-DES randomized, controlled trial[J]. Circulation,2006,114[Suppl I]:1145-1151.
    [13]OZBARAN M, OMAY S B, NALBANTGIL S, et al. Autologous peripheral stem cell transplantation in patients with congestive heart failure due to ischemic heart disease[J]. Eur J Cardiothorac Surg,2004,25:342-351.
    [14]ARCHUNDIA A, ACEVES J L, LOPEZ-HERNAN DEZ M, et al. Direct cardiac injection of G-CSF mobilized bone-marrow stem-cells improves ventricular function in old myocardial infarction[J]. Life Sci,2005,78:279-283.
    [15]Scorsin M, Hagege A, Vilquin JT, et al. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J Thorac Cardiovasc Surg,2000,119:1169-1175.
    [16]Tcheson KA, Atkins BZ, Hueman MT, et al. Comparison of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts. Cell Transplant,2000,9:359-368.
    [17]Suzuki K, Smolenski RT, Jayakumar J, et al. Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart. Circulation,2000, 102(19 Supp 3):Ⅲ216-221.
    [18]Van Meter CH, Claycomb WC, Delcarpio JB. Myoblast transplantation in the porcine model:a potential technique for myocardial repair. J Thorac Cardiovasc Surg, 1995,110:1442-1448.
    [19]Murry CE, Wiseman RW, Schwartz SM, et al. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest,1996,98:2512-2523.
    [20]张书宁,葛均波.成体干细胞移植在心力衰竭治疗中的临床应用.临床心血管病杂志,2008,24(4):246-248.
    [21]TAYLOR D A, ATKINS B Z, HUNGSPREUGS P, et al. Regenerating functional myocardium improved performance after skeletal myoblast transplantation [J]. Nat Med,1998,4:929-933.
    [22]MENASCHE P, HAGEGE A A, VILQUIN J T, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction[J]. J Am Coll Cardiol,2003,41:1078-1083.
    [23]SMITS P C, van GEUNS R J, POLDERMANS D, et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure:clinical experience with six month follow-up [J]. J Am Coll Cardiol,2003,42:2063-2069.
    [24]ABRAHAM M R, HENRIKSON C A, TUNG L, et al. Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation[J]. Circ Res,2005,97:159-167.
    [25]FERNANDES S, AMIRAULT J C, LANDE G, et al. Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular
    arrhythmias [J]. Cardiovasc Res,2006,69:348-358.
    [26]Muller P, Peiffer P, Koglin J, et al. Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation,2002; 106:31-35.
    [27]Satoshi S, Toyoaki M, Hisao I, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulition,2001,103:2776-2779.
    [28]Gill M, Dias S, Hattori K, et al. Vascular trauma induces rapid but transient mobilization of VEGFR2+AC133+endothelial progenitor cells. Circ Res,2001, 88:167-174.
    [29]孙龙,胡波,朱洪生.多种自身成体干/祖细胞移植治疗缺血性心脏病.中华胸心血管外科杂志,2005,21(1):58-59.
    [30]Abdel-Latif A, Bolli R, Tleyjeh IM, et al. Adult bone marrow-derived cells for cardiac repair:a systematic review and meta-analysis[J]. Arch Intern Med,2007, 167:989-97.
    [31]Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges[J]. J Cell Biochem, 2001,82:583-90.
    [32]高连如,唐朝枢,朱智明,等.经冠状动脉骨髓单个核细胞移植治疗重度心力衰竭[J].中华心血管病杂志,2006,34(7):582-58.
    [33]王建安,谢小洁,何红,等.骨髓间质干细胞移植治疗原发性扩张型心肌病的疗效与安全性[J].中华心血管病杂志,2006,34(2):107-110.
    [34]Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem celldifferentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation,2002, 105:93-98.
    [35]Wang JS, Shum-Tim D, Galipeau J, Chedrawy E, Eliopoulos N, Chiu RC. Marrow stromal cells for cellular cardiomyoplasty:feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 2000; 120:999-1005
    [36]Stenderup K, Justesen J, Clausen C, et al. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells[J]. Bone, 2003,33:919-26.
    [37]Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells of therapeutic neovascularization[J]. Proc Natl Acad Sci USA,2000,97:3422-3427.
    [38]Fraser J K, Wulur I, Alfonso Z, et al. Fat tissue:an underappreciated source of stem cells for biotechnology [J]. Trends Biotechnol,2006,24(4):150-154
    [39]Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue implications for cell-based therapies [J]. Tissue Eng,2001,7:211-28.
    [40]Nakagami H, Maeda K, Morishita R, et al. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells[J]. Arterioscler Thromb Vase Biol,2005,25:2542-2547.
    [41]Peister A, Mellad J A, Larson B L, et al. Adult stem cells from bone marrow in surface epitopes, rates of proliferation, and differentiation potential[J]. Blood,2004, 103:1662-1628.
    [42]刘相名,杨立业,苗宏生,等.脂肪组织来源的多能干细胞培养和外源性基因的表达[J].中华实验外科杂志,2003,20:162-163.
    [43]Rehman J, Traktuev D, Li J, et al Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells[J]. Circulation,2004,109:1292-1298.
    [44]Katz A J, Tholpady A, Tholpady S S, et al. Cell surface and transcriptional characterization of human adipose-derived adherent stromal(hADAS)cells[J]. Stem Cells,2005,23:412-423.
    [45]Gaustad KG, Boquest AC, Anderson BE, et al. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes[J]. Biochem Biophys Res Commun,2004,314(2):420-427.
    [46]Yamada Y, Wang X D, Yokoyama S, et al. Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium [J]. Biochem Biophys Res Commun,2006, 342(2):662-670
    [47]Miranville A, Heeschen C, Sengenes C, et al. Improvement of postnatal neovascular-ization by human adipose tissue derived stem cell[J]s. Circulation,2004, 110:349-55.
    [48]Planat-Benard V, Silvestre JS, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells:physiological and therapeutic perspectives[J]. Circu-lation,2004,109:656-63.
    [49]Mazo M, Planat-Benard V, Abizanda G, et al. Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction[J]. Eur J Heart Fail,2008,10:454-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700