用户名: 密码: 验证码:
竹材液化物碳纤维的制备、结构与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维可采用PAN纤维、沥青纤维等经过氧化、低温碳化、高温碳化制成。由PAN纤维制备碳纤维,工艺简单、产品力学性能良好。但是近年来石油能源的短缺使得PAN纤维原丝日趋紧张,其制造成本上升,因此碳纤维原料的开发已成为当前研究的重点之一。近年来竹材液化技术的研究,为竹材成为碳纤维的替代原料奠定了基础。
     本论文以竹材为原料,通过正交实验,系统的研究了原丝的优化制备工艺以及原丝的优化炭化工艺;利用扫描电镜(SEM)、X射线衍射仪(XRD)、傅立叶变换红外光谱仪(FTIR)、热失重分析仪(TGA)对原丝的形态结构及晶体结构、原丝制备过程中的化学基团变化以及原丝的热失重过程等进行了研究;并利用SEM、XRD、拉曼光谱仪、压汞仪、电子单纤维强力仪、FTIR、热重—质谱联用分析仪(TG-MS)、微观构造与元素分析仪(SEM-EDAX)等对炭化过程中竹材液化物碳纤维的形态结构、微晶结构、比表面积、孔隙结构、电学性能以及内部化学成分等的变化进行了详细的研究,得出以下主要结论:
     (1)原丝的优化制备工艺:纺丝速率为800r/min、合成温度为120℃、合成剂用量为5%、合成升温时间为30min;磷酸浓度为18.5%、升温速率为5℃/h、稳定化温度为85℃、稳定化时间为2h;可制备出平均直径28μm、拉伸强度为148.26MPa、拉伸模量为34.68 GPa、断裂伸长率为1.62%的原丝。
     (2)竹材液化为竹材液化物后,其结晶度减小;竹材液化物生成纺丝液后,其结晶度增加;纺丝液纺制成原丝后,其结晶度继续增加。
     原丝的表面平滑,其断面边部结构紧密,芯部结构疏松并有孔隙存在,某些原丝存在明显的“皮芯”结构,部分原丝出现变形或节状物。
     (3)竹材液化过程中,竹材中的纤维素、半纤维素以及木质素等与苯酚交联反应产生更多的芳环衍生物。
     原丝制备过程中,首先合成剂与游离苯酚加成反应形成羟甲基离子,同时部分羟甲基之间或部分羟甲基与芳环上未反应的活泼氢原子之间发生缩合反应,分别形成次甲基醚键和亚甲基键桥。然后随温度的升高,部分酚羟基之间也发生了缩合反应,可纺制出初始纤维。最后初始纤维中的芳环与羟甲基离子发生交联反应,同时部分次甲基醚键和羟甲基转化为亚甲基键,较多的酚羟基之间、酚羟基与羟甲基离子之间缩合反应形成次甲基醚键,初步形成网状结构的原丝。
     (4)原丝炭化的优化工艺:原丝直径为24μm、升温速率为2℃/min、炭化温度为1000℃、恒温时间为80min,可制备出平均拉伸强度为982.60MPa、拉伸模量为98.76GPa、断裂伸长率为4.98%、炭化得率55.68%的碳纤维。
     (5)竹材液化物碳纤维表面较平滑,无明显缺陷;断面为椭圆形,断面边部结构致密且无明显孔隙,中心部分结构稀疏且孔隙较多。它也存在皮芯结构,且部分为中空碳纤维。
     (6)300℃-1000℃之间,竹材液化物碳纤维属于类石墨的无定型碳结构。随炭化温度的升高,碳纤维中C的含量增加,其比孔容与比表面积呈增大趋势;而碳纤维中0的含量下降,其平均孔径逐渐减小,其电阻率不断下降,其类石墨微晶结构逐渐趋于规整和有序。在同一炭化温度下,随炭化时间的延长,碳纤维中c的含量逐渐增加,0的含量呈现减少的趋势,其电阻率不断下降,并且其电阻率随晶体结构参数(La、Lc及d002)的减小而减小。
     (7)300℃以下,原丝的热失重率为5.07%,其热解产物主要有CO、CO2、苯酚、CH2O;300℃-600℃,原丝的热失重率达到41.20%,热解产物包括CO、C02、CH4、苯、甲苯、苯酚、甲苯酚、二甲苯酚以及部分大分子产物;600℃-1000℃,原丝的热失重率仅为3.33%,原丝在700℃-800℃之间发生热解产生CO2和甲苯。
Carbon fiber can be made by PAN fiber or pitch fiber via oxidation, low-temperature carbonization, high-temperature carbonization process. The process used by PAN fiber is simpler and mechanical properties of carbon fibers are better. However, the shortage of fossil resource caused precursors of PAN fiber to become fewer and fewer in recent years, which caused the cost rise of carbon fibers, so the material development for carbon fibers has been one of important study fields. The research on bamboo liquefication in recent years, base on which it can be used as replaced material for materials of carbon fiber.
