用户名: 密码: 验证码:
LASP/AA/AM高吸水树脂的合成、性能及蓄冷保鲜应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高吸水性树脂(Super absorbent polymers, SAP)是可以吸收自重数百倍至上千倍水的一类物质,且吸收的水不易用机械方法分离。目前世界上商业性最广泛的是聚丙烯酸盐类(包括淀粉接枝和丙烯酰胺共聚等)高吸水性树脂,该类树脂吸水性能好,但耐盐性和生物降解性差。聚天门冬氨酸(polyaspartic acid,简称PASP)属蛋白质结构,具有很强的吸水性和良好的生物降解性,但凝胶强度低和耐盐性差。因此,选用绿色天然物质L-天冬氨酸(LASP)为添加原料,采用合适的制备方法和工艺来提高传统丙烯酸-丙烯酰胺(AA-AM)高吸水树脂的吸水性能、耐盐性能、生物降解性能和蓄冷保鲜性能,对实现其工程应用具有重要的理论意义和现实意义。
     本文研究以绿色天然物质LASP为添加原料,采用过硫酸钾为引发剂,N'N-亚甲基双丙烯酰为交联剂,合成LASP/AA/AM高吸水性树脂。探索了聚合物合成中的单因子和多因子组合的最佳条件,测定了聚合反应过程中单体反应级数和聚合反应活化能。对LASP/AA/AM高吸水性树脂的吸水性能、生物降解性能、蓄冷性能、保鲜性能等进行了检测和分析,并用红外光谱仪(FT-IR)和扫描电子显微镜(SEM)对LASP/AA/AM高吸水性树脂的结构进行表征,得到如下结论:
     (1)以过硫酸钾为引发剂,N'N-亚甲基双丙烯酰为交联剂,以丙烯酰胺和适度中和丙烯酸为基本单体,加入适量的LASP为添加单体,采用水溶液法制备了高性能LASP/AA/AM高吸水性树脂。研究了LASP添加量、WAA:WAM比例等因子的最适量,且得出各因子对树脂吸水倍率的影响顺序为:LASP用量>WAA:WAM比例>引发剂用量>交联剂用量。正交试验确定了本共聚反应的最佳组合,即LASP用量为单体用量8%,引发剂用量为单体用量0.5%,交联剂用量为单体用量0.2%,WAA:WAM比为70:30,获得树脂的最高吸水倍率达到了1017g/g,最高吸盐水倍率达到98g/g。
     (2)采用水溶液引发LASP/AA/AM共聚,单体反应级数为1,共聚反应活化能为29.45KJ/mol。LASP含量为5%时,聚合反应速率最高,说明添加LASP单体有加速聚合反应的作用。通过FTIR和SEM对合成的高吸水树脂结构进行表征,在FTIR图谱上,1322cm-1处出现了C-N的伸缩,859cm-1出现表示分子顺反结构的谱带,某些基团发生位移,并出现相应的振动伸缩峰,都证明了LASP与AA、AM发生了聚合反应。树脂表面结构SEM图显示AA/AM树脂表面较光滑,而LASP/AA/AM树脂表面较粗糙,有不规则的棱和沟壑出现,印证了LASP/AA/AM树脂比AA/AM树脂有更加优良吸水倍率和吸水速率。
     (3)微生物生长培养实验表明,LASP/AA/AM树脂微生物生长级数达到最高级4级,而AA/AM树脂微生物生长级数只是1级,表明LASP/AA/AM树脂的碳源能有效被微生物所利用;通过树脂薄片被微生物降解后的表面结构SEM表征,AA/AM树脂表面只表现出轻微的侵蚀,而LASP/AA/AM树脂表面变得密集的粗糙蓬松,表明树脂已大量被微生物降解利用。基本说明了添加LASP后,LASP/AA/AM高吸水树脂具有良好的生物降解性能。
     (4)饱和的高吸水性树脂中绝大部分是水,而且水的物性参数基本上未变,其中水的蒸汽压、冰点、比热容、融潜热等基本物性与水相似,故高吸水性树脂一水体系具备固-固蓄冷材料特点,可以同时调节环境中的温度和湿度。高吸水树脂蓄冷系统有较大的潜热,LASP/AA/AM树脂-水体系、AA/AM树脂-水体系的熔融热分别为427.9、386.47,明显大于纯水-冰的335。与冰蓄冷系统比较,AA/AM树脂-水蓄冷系统降温速度最快,LASP/AA/AM树脂-水其次,冻结温度以LASP/AA/AM树脂最低,可能是在冰蓄冷系统中,蓄冷介质只有水,而在高吸水树脂复合蓄冷剂的蓄冷系统中,蓄冷介质除了水还有空气,有效提高了传热速率。而高吸水树脂复合纯水的蓄冷系统释冷较快,绝对温度较低,且持续时间较长,LASP/AA/AM树脂-水蓄冷系统释冷性能较优于AA/AM树脂-水的蓄冷系统。
     (5)贡柑果实水分活度介于0.986~1.0间,可以充分反映果实水分活性的变化,果实成熟度高,水分活性也较高。贡柑果实果汁红外光谱在1649.4(1654.6-1638.4cm-1)附近峰位差异性大,是可以直接用于可溶性糖组分定性分析的波数;在1055.6(1057.1~1053.5cm-1)附近峰位差异性小,可适用于定量分析蔗糖等可溶性糖总量的变化。贡柑不同采收期的果实可溶性糖红外光谱表现出差异,采收迟的果实呈现接近果糖的红外光谱特征。贡柑果实蔗糖、葡萄糖、果糖等可溶性糖含量变化呈“S”型变化模式,其峰位的变化与TSS含量增加呈逆向变化关系,但和甜味品质变甜变淡趋势相同。2,4-D处理贡柑后能明显延长果实风味品质保持期,但不能阻止果实甜味品质变淡,其蔗糖、葡萄糖、果糖等可溶性糖含量变化完全不同于对照的“S”型变化特征。
     (6)贡柑贮藏试验结果表明,常温贮藏出现异味,冰温贮藏出现冻害结冰沙的现象,唯有低温贮藏的果实仍有蜜味,但质地也不能保持。加冰去热可以显著改善贡柑果实好蒂率、好果率及果实外观色泽,也对果实内含物含量和风味的保持有所帮助,贡柑果实采后加冰处理无论好蒂率、好果率以及果实品质均以冰果比1比2处理为优。采用Aloe、2,4-D和LASP/AA/AM树脂-水蓄冷等保鲜处理的好蒂率和好果率均在96%以上,果实风味品质处理与对照有明显的区别,处理中以2,4-D处理为最好,LASP/AA/AM树脂-水蓄冷处理只是风味变淡,没有出现异味。
Super absorbent polymers(SAP) are a type of superabsorbent materials up to thousands and hundreds times of its deadweight and the absorbing water can not be separated by mechanical method. The most commercial type of SAP is polyacrylates which have superior absorb-water performance and poor salt-resistance performance and biodegradability. Polyaspartic acid(PASP) is a type of protein which has superior absorb-water performance and biodegradability, but poor salt-resistance performance and gel strength Therefore, L-aspartic acid(LASP) as natural material by adding into acrylic acid-co-acrylamide(AA-AM) is to improve the absorb-water performance, salt-resistance performance, cool storage performance and biodegradability of AA-AM SAP, which has important scientific value to promote the engineering applications of SAP.
     The copolymerization processes of LASP/AA/AM polymers with initiator (potassium supersulphate), crosslinking agent(N'N-methylene bis (acrylamide)) were studied. The results of synthesis conditions, polymerization kinetics, structure properties and performances of the copolymer by separate factors tests and orthogonal experiments are as follows:
