用户名: 密码: 验证码:
利用工业废弃物合成选矿药剂及其在铜铅锌铁硫化矿浮选中的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜、铅、锌作为关系国计民生的主要金属矿产品,可用于工农业生产的诸多领域。随着经济的发展,铜、铅、锌矿产资源得到大规模开采利用,使得资源量日益紧缺,矿石的处理难度日益加大,尤其是铜铅、铜锌矿物的浮选分离更加困难;同时,人们开始对环境保护、资源利用和降低能源消耗越来越重视。为此,开发低成本、高效的药剂,实现复杂多金属矿的有效分离有着非常重要的意义。本文以工业废液杂醇油和纸浆废液为原料合成了捕收剂杂醇黄药和抑制剂LSC、FCLS,并通过浮选实验、红外光谱分析、吸附量测定、动电位测试以及电化学测试,考察了黄铜矿、黄铁矿、方铅矿和铁闪锌矿在不同捕收剂和抑制剂体系中的浮选行为及作用机理。
     浮选试验结果表明:丁黄药作捕收剂时,在pH 2~10的范围内,四种矿物均具有良好的可浮性;杂醇黄药作捕收剂时,四种矿物也均具有良好的可浮性。LSC作抑制剂时,在pH 2~12范围内,黄铁矿受到强烈的抑制,黄铜矿的浮选几乎不受影响,方铅矿和铁闪锌矿受到微弱的抑制,说明LSC可以选择性抑制黄铁矿。FCLS