     In this Paper, the reproducible bamboo was used to be material, the optimized preparation process and carbonization process of precursors were studied detailedly by orthogonal tests; The configuration, change of chemical groups during precursor preparation and weight loss process were studied and analyzed by SEM, XRD, FTIR and TGA etc.; The change rule of interior configuration, micro-crystal structure, specific surface area, porous structure, electricity properties during carbonization was studied by SEM, XRD, Laser Raman Spectrometry, mercury indicator, Electronic Tensile Tester for Single Fiber, FTIR, TG-MS and SEM-EDAX etc., based on which the following conclusions were obtained.
     1) The optimized preparation process of precursors:Spinning velocity is 800r/min, synthetic temperature is 120℃, synthetic agent content is 5%, temperature-rising time is 30min:Phosphoric acid chroma is 18.5%, temperature-rising speed is 5℃/h, stabilizing temperature is 85℃and stabilizing time is 2h. Based on which the precursors could be prepared, its average diameter is 28μm, average tensile strength is 148.26MPa, average tensile modulus is34.68GPa, average breaking elongation is 1.62%.
     2) After bamboo was liquefied to liquefied bamboo, its crystal became lower. When the liquefied bamboo became spinning solution, its crystal became higher. The crystal became higher after the spinning solution was changed into precursors.
     The precursor surface was smooth, it had smooth cross-sections, and its border is more compact than the center, many fine pores were mainly observed around the center of the cross-section of carbon fibers. Some precursor s had skin-core structure, and there were distortions and nodes in Partial precursor s.
     3) The cellulose, hemi-cellulose and lignin in bamboo combined with phenol during bamboo liquefication, which could produce more aryl-ramifications.
     During the course of precursor preparation, firstly, synthetic agent combined with phenol to make new hydroxymethyl, simultaneously, Partial hydroxymethyl reacted with each other or Partial hydroxymethyl reacted with alive hydrogen on aromatic ring to form (-CH2O-) and methylene bridges respectively. Then With the rising of temperature, Partial hydroxyketone reacted with each other to form original fibers. Finally, the aromatic ring of original fibers reacted with +CH2OH simultaneously, Partial (-CH2O-) and hydroxymethyl transformed to methylene, more hydroxyketone reacted with each other or more hydroxyketone reacted with+CH2OH to form (-CH2O-), thus netty structure precursors formed primarily.
     4) The optimization process of precursor carbonization:fiber diameter is 24μm, temperature-rising speed is 2℃/min, carbonization temperature is 1000℃, temperature-keeping time is 80min, based on which the better carbon fiber from liquefied bamboo can be prepared, its average tensile strength is 982.60MPa, average tensile modulus is 98.76GPa, average breaking elongation is 4.98%, average yield ration is 55.68%.
     5) The surface of carbon fibers from liquefied bamboo was more smooth, there were no obvious disfigurements; They had ellipse cross-sections and its border is more compact than the center. Many fine pores were mainly observed around the center of the cross-section of carbon fibers. It also had skin-core structure, moreover, some carbon fibers could form hollow fibers during carbonization.