     (1) LASP/AA/AM polymer was prepared by aqueous solution polymerization using proper amount of LASP/AA/AM as monomers, potassium supersulphate as initiator, N'N-methylene bis (acrylamide) as crosslinking agent, and proper neutralization degree of acrylic acid. The influence order of factors on polymerization was LASP content> WAA:WAM ratio> initiator content> crosslinking agent content. The results of orthogonal test showed that the best polymerization conditions were LASP8%wt of AA/AM, potassium supersulphate0.5%wt of AA/AM, N'N-methylene bis (acrylamide)0.2%wt of AA/AM, and WAA:WAM ratio70:30. According to these conditions, the absorbency of LASP/AA/AM polymer could get1017g/g, and the absorbency of0.9%NaCl solution could get98g/g.
     (2) The monomers reaction order, and activation energies of LASP/AA/AM copolymerization in aqueous solution were1and29.45KJ/mol, respectively. When LASP content was at5%wt of AA/AM, LASP/AA/AM copolymerization rate reached the highest, showing accelerated the polymerization by LASP. IR spectra of LASP/AA/AM SAP exhibits characteristic band of C-N around1322cm-1and molecular cis/trans-structure band of the copolymer around859cm-1. SEM photograph of LASP/AA/AM gel resin exhibits having irregular edge and gully and being rougher in the surface of gel, and showing more excellent water absorption ratio and water absorption rate than that of AA/AM gel resin.
     (3) Carbon sources of LASP/AA/AM SAP could be utilized by Penicillium sp.and Aspergillus niger through microbe incubation. SEM photograph of LASP/AA/AM SAP through degradation of fungi exhibits that the surface of LASP/AA/AM gel resin became rough and showed more excellent biodegradability than AA-AM gel resin.
     (4) The property of absorbing water by SAP is the same as free water, such as vapor pressure, freezing point, specific heat capacity, latent heat. So, SAP-water as a solid-solid cool storage material can regulate environmental temperature and humidity. Melting heats of LASP/AA/AM SAP-water, AA/AM SAP-water and water were in order of427.9,386.47,335. LASP/AA/AM SAP-water and AA/AM SAP-water cool storage systems had higher melting heat, faster cool-discharge, longer lower-temperature period than ice cool storage system. The cool-discharge performance of LASP/AA/AM SAP-water cool storage system was better than that of AA/AM SAP-water cool storage system.
     (5) The water activity of Gonggan fruits was0.986~1.0, which affected by water-loss and maturity of fruits. IR spectra of Gonggan fruit juice showed diversity around1649.4(1654.6~1638.4cm-1) which is suitable for qualitative analysis of soluble sugars, and similarity around1055.6(1057.1~1053.5cm-1) which is suitable for quantitative analysis of soluble sugars. IR spectra of Gonggan fruit juice at late harvest was similar with that of fructose. The changes of sucrose, glucose, fructose and soluble sugars of Gonggan fruit in control were "S" model, but showed no relationship with the increase of TSS content and closely relationship with the change of flavor quality during fruit storage6-12d. The flavor quality level and period of Gonggan fruit treated by2,4-D was better and longer, no peaks different from "S" model of control in the changes of sucrose, glucose, fructose and soluble sugars, that the lower level of soluble sugars was closely related with the change of flavor quality of Gonggan fruit.
     (6) The quality of'Deqing Gonggan'fruits after harvest showed light flavor and off-crisp texture:off-flavour under room temperature, light flavour and ice taste under ice temperature and light flavour and honey-sweet taste under low temperature. Good pedicle percent and good fruit percent of fruits were significantly increased with the increases of ice addition(p<0.01); and the best fruit quality was the1:2treatment. Good pedicle percent and good fruit percent of fruits treated by Aloe、2,4-D and LASP/AA/AM SAP-water cool storage system were more than96%, and fruit quality of treatments was in order of2,4-D、Aloe、LASP/AA/AM SAP-water cool storage system and CK.
引文
[1]玛尔哈巴·吾斯曼,李学文,车凤斌,等.涂膜处理对新疆石榴贮藏品质及生理的影响[J].新疆农业科学,2011,48(6):1033-1037.
    [2]刘晓菲,程春生,覃宇悦,等.壳聚糖/纳米蒙脱土复合涂膜对枇杷保鲜的研究[J].食品研究与开发,2011,32(4):168-171.
    [3]杨乐,王洪新.不同可食性涂膜对方竹笋保鲜效果的影响[J].食品工业科技,2011,32(2):305-308.
    [4]刘孟纯,张子德,李华,等.茶多酚对切花月季瓶插寿命和相关抗氧化酶滑行影响的研究[J].河北农业大学学报,2008,31(2):45-48.
    [5]Harms D J, Meah A R Y. Method and composition for preservation of cut flowers [P]. US:5580840,1996.
    [6]M. Shibukawa, K. Aoyagi, R. Sakamoto, et al. Liquid chromatography and differential scanning calorimetry studies on the states of water in hydrophilic polymer gel packings in relation to retention selectivity [J]. Journal of Chromatography A,1999,(832):17-27.
    [7]H. Omidian, M. J. Zohuriaan-Mehr. DSC studies on synthesis of superabsorbent hydrogels [J]. Polymer,2002,43:269-277.
    [8]马承银.高吸水性树脂在蓄冷材料中的应用研究[J].塑料开发,2000,1437-1439.
    [9]赵兴宝.浅谈保水剂在南方果树区的应用及前景[J].热带农业工程,2005(1):44-45.
    [10]季鸿渐,张万喜,潘振远,等.高分子吸水树脂的合成和性能研究[J].高分子通报,1992,(2):111-115.
    [11]宋彦凤.耐盐性聚丙烯酸盐类高吸水树脂的制备[J].应用化学,1995(12):117-118.
    [12]顾梅,朱秀林.丙烯酰胺的微波聚合研究[J].高分子材料学与工程,1997,13(5):36-40.
    [13]路建美,朱秀林,胡逢吉,等.乌头酸与丙烯酸钠的微波辐射共聚制高吸水性树脂[J].石油化工,1999,28(1):36-39.
    [14]崔英德,郭建维,廖列文,等Preparation of acrylic superabsorbents with core-shell structure by modified inverse suspension polymerization [J]化工学报,2000,51(6):723-724.
    [15]崔英德,郭建维,廖列文,等.二元共聚高吸水性树脂的合成与溶涨性能[J].化工学报,2001,52(4):601-605.
    [16]徐晓秋,刘廷栋.高吸水性树脂的工艺与配方[M].北京:化学工业出版社,2005,1-30.
    [17]李晓阳,朱佩芳,胡嘉念.新型烧伤敷料的研制与评价[J].生物医学工程学杂志,1994,11(1):5-8.
    [18]霍宇凝,赵岩,陆柱.聚天冬氨酸与氧化淀粉复配物的阻垢性能研究[J].华东 理工大学学报,2001,27(4):385-387.
    [19]Bhattacharyya D., Bhattacharyya D., Bachas L. G., et al. Membrane-based sorbent for heavy metal sequestration [P], US:6,139,742,2000.
    [20]Hsueh, K. F. Process for making perfume-impregnated hydro-forming [P]. WO:9904830,1999.
    [21]孙波.聚天(门)冬氨酸材料的设计、合成与应用基础研究[M].天津大学,2006.
    [22]Ross R. J., Low K. C. Polyaspartate scale inhibitors-biodegradable alternatives to polyacrylates[J]. Mater. Perform.,1997,36 (4):53-57.
    [23]Groth, J. M., et al. Process for preparing polysuccinimide and polyaspartic acid [J].US:5610255,1997.
    [24]陆柱,霍字凝.环保型水处理剂聚天冬氨酸[J].洗净技术,2003,9(21):49-51.
    [25]廖列文,崔英德,等.淀粉接枝丙烯酸钠高吸水树脂的合成及在食品保鲜中的应用[J].广州化工,2000,28(4):12-15.
    [26]邱海霞,于九皋,林通.高吸水性树脂[J].化学通报,2003,66(9):598-605.
    [27]L. G. P, O. C. M. A. Shelf-life of bedding plants as influenced by potting media and hydrogels[J].Sci. Hort.,1987,31:141-149.
    [28]J. M. S. Effect of soluble salts on water absorption by gel-forming soil conditioners[J]. J. Sci. Food Agric.,1984,35:1063-1066.