     6) Between 300℃and 1000℃, carbon fibers from liquefied bamboo belonged to graphite-like amorphous carbon structure. With the rising of carbonization temperature, the content of carbon element increased, its specific pore volume and specific surface appeared increasing tendency; However, the content of oxygen element decreased, its average porous diameter became smaller and smaller, its resistivity decreased gradually, and its graphite-like crystal structure became regular and orderly. At the same carbonization temperature, with the increasing of carbonization time, the content of carbon element increased gradually, the content of oxygen element appeared decreasing tendency, its resistivity decreased gradually, moreover, its resistivity decreased accompanied with the lower of crystal structure Parameters(La、Lc、d002)
     7) Below 300℃, the rate of weight loss of precursor was 5.07%, pyrolysates of precursors included CO, CO2, phenol and CH2O; Between 300℃and 600℃, its rate of weight loss reached 41.20%, pyrolysates of precursors included CO, CO2, CH4, benzene, methylbenzene, phenol, methylphenol,2-methylphenol and Partial polymers; Between 600℃and 1000℃, the rate of weight loss was only 3.33%, the precursors were decomposed to CO2 and methylbenzene.
引文
[1]曹泰钧,刘刚毅.竹纤维纺织品开发及前景[J].湖南文理学院学报,2005,17(1):57-59
    [2]陈杰,吴永兴等.国内碳纤维发展态势分析[J].高科技纤维与应用,2007,32(2):22-25
    [3]陈奎元.天然竹纤维的制备方法[P].CN1390989,2003-01-15
    [4]陈绍芳,孟家光.竹炭纤维性质及其应用[J].纺织科技进展,2007(5):26-27
    [5]储咏梅.竹纤维结构性能与产品开发研究[D].苏州大学,2005
    [6]戴嘉璐,郭兴忠等.竹炭微结构的研究[J].材料科学与工程学报,2007,25(5):743-745
    [7]单丽娟,李亚滨.竹纤维及其产品开发[J].天津纺织科技,2006(01):35-31
    [8]但卫华,周文常,曾睿.胶原—壳聚糖共混纺丝液的制备[J].中国皮革200635(9):3739
    [9]邓沁兰,王少华等.竹纤维的改性及其涂料染色性能研究[J],印染助剂,2008,25(6):34-36
    [10]范杰.竹纤维一种纺织新材料[J].竹子研究汇刊,2004,23(4):39-41
    [11]傅深渊,马灵飞,李文珠.竹材液化及竹材液化树脂胶性能研究.林产化学与工业,2004,24(3):42-46
    [12]韩曙鹏,徐华,曹维宇等.X射线衍射法研究聚丙烯腈原丝的晶态结构[J].北京化工大学学报,2005,32(2):63-67.