    [29]J. M. S. The effects of gel-forming polyacrylamides on moisture storage in sandy soils [J]. J. Sci. Food Agric.,1984,35:1196-1200.
    [30]尹国强,崔英德,黎新明.高吸水性树脂的结构设计与性能改善.河南化工.2004,(11):1-4.
    [31]闫辉,张丽华,等.耐盐性高吸水性树脂[J].化工新型材料,2001,29(12):11-13.
    [32]邳艳英,梁镐,吕光明AMPS的合成与结构分析[J].油田化学,1994,11(1):9-12.
    [33]田玲,王九思,李玉金AA/AMPS二元共聚物的合成及阻垢性能研究[J].兰州交通大学学报,2005,24(1):81-83.
    [34]Yamamoto H., Tomatsu I.,Hashidzume A.,et al. Associative properties in water of copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate and methacrylamides substituted with alkyl groups of varing lengths [J]. Macromolecules,2000,33:7852-7861.
    [35]罗宪波,蒲万芬,武海燕,等.抗盐型交联聚合物溶液的合成条件研究[J].石油与天然气化工,2004,33(5):350-354.
    [36]崔英德,郭建维,等.二元共聚高吸水性树脂的合成与溶涨性能[J].化工学报,2001,52(7):601-605.
    [37]宋彦风,崔占臣,陈欣芳.耐盐性聚丙烯酸盐类高吸水树脂的制备[J].应用化学,1995,12(1):117-118.
    [38]J. Zhang, A. Li, A. Wang. Study on superabsorbent composite. Ⅵ. Preparation, characterization and swelling behaviors of starch phosphate-graft-acrylamide/attapulgite superabsorbent composite [J]. Carbohydrate Polymers,2006,65(2):150-158.
    [39]Lee, W.F., Wu, R.J. Superabsorbent polymeric materials. Ⅰ. swelling behaviors of crosslinked poly(sodium acrylate-co-hydroxyethyl methacrylate) in aqueous salt solution [J]. J. Appl. Polym. Sci.,1996.62 (7):1099-1114.
    [40]孙克时,李志强.水溶液共聚法合成耐盐性商吸水性树脂[J].化学与粘合,2000(3):105-107,126.
    [41]朱文渊,崔英德,方岩雄.高吸水性树脂的研究及其生产概述[J].化学世界,2003,44(5):270-273.
    [42]路建美,朱秀林.乌头酸与丙烯酸钠的微波辐射共聚制高吸水性树脂.石油化工[J].1999,28(1):36-39.
    [43]韩玉花,张宝华,樊爱娟.耐盐高吸水性树脂合成工艺研究[J].山东化工,2003,32(3):18-20.
    [44]王进,于善普.超高吸水性树脂的吸水性和抗电解质性能的研究[J].印染,2000,26(9):16-18.
    [45]温品谦二.有机合成化学[M].1981,33(7):10-28.
    [46]崔英德,郭建维,刘卅,等.静态溶液聚合法合成sa-Ip-Sps型高吸水性树脂[J].化工学报,2003,54(5):665-669.
    [47]蒋笃孝,宗龄瑛.高吸水性树脂的制备及交联剂对树脂吸水性能的影响[J].化学与粘合,1998(1):1-3,22.
    [48]Lim, D. Won, Yoon, K. J., Ko. S. Won. Synthesis of AA-based superabsorbent interpenetrated with sodium PVA sulfate [J]. J. Appl.Polym. Sci.,2000, 78:2525-2532.
    [49]L. D. Won, S. K. Genn, Y. K. Jong. Synthesisof acrylic acid-based super absorbent interpenetrated withsodium PVA sulfate using inverse-emulsion [J]. Eur. Polym. J,2002,38:579-586.
    [50]B. Unal, R. C. Hedden. Gelation and swelling behavior of end-linked hydrogels prepared from linear poly(ethylene glycol) and poly(amidoamine) dendrimers [J]. Carbohydrate Polymers,2006,66(3):372-378.
    [51]P. S. K. Murthy, Y. M. Mohan, J. Sreeramulu, et al. Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate):Preparation, swelling and diffusion characteristics evaluation [J]. Carbohydrate Polymers,2006,66 (12):1482-1493.
    [52]Q. Tang, J. Lin, J. W. et al. Two-steps synthesis of a poly(acrylate-aniline) conducting hydrogel with an interpenetrated networks structure [J]. Carbohydrate Polymers,2007,67(03):332-336.
    [53]黄汉生.高吸水性树脂研究开发的新动向[J].化工新型材料,1995,23(12):12-15.
    [54]P. Lanthong, R. Nuisin, S. Kiatkamjornwong. Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents[J]. Carbohydrate Polymers,2006,66(2):229-245.
    [55]A. Pourjavadi, S. Barzegar, G. R. Mahdavinia. MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels [J]. Carbohydrate. Polymers,2006,66(3):386-395.
    [56]张小红,崔英德.反相悬浮聚合法合成可生物降解海藻酸钠高吸水性树脂[J].精细化工,2006,23(3):218-222.
    [57]贾振宇,崔英德,黎新明,尹国强,张翠荣.腐殖酸表面接枝对丙烯酸类超强吸水树脂的改性研究[J].化工进展,2005,24(7):788-791.
    [58]朱秀林,顾梅.高岭土一聚丙烯酸钠高吸水性复合树脂的合成及性能研究[J].高分子材料科学与工程,1994,10(5):46-49.
    [59]A. L. J. Zhang, A. Wang. Study on superabsorbent composite. Ⅵ. Preparation, characterization and swelling behaviors of starch phosphate-graft-acrylamide/attapulgite superabsorbent composite [J]. Carbohydrate Polymers,2006,65(2):150-158.
    [60]A. L. J. Zhang, A. Wang. Synthesis and characterization of multifunctional poly(acrylic acid-co-acrylamide)/sodium humate superabsorbent composite [J]. Reactive and Functional Polymers,2006,66(7):747-756.
    [61]方莉,谭天伟.聚天门冬氨酸的合成及其应用[J].化工进展,2001,20(3):24-28.
    [62]M. Tomida, T. Nakato. Convenient Synthesis of High Molecular Weight Poly(succinimide)by Acid-catalysed Polycondensation of L-aspartic Acid [J]. Polymer,1997,38(18):4733-4736.
    [63]M. Schwamborn. Chemical synthesis of polyaspartates:a biodegradable alternative to currently used polycarboxylate homo-and copolymers [J]. Polymer Degradation and Stability,1998,59(1-3):39-45.
    [64]M. Tomida, M. Yabe, Y. Arakawa. Preparation conditions and properties of biodegradable hydrogels prepared by y-irradiation of polyaspartic acids synthesized by thermal polycondensation [J]. Polymer,1997,38(11):2791-2795.
    [65]孙波,魏荣宝,等.类蛋白质阻垢剂聚天门冬氨酸的合成研究[J].南开大学学报:自然科学版,2002,35(2):90-96.
    [66]方莉,谭天伟.聚天门冬氨酸的合成研究[J].化学反应工程与工艺,2003,19(4):295-299.
    [67]王永秋,何晓玲,黄殊.微波辐射法合成聚天门冬氨酸的研究[J].淮北煤炭师范学院学报:自然科学版,2004,25(4):37-40.
    [68]冷一欣,蒋俊杰,等.聚天冬氨酸的合成与表征[J].化学工业与工程技术,2002,23(5):7-8.
    [69]M. Tomida, M. Yabe, Y. Arakawa, et al. Preparation conditions and properties of biodegradable hydrogels prepared by y-irradiation of poly(aspartic acid)s synthesized by thermal polycondensation [J]. Polymer,1997,38(11):2791-2795.
    [70]M. Tomida, T. Nakato, S. Matsunami, et al. Convenient synthesis of high molecular weight poly(succinimide) by acid-catalysed polycondensation of-aspartic acid.[J].Polymer,1997,38(18):4733-4736.
    [71]G. Torsten,J. Winfried.Process for Preparing Polyas-panic Acid[P]. US:5714558, 1998.
    [72]G. Torsten, J. Winfried. Process for the preparation of polysuccinimide and polyaspartic acid[P]. US:5371180,1994.
    [73]K. L. P, M. A. R. Y. Production of high molecular weight polysuccinimide and high molecular weight polyaspartic acid from maleic anhydride and ammonia [P]. US:5219952,1993.
    [74]曹辉,尚飞,谭天伟.顺酐为原料合成聚天门冬氨酸及其阻垢性能的测定[J].北京化工大学学报:自然科学版,2004,31(6):9-12.
    [75]雷武,王风云,等.聚天冬氨酸的合成[J].应用化学,2003,20(4):397-399.
    [76]孙波,米镇涛,魏荣宝,等.聚天门冬氨酸合成过程中的水解反应[J].应用化学,2003,20(7):651-654.
    [77]H. Pivcova, V. Saudek.13C n.m.r. relaxation study of poly(aspartic acid) [J]. Polymer,1985,26(5):667-672.
    [78]H. Pivcova, V. Saudek, H. Drobnik.13C n.m.r. study of the structure of poly(aspartic acid) [J]. Polymer,1982,23(8):1237-1241.
    [79]王朝阳,任碧野,等.可生物降解材料聚天冬氨酸的研究进展[J].高分子通报,2002(5):29-34.
    [80]韶晖,冷一欣.以马来酸为原料合成的聚天冬氨酸的阻垢性能[J].江苏石油化工学院学报,2001,13(1):18-20.
    [81]张红雁,田彩莉,张国宏,等.可生物降解的新型阻垢缓蚀剂聚天门冬氨酸[J].河北省科学院学报,2003,20(2):114-118.
    [82]Y. Zhang, J. Huang, Z. Cheng, et al. Microwave-assisted synthesis of modified polyaspartic acid in solvent [J]. Chinese J. of Chem. Engi.,2007,15(3):458-462.
    [83]韶晖,冷一欣.聚天冬氨酸阻垢性能的研究[J].油田化学,2001,18(2):181-183.
    [84]韶晖,冷一欣,等.聚天冬氨酸钠的阻垢性能[J].精细石油化工,2003(2):33-35.
    [85]韶晖,冷一欣.聚天冬氨酸及其复配物对硫酸钙的阻垢性能[J].工业水处理,2003,23(7):30-32.
    [86]P. K. Ajikumar, B. J. M. Low, S. Valiyaveettil. Role of soluble polymers on the preparation of functional thin films of calcium carbonate [J]. Surface and Coatings Technology,2005,198(1-3):227-230.