    [13]贺福.碳纤维及其应用技术[M].化学工业出版社,2004
    [14]赫淑彩,王其.竹炭改性涤纶纤维性能及针织物保健功能初探[J].山东纺织科技,2007,(3):51-53
    [15]侯爱玲,陈惠芳.PAN原丝性能对比及对碳纤维性能的影响研究[J].化工新型材料,2005,33(7):4-6
    [16]候伦灯,张齐生,陆继圣等.竹炭微晶结构的X射线衍射分析[J].福建林学院学报,2005,25(3):211-214
    [17]胡福昌,陈顺伟.日本竹材热解研究的现状[J].林业科技开发,2001,15(3):8-11
    [18]胡恒亮,穆祥祺.X射线衍射技术[M].北京:纺织工业出版社,1998
    [19]胡扬,陈惠芳,潘鼎.细旦粘胶基碳纤维及原丝结构的研究[J].宇航材料工艺,2004(2):41-44
    [20]华中.PAN基碳纤维的微观结构对电阻率影响的研究[J].松辽学刊(自然科学版),1999(01):20-23
    [21]黄彪,陈学榕,江茂生,高尚愚.不同炭化条件下炭化物的结构与性能表征[J].光谱学与光分析,2006a,26(3):455-359
    [22]黄彪,陈学榕,江茂生.炭化温度对炭化物微观结构影响的研究[J1.林产化学与工业,2006b,6(1):70-74
    [23]姜厚有等.竹材粘胶纤维及其生产工艺[P].CN1399011,2003-02-26
    [24]姜树海,张齐生等.竹炭材料的有效利用理论与应用研究进展[J].东北林业大学学报,2002,30(4):53-56
    [25]蒋建新,杨中开,朱莉伟等.竹纤维结构及其性能研究[J].北京林业大学学报,2008,30(1):128-132
    [26]蒋身学.我国竹地板的发展现状和趋势[J].中国人造板,2007(2):39-41
    [27]津村忠.竹炭の物性评价と用途开发[P].日本科学技术文献速报,J99053854
    [28]靳武刚.碳纤维在电磁屏蔽材料中的应用[J].现代塑料加工应用,2004(01):24-27
    [30]黎小平,张小平,王红伟.碳纤维的发展及其应用现状[J].高科技纤维及应用,2005,30(5):34-40
    [31]李旦,占海华.含竹炭聚酯纤维制备方法探究[J].合成纤维,2008(1):36-38
    [32]李珏,杨乐芳,翁毅.竹纤维素纤维的性能测试与应用[J].棉纺织技术,2004,32(2):101-103.
    [33]李宁,白洋.竹纤维性质及其应用[J].纺织科技进展,2007(03):15-17
    [34]李亚滨,寇士军.聚乳酸/聚乙醇酸复合纤维的性能探讨[J].合成纤维工业,2005,28(1):20-22
    [35]梁伯润.高分子物理学.北京:中国纺织出版社,2000.4
    [36]林奕贤,杜文琴.纤维的性能及其产品开发[J].五邑大学学报(自然科学版),2006(3):76-78
    [37]刘春玲,郭全贵,史景利等.酚醛纤维交联程度对碳纤维结构和性能的影响[J].材料研究学报,2006,20(3):24-249
    [38]刘春玲,郭全贵,史景利等.酚醛纤维在热处理过程中微结构的变化[J].新型炭材料,2004,19(2):124-128
    [39]刘春玲,郭全贵,史景利等.用稳定化反应法制备酚醛纤维[J].材料研究学报2005,19(1):28-34
    [40]刘杰,王培华,李玉梅.民用PAN大丝束的热氧稳定化、碳化研究.第四届全国新型碳材料学术研讨会议论文集,1999,145-148.
    [41]隆小庆,客机上的复合材料,航空工业,2006.4
    [42]楼枝春.生机无限的竹纤维[J].湖北林业科技,2004,(2):36
    [43]马海燕,张浩,刘兆峰.聚苯硫醚纤维的纺丝与改性[J].纺织导报,2006,4:77-80
    [44]马向军,张裕卿.提高聚丙烯腈基碳纤维原丝质量的研究进展[J].合成纤维,2005(11):28-32
    [45]马晓军.木材苯酚液化生成物碳素纤维化材料的制备及结构性能表征[D].北京林业大学博士论文,2007
    [46]马运志.沥青基碳纤维的发展和应用[J].山东纺织经济,2006,133(3):74-76
    [47]孟志芬,胡学超.纺丝速度对Lyocell纤维结构的影响[J].河南师范大学学报,2004,32(4):74-77
    [48]缪秋菊.竹原纤维床上家用纺织品的性能分析[J].棉纺织技术,2007,35(9):22-24
    [49]莫志深,张宏放.晶态聚合物结构和X射线衍射.北京:科学出版社,2003.58
    [50]木冠南,杨中民,杨春芬.竹制活性炭自水溶液中吸附镧(Ⅲ)离子的研究[J].林产化学与工业,1994,14(1):61
    [51]内藤笃二.天然纤维素纤维及用这种纤维制成的布帛:日本,115347[P].2001.04.24
    [52]秋山宣人等.竹纤维的生产方法[P].ZL93108031,1999-02-24
    [53]曲健健,但卫华,曾睿等.胶原—聚乙烯醇共混溶液的可纺性研究[J].皮革科学与工程,2006,16(2):14-17
    [54]荣海琴,郑经堂.改性PAN-ACFs对甲醛吸附性能的初步研究[J].新型炭材料,2001,16(1):44-48.