    [87]L. Dai, E. P. Douglas, L. B. Gower. Compositional analysis of a polymer-induced liquid-precursor (PILP) amorphous CaCO3 phase [J]. J. of Non-Crystalline Solids, In Press, Corrected Proof, Available online 4,2007.
    [88]J. Bolze, D. Pontoni, M. Ballauff, et al. Time-resolved SAXS study of the effect of a double hydrophilic block-copolymer on the formation of CaCO3 from a supersaturated salt solution [J]. J. of Colloid and Interface Science,2004, 277(1):84-94.
    [89]J. Roque, J. Molera, M. Vendrell-Saz, et al. Crystal size distributions of induced calcium carbonate crystals in polyaspartic acid and Mytilus edulis acidic organic proteins aqueous solutions [J]. J. of Crystal Growth,2004,262(1-4):543-553.
    [90]雷全奎,杨小兰,马雯场,等.聚天门冬氨酸对土壤理化性状的影响[J].陕西农业科学,2007(3):75-76.
    [91]李建刚,韩卫红,马翔龙,等.不同品牌“聚天门冬氨酸”在玉米上研究初报[J].中国农村小康科技,2007(2):74-75,77.
    [92]郭明海.尿素增效剂聚天门冬氨酸的分子量及其分布测定[J].大氮肥,2006,29(1):29-31.
    [93]李建刚,韩卫红,马翔龙,等.“聚天门冬氨酸”后效对小麦群体及产量的影响[J].中国农村小康科技,2006(2):43-43,55.
    [94]冷一欣,韶晖,欧阳平凯.绿色化学品聚天冬氨酸的合成与应用进展[J].江苏工业学院学报,2004,16(3):46-49.
    [95]Y. Zhao, H. Su, L. Fang, et al. Superabsorbent hydrogels from poly(aspartic acid) with salt-, temperature-and pH-responsiveness properties [J]. Polymer,2005, 46(14):5368-5376.
    [96]L. Fang, Y. Zhao, T. Tan. Preparation and water absorbent behavior of superabsorbent polyaspartic acid[J]. J. Poly. Res.,2006,13(2):145-152.
    [97]Z. Rui, T. Tan. Preparation of copolymer of L-aspartic acid and L-glutamic acid[J]. J. App. Poly. Sci.,2006,3626-3633.
    [98]J. Y. Zhao, L. Fang, T. Tan. Synthesis and characterization of superabsorbent hydrogels composites based on polysuccinimide [J]. J. App. Poly. Sci.,2006. 102(1):550-557.
    [99]Y. Zhao, L. Fang, T. Tan. Optimization of the preparation of a poly(aspartic acid) superabsorbent resin with response surface methodology [J]. J. App. Poly. Sci., 2006,102(3):2616-2622.
    [100]L. Fang, J. Yang, T. Tan. Effect of drying temperature of structure and property of polyaspartic acid resin [J]. J. Sol-Gel Sci. Tech.,2006,40(1):89-90.
    [101]Y. Zhao, T. Tan. Poly(aspartic acid) super-absorbent resin produced by chemical crosslinking and physical freeze/thawing [J]. Macro. Chem. Phy.,2006, 207(14):1297-1305.
    [102]冷一欣,欧阳平凯,韶晖.环境友好型聚天冬高吸水性树脂的合成[J].精细与专用化学品,2005,13(18):15-17.
    [103]黄远星,雷中方.聚天门冬氨酸类阻垢剂的生物降解性评定方法[J].复旦学报:自然科学版,2003,42(6):1053-1057.
    [104]吕正荣.聚(L—天冬氨酸)衍生物一顺铂结合物的制备及体外细胞毒性研究[J].高等学校化学学报,1998,19(5):817-820.
    [105]M. xiao, B. Feng, K. Gong. Preparation and performance of shape-stabilitized phase change thermal storage materials with high thermal conductivity [J]. Energy Conversion and Management,2002,43(1):103-108.
    [106]I. Hideo, T. Ping. Transient heat characteristics of rectangular heat storage vessel packed with shape-stabilized phase material (effect of various factors heat release process) [J]. Tran. Japan Soc. Mech. Engi. Part B,1996:2790-2797.
    [107]I. Hideo, T. Ping. Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material [J]. Heat and Mass Transfer,1997,32(4):307-312.
    [108]M. xiao, L. Sun, C.Huang, et al. High thermal conductivity hape-stabilized phase change materials [J]. M. Res. Soc. Sym-Pro.,2001,661:8121-8125.
    [109]关地(译).极低温用流动型蓄冷材料[N].刊工业新闻.1994.
    [110]刘鉴民.蓄冷空调与其它常用电网调峰方式调峰效益的比较研究[J].电网技术.1997,21(12):15-17.
    [111]Arnes, D. A. Thermal storage forum:Eutectic cool storage current development [J]. A SHRAE J.,1990,46-53.
    [112]Hawes D. W., Banu D., Feldman D. Latent heat storage in concrete[J]. Sol. Ene. Mat.,1990,21(1):61-80.
    [113]Momose C., Fujita T, Sekoshi W. [P]JP:05214672,1993.
    [114]Yazaki H, Kono H, Koketsu N, et al. [P]JP:06 158035,1994.
    [115]Domanski R., El-Sebaii A. A., Janorski M. Energy(Oxford) [M],1995, 20(7):607.
    [116]徐伟亮.常低温固-液相变材料的研制和应用[J].现代化工,1998(4):14-16.
    [117]张寅平,胡汉平,孔祥冬,等.相变储能-理论和应用[M].合肥:中国科学技术大学出版社,1996:8-31.
    [118]贺岩峰,张会轩,燕淑春.热能储存材料研究进展[J].现代化工,1990,(8):8-12.
    [119]徐伟亮.常低温固一液相变材料的研制和应用[J].现代化工,1998,4:14-16.
    [120]许建俊,华泽钊.Na2SO4·10H2O溶液的特性及其在蓄冷空调技术中的应用[J].制冷学报,1997,1:1-6.
    [121]王晓伍,吕恩荣.太阳能固一固相变贮热[J].新能源,1996,18(6):9-13.
    [122]Maria T. Thixotropic mixture and methods of making same [P]. US:3986969, 1976.
    [123]邢登清,迟广汕,阮德水,等.多元醉二元体系固一固相变贮热的研究[J].太阳能学报,1995,16(2):131-137.
    [124]Hasnain S. M. Review on sustainable thermal energy storage technologies, part I:Heat storage materials and techniques [J]. Energy Conversion,1998, 39(11):1127-1138.
    [125]He B., Gustafsson E. M., Setteerwall F. Tetradecane and hexadecane binary mixture as phase change materials (PCMs) for cool storage in district cooling system [J]. Energy,1999,24(6):1015-1028.
    [126]He B., Setteerwall F. Technical grade paraffin waxes as phase change materials for cool thermal storage and cool storage systems capital cost estimation [J]. Energy Conversion and Management,2002,43(9):1709-1723.
    [127]李汛,郑宗和,王庆华.球体内蓄冷材料相变特性研究[J].制冷学报,1996,5(1):22-25.
    [128]张梅,那莹,姜振华.接枝共聚法制备聚乙二醇(PEG)/聚乙烯醇(PVA)高分子固-固相变材料性能研究[J].高等学校化学学报,2005,26(1):170-174.
    [129]高凯,张娜,杨秀茹,张平.蓄冷剂在油麦菜保鲜中的应用研究[J].保鲜与加工,2010,10(3):30-32.
    [130]潘欣.食品相变蓄冷剂的研制[M].浙江大学.2005.
    [131]章音.聚合物蓄冷剂的特性及其应用[J].铁道车辆,1998,36(3):33-37.
    [132]水谷耕治.国际专利申请号[P]JP:PCT/JP00/02209.
    [133]李妮妮.吴国杰,董奋强,何春林.鱼蛋白高吸水树脂对柑橘涂膜保鲜效果的研究[J].食品工业科技,2009,30(5):304-306.
    [134]廖列文,崔英德,朱文渊.高吸水性树脂在鱼类保鲜中的应用研究[J].食品科学,2002,23(8):241-243.
    [135]赵敏,王兰明.保水剂对切花月季生理变化特征及瓶插寿命的影响[J].安徽农业科学,2007,5(3):6-9.
    [136]刘孟纯,张子德,李华,等.茶多酚对切花月季瓶插寿命和相关抗氧化酶滑行影响的研究[J].河北农业大学学报,2008,31(2):45-48.
    [137]Harms D. J., Meah A. R. Y. Method and composition for preservation of cut flowers[P]. US:5580840,1996.
    [138]柳建良,张晚风,姚金明,等.广东德庆贡柑植物学性状与品质评价[J].广东农业科学,2007,(2):35-36.
    [139]柳建良,丘苑新,郭建华,等.不同采收期对德庆贡柑果实品质及贮藏性能的影响[J].中国南方果树,2007,36(5):10-11.
    [140]柳建良,丘苑新,邹俊祥,等.采后加冰处理对德庆贡柑贮藏性能和果实品质的影响[J].安徽农业科学,2007,35(29):9358-9359.
    [141]柳建良,陆益明·张晚风,等.不同贮藏温度对贡柑采后生理和贮藏品质的影响[J].安徽农业科学,2008,36(5):2035-2036,2084.
    [142]柳建良,丘苑新,何国芝,等.乙烯利和活性炭处理对德庆贡柑采后生理和贮 藏性能的影响[J].安徽农业科学,2008,36(12):4854-4856.
    [143]Olivier P., Gilles T., Audric A. Harvest time and storage conditions of Star Ruby'grapefruit (Citrus paradisi Macf.) for short distance summer consumption[J]. Post. Bio.Tech.,2004,34(l):65-73.
    [144]Mohamed E., Charles W. Coggins J. Growth regulator effects on retention of quality of stored citrus fruits [J]. Sci. Horti.,1991,45(3-4):261-272.[145] Andrea B., Daniel E. V., Ana M. S., et al. Effect of commercial conditioning and cold quarantine storage treatments on fruit quality of "Rouge La Toma" grapefruit (Citrus paradisi Macf.) [J]. Post. Bio. Tech.,2005,35(2):167-176.
    [146]Paolo R., Marisol L. B., Paolo P., et al. Effect of cold storage on vitamin C, phenolics and antioxidant activity of five orange genotypes [Citrus sinensis (L.) Osbeck] [J]. Post. Bio. Tech.,2008,49(3):348-354.
    [147]M. T. Sanchez-Ballesta, M. J. Gosalbes, M. J. Rodrigo, et al. Characterization of a β-1,3-glucanase from citrus fruit as related to chilling-induced injury and ethylene production [J]. Post. Bio. Tech.,2006,40(2):133-140.