    [55]邵敬党天然竹纤维的性能及其应用[J].四川丝绸,2006,(4):23-24
    [56]邵千钧,徐群芳,范志伟,张文标等.竹炭导电率及高导电率竹炭制备工艺研究[J].林产化学与工业,2002,22(2):54-56
    [57]沈曾民主编.新型碳材料[M].化学工业出版社,2003
    [58]孙宝芬,隋淑英等.新型再生纤维素纤维—竹纤维[J].山东纺织科技,2003(3):46-47
    [59]孙丰文,李小科等.竹材苯酚液化及胶黏剂制备工艺[J].林产化学与工业,2007,27(6)65-69
    [60]唐佃花,赵明良.竹炭纤维/羊绒混纺纱的开发[J].化纤与纺织技术,2006(4):10-13
    [61]田岛次郎,德田进助.木竹炭等の新用途开发に関する研究[P].日本科学技术文献速报,J99064440
    [62]涂建华,张利波,彭金辉等.木质陶瓷的x射线衍射和喇曼光谱研究[J].无机材料学报.2006,21(4):986-992
    [63]万玉芹,吴丽莉,俞建勇.竹纤维吸湿性能研究[J].纺织学报,2004;25(3):14-16
    [64]汪树军.有机高分子树脂炭化过程中结构基团的变化[J],石油大学学报,2001,25(3):45-38
    [65]王光华,董发勤,陈晓燕,谢长琼等.ABS/EG/碳纤维复合导电材料制备与性能[J].中国塑料,2007(11):27-31
    [66]王季陶,刘明登.半导体材料[M].高等教育出版社,1990.
    [67]王继刚,郭全贵,刘朗等.白炭黑、BC改性酚醛树脂热解过程的红外分析[J].材料科学与工程,2000,71(3):73-76
    [68]王琳玲,胡睿,陆晓华.活性碳纤维对水中五氯酚的吸附性能研究[J].环境科学与技术,2008,31(10):19-21
    [69]王其,王华平.竹炭涤纶纤维/十字型截面PTT纤维混纺纱线及制造方法:中国,200610024821.4[P].2006.08.16
    [70]王启芬,王成国.聚丙烯腈原丝的结构表征[J].纤维复合材料,2006,23(1):29-32
    [71]王先锋,潘福奎,罗佳丽,辛玉军.竹炭纤维的性能与应用[J].山东纺织科技,2006(6):54-56
    [72]王延相等.丙烯酸甲酯对聚丙烯腈原丝及预氧丝结构和性能的影响[J].化工科技,2002,10(6):5-8
    [73]王艳芝,张旺玺,朱波,王成国.用灰色关联方法分析碳纤维原丝性能的影响因素[J].合成技术与应用,2002,17(3):1-4
    [74]王越平,高绪珊.天然竹纤维与竹浆粘胶纤维的结构性能比较.中国麻业,2006,28(2):97-100
    [75]吴惠明等.竹碳的结构及电化学性能研究[J].材料科学与工程学报,2005,23(2):157-159
    [76]吴济宏,于伟东,郭亚星.竹纤维吸湿快干针织面料的开发[J].针织工业,2005(2):12-14
    [77]吴为民.竹纤维的结构与性能探讨.江苏纺织,2007(4):43-45
    [78]吴叶青.竹资源的深加工产品—竹纤维与竹碳制品[J].浙江林业科技,2002,22(4):77-79.
    [79]夏冬.竹纤维织物前处理工艺研究[J].国外丝绸,2005(2):14-16
    [80]谢贻发,谢贵水等.我国竹类资源综合利用现状与前景[J].热带农业科学,2004,24(6):46-52
    [81]谢跃亭,胡雪敏.新型功能性纤维—竹炭黏胶纤维[J].针织工业,2005(9):15-16
    [82]刑声远,刘政,周湘祁.竹原纤维的性能研究与产品开发[J].纺织导报,2004(4):43-48
    [83]徐复铭,周伟良.Resol型酚醛树脂热解特征的TG-MS研究[J].宇航材料工艺,2003(1):18-23
    [84]许炯,蒋应梯.竹Lyocell纤维研制工艺探讨[J].竹子研究汇刊,2005,24(1):39-44
    [85]岩田磨治,佐野募.竹炭の物性评价と用途开发[P].日本科学技术文献速报,J99053855
    [86]阎红芹.环保型竹纤维的性能及开发应用[J].河北纺织,2004,(2):14-17
    [87]杨磊,陈清松等.竹炭对甲醛的吸附性能研究[J].林产化学与工业,2005,25(1):77
    [88]杨凌云,杨宝等.竹纤维分离方法探讨及其产品开发[J].中国人造板,2006,13(4):16-18
    [89]杨庆斌,刘逸新等.竹炭粘胶纤维的力学性能研究[J].纺织科学研究,2008(2):44-49
    [90]杨中开,蒋建新,朱莉伟等.服用竹原纤维的制取工艺初探[J].北京服装学院学报,2007,27(3):13-17
    [91]叶世伯.化学性食物中毒与检验[M].北京:北京大学出版社,1989
    [92]于锦生,王海龙.CFRP加固钢筋混凝土结构的技术与应用[J],纤维复合材料,2006.6,(2)
    [93]张丽娜,张天骄.熔融纺丝法制备聚醚砜纤维[J].合成纤维工业,2006,29(4):11-12
    [94]张旺玺,彭洪修.聚丙烯腈原丝结构与性能的研究[J].合成技术及应用,2000,15(3):5-8
    [95]张旺玺,王艳芝,王延相等.NiSO4改性对聚丙烯腈原丝及碳纤维结构与性能的影响[J].高分子学报,2001,5:670-673.
    [96]张建辉.竹材碳纤维原丝的稳定化工艺初探[J].林业机械与木工设备,2010(1):45-47
    [97]张建辉,赵广杰.竹材液化物碳纤维原丝优化制备工艺[J].林产工业,2010(3):49-52
    [98]张建辉,赵广杰.竹材液化物碳纤维原丝制备过程中化学基团变化研究[J].林产工业,2010(5): 28-31
    [99]张文标,华毓坤,叶良明.竹炭导电机理的研究[J].南京林业大学学报,2002,26(4):47-50
    [100]张文标,王伟龙,邵千钧等.竹炭生产工艺的现状与建议[J].竹子研究汇刊,2003,22(1):8-12
    [101]张文标,叶良明,张宏等.竹炭生产和应用[J].竹子研究汇刊,2001,20(2):49
    [102]张之亮,张元明,章悦庭等.几种新型植物纤维的开发利用现状[J].新纺织,2004,(5):16-18
    [103]张子鹏.国内外聚丙烯腈基碳纤维市场分析[J].化工技术经济,2005,(2):24-27
    [104]赵炳成,杨妓兰,曹宁仁.活性碳纤维动态吸附SO2、NO2和NH3气效率与影响因素的研究[J].中国卫生工程学杂志,1995,4(04):155-159
    [105]赵博,李虹,石陶然.竹纤维基本特性研究[J].纺织学报,2004,25(6):100-101
    [106]赵博,石陶然.竹纤维素纤维性能及其产品开发[J].毛纺科技,2004,(2):29-31
    [107]赵稼祥,碳纤维复合材料高尔夫球杆[J],高科技纤维与应用,2005,30(4):8
    [108]赵庆福等.竹炭改性粘胶纤维与长绒棉混纺纱的生产实践[J].上海纺织科技,2005,33:44-45
    [109]赵钊辉,谢光银.竹纤维的结构及理化性能分析.纺织科技进展,2005(2):27-28
    [110]郑宁来.我国PAN基碳纤维发展[J],合成纤维,2009,(6):54
    [111]郑爽.酚醛纤维纺线原液的合成研究[J].青岛大学学报,2000,15(2):33-34
    [112]周德凤,谢海明,赵艳玲,王荣顺.酚醛树脂热解炭材料的石墨化程度及其电化学性能[J].功能材料,2005b,36(1):83-85
    [113]周衡书.竹纤维纺纱与织造性能研究[J].纺织学报,2004,25(5):91-94
    [114]周家云,杨春芬.竹制活性炭及其性能研究[J].云南化工,1997,(1):28
    [115]周建萍.竹原纤维和竹浆纤维的结构与性能研究[J],上海纺织科技,2006,34(5):59-60
    [116]朱长生等.利用竹材生产粘胶纤维浆粕的工艺[P].CN00135021,2002.07.24
    [117]AKIYAMA, NORIHITO, SAKAMOTO, et a. lMethod of producing bamboo fibers:US, 5397067 [P].1995.03.14
    [118]Asada T, Ishihara S, et al. Science of bamboo charcoal:Study on carbonizing temperature of bamboo char-coal and removal capability of harmful gases [J]. J Health Sci,2002,48(6):473
    [119]Bahl, D P, Mathur R B, Dnami T L. Modification of ployacrylonitrile fibers to make them suitable for conversion into high performance carbon fibers[J]. Materials Science and Engineering.1985,73(1-2):105.