    [148]C. Alasalvar, M. Al-Farsi, P. C. Quantick, et al. Effect of chill storage and modified atmosphere packaging (MAP) on antioxidant activity, anthocyanins, carotenoids, phenolics and sensory quality of ready-to-eat shredded orange and purple carrots [J]. Food Chemistry,2005,89(1):69-76.
    [149]柳建良,丘苑新,邹俊祥,等.采后加冰处理对德庆贡柑贮藏性能和果实品质的影响[J].安徽农业科学,2007,35(29):9358-9359.
    [150]Jacek K. D. Superabsorbent materials from shellfish waste-a review[J]. J. Bio. Mat. Res. Part B:Applied Biomaterials,2002,63(3):373-381.
    [151]West H., Westland J. A. Superabsorbent polymer [P]. US:6500947,2002.
    [152]Siller-Jackson A. J. Nonwoven sheet and film containing water absorbent keratin [P]. US:6274155,2001.
    [153]Damodaran S. Carboxyl-modified super absorbent protein hydrogel [P]. US:6310105,2001.
    [154]Rathna G. N. Damodaran S-swelling behavior of protein-based superabsorbent hydrogels treated with ethanol[J]. J. App. Poly. Sci.,2001,81(9):2190-2196.
    [155]Damodaran S. Protein-polysaccharide hybrid hydrogels[P]. US:20040200386, 2004.
    [156]Barone J. R., Schmidt W. F. Nonfood applications of proteinaceous renewable materials [J]. J. Chem. Edu.,2006,83(7):1003-1009.
    [157]Barone J. R., Schmidt W. F. Gregoire N. T. Extrusion of feather keratin [J]. J. App. Poly. Sci.,2006,100(2):1432-1442.
    [158]尹国强,崔英德,陈循军.改性羽毛蛋白接枝丙烯酸高吸水性树脂的制备和吸水性能[J].化工进展,,2008,27(7):1100-1105.
    [159]汪琦翀,朱良均.丝素蛋白/丙烯酸/丙烯酰胺复合吸水材料的吸水与保水性能检测[J].蚕业科学,2009,35(3):661-665.
    [160]张兴英,李齐方.高分子科学实验[M].北京:化学工业出版社,2007.
    [161]柏柳青,刘学明,柏玉莲.聚合物生物降解ASTM测试中的问题及其标准测试方法[J].塑料,1995,24(5):45-48.
    [162]杨惠娣,唐赛珍.降解塑料试验评价方法探讨[J].塑料,1996,25(1):16-22.
    [163]沈洲,韩朔睽,张爱茜.光-生物双降解聚苯乙烯泡沫塑料降解性研究[J].上海环境科学,1998,17(5):40-43.
    [164]郑安平,袁光钰,李国鼎.可降解塑料生物降解性测试方法研究[J].上海环境科学,1998,17(12):49-51.
    [165]吴勇.生物降解塑料及其检测方法[J].塑料,1997,26(4):48-51,35.
    [166]李云政,蔡博伟.塑料生物降解性的试验评价方法[J].塑料,1997,26(3):30-32.
    [167]李宗军,温琼英,王燕.生物降解塑料的降解性试验[J].湖南农业大学学报,1997,23(3):272-274.
    [168]郑家林,孙晓红.相变蓄冷原理及其应用[J].节能,1995,12-16.
    [169]马承银.高吸水树脂在蓄冷材料中的应用研究[J].塑料开发,2000,26(4):1437-1439.
    [170]殷刚,章志超.相变蓄冷材料的选择与相变潜热的测定[J].哈尔滨商业大学学报(自然科学版),2004,20(4):499-501.
    [171]庞林江,王允祥,何志平,等.核磁共振技术在水果品质检测中的应用[J].农机化研究,2006,(8):176-180.
    [172]Chaughule R. S., Mali P. C., Patil R. S. et al. Magnetic resonance spectroscopy study of sapota fruits at various growth stages [J]. Inn. Food Sci & Eng Tech. 2002, (3):185-190.
    [173]赵军,王维民.利用核磁共振对水的研究[J].山东轻工业学院学报,1996,10(3):25-27.
    [174]付兴虎,付广伟,毕卫红.近红外光谱技术在水果品质无损检测中应用的研究与现状[J].红外,2006,27(3):33-37.
    [175]Wang B. G., Wang J. H., Liang H.2,4-dichlorophenoxyacetic acid reduced chilling injury in mango fruit by 2,4-dichlorophenoxyacetic acid and the antioxidant response [J]. Postharvest Biology and Technology.2008,48 (2): 172-181.
    [176]Goldman R., Anthony M. F., Coggins C. W. The efficacy of five forms of 2,4-D in controlling preharvest fruit drop in citrus [J]. Sci. Horti.,1999,81 (3):267-277.
    [177]汪永国,陈道茂.我国柑桔贮藏病害的发生和近期防腐保鲜技术的进步与问题[J].中国果品研究,1996,(4):4-7.
    [178]Wood J. C. Citrus fix plant growth regulator [J]. US:20460,2003.
    [179]任志华,李玲.2,4-D处理罗岗甜橙果实后的降解[J].华南师范大学学报,2007,(03):104-108.
    [180]朱淮武.有机分子结构波谱解析[M].北京:化学工业出版社,2005,62-72,248-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700