    [120]Baranauskas V,Peterlevitz AC,Ceragioli HJ, etal. Growth of glassy carbon on natural fibers[J].J Non-Crystalline Solids,2002,304(1):271-277
    [121]Bhattacharyya K G, Sarma N. Colour removal from pulp and Paper mill effluent using waste products [J]. Indian JChem Techn,1997,4(5):237
    [122]Cheng H M, Endo H, Okabe T, et al. Graphitization be~havior of wood ceramics and bamboo ceramics as determinedby X-ray diffraction [J]. J Porous Mater,1999,6(3): 233
    [123]Cheng Meng-80ng(Taiwan) Cellulose solution with low viscosity and process of preParing the sane VS. Patent 5929228,1999
    [124]Chou Jeng-Maw,Zheng Qi-jun, ChungD DL.EMI shielding by cerbon fibers reinforced cement. Composites,1989(20)(4):379-381
    [125]Chrltover Dwvbol, et al. Lyocell fabric treatment to veduce fibrillation tendency. VS Patent 5759210,1998
    [126]Dresselhaus M, Dresselhaus S G. Adv. Phys.,1981,30:290.
    [127]Dresselhaus M S, Dresselhaus G. Topics in Applied Physics, Berlin: Springer-Verlag,1982 (Vol.50):3.
    [128]Jana P B, et al. Electrical conductivity of barium-ferrite-vulcanized polychloroperene filled with short carbon fibers, Rubber Chem & Technol,1992,65 (1): 7-23
    [129]Johnson J W, T horneD J. Carbon.1969,7:659
    [130]JonesT. Beaty, et al. uniformity and product improvent in lyocell fabvics with hydraulic fluid VS Patent 5983469,1999
    [131]Kannan N,Meenakshisundaram M. Adsorption of Congo Red on various activated carbons:A comParative study. Water Air and Soil Pollution,2002,138 (1-4):289
    [132]Kannan N, Sundaram M M. Studies on the removal of rhodamine B by adsorption using various carbons-A comParative study [J]. Fresenius Environmental Bull,2001,10(11): 814
    [133]Katsuhisa M, Hideyuki T. Ammonia adsorption on porous carbons with ultramicropore and acidic functional groups [A]. Carbon 04 [C], Providencer Rhode Island, USA,2004. A057
    [134]KazuyaOkubo, Toru Fuji, i YuzoYamamoto. Development of bamboo-based polymer composites and theirmechanical properties[J]. Composites PartA,2004,35(3): 377-383
    [135]Kei M. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal [J]. Bioresource Technology,2004,95:255
    [136]KERCHER A K, NAGLE D C. Microstructural evolution during charcoal carbonization by X-ray diffraction analysis[J]. Carbon,2003,41(1):15-27
    [137]Liu Qingfeng, Lv. Chunxiang, Yang Yonggang, et al. Study on the pyrolysis of wood-derived rayon fiber by thermogravimetry-mass spectrometry[J], Journal of Molecular Structure,2005,733:193-202
    [138]Lni L., Yao. Y, Shriaishi N. Liquefaction mechanism of β-0-4 lignin model compound in the Pressure of Phenol under acid catalysts-Identification of the reaction Products. Holzforschung 2000,55:617-624.
    [139]Lni L., Yao. Y, Shriaishi N. Liquefaction mechanism of β-0-4 lignin model compound in the Pressure of Phenol under acid catalysts-Reaction behaviour and Pathways. Holzforschung 2001,55:625-630.
    [140]Ltepp. Pieter, et al. Method and device for fibrillating easily fibrillated cellulose fibres, Particularly ten cell fibres. EP Patent 806512A1,1997
    [141]MAIER H, HESSE J. Growth properties and application of narrow-gap semiconductors [Z]. Springer-Verlag, Berlin, Herdelberg,1980
    [142]Ohe K,Nagae Y, Nakamura S, et al. Removal of nitrateanion by carbonaceous materials prePared from bamboo and coconut shell [J]. J Chem Eng Jpn,2003,36(4): 511
    [143]Ozaki J, ohizumi W, oya A. A TG-MS study of Poly (vinyl butyral)/Phenol-formaldehyde resin blend fiber[J]. Carbon,2000,38:1499-1524
    [144]Poter G. Vrben, et al. Lyocell fiber treatment method. VSPatent 5562739,1996
    [145]Saito Y, Mori M, Shida S, et al. Formaldehyde adsorptio and desorption properties of wood-based charcoal. Mokuza Gakkaishi,2000,46(6):596
    [146]Shen Qing, Liu Dian sen, GaoYuan, et a.1 Surface properties of bamboo fiber and a comParison with cotton linter fibers[J]. Colloids andSurfacesB:Biointerfaces, 2004,35(3-4):193-195
    [147]Tkasaki M, Kikutani T. Structure development of polylactides with various D-lactide contents in the high-speed melt spinning process[J].J Macromolecular Sci,PartB:Phys,2003,42(1):5
    [148]Tuinstra F, Koenig J L. J. Chem. Phys.,1970,53(3):1126.
    [149]TSE-HAO KO, LI-CHUAN HUANG. PreParation of high-performance carbon fibers from PAN fiber modified with cobaltous chloride[J].Journal of Materials Science,1992,27(4):2429-2436.
    [150]TSE-HAO KO, SING-CHANG, LIAU MING-FONG LIN. PreParation of graphite fibers from a modified PAN precursor[J]. Journal of Materials Science,1992,27(6):6071-6078.
    [151]Yamata. T, Ono H, Ohara S, Yamaguvhi A. Characterization of the Products resulting from direct liquefaction of cellulose-Identification of intermediates and the relevant mechanism in direct Phenol liquefaction of cellulose in the presence of water. Mokuai Gakkaishi1996,42(11):1098-1104
    [154]Yoshida C, Okabe K, Yao T, et al. PreParation of carbon fibers from biomass-based phenol formaldehyde resin[J], Joumal of materials seience,2005,40:335-339
    [155]YOSHIDA SEI J I. Bamboo fiber board method:US,6689298[P].2004-02-10
    [156]Zuo S L, Gao Sh Y. Carbonization mechanism of bamboo (phyllostachys)by means of fourier transform infrared and elemental analysis [J].J Forestry Res,2003,14(1):75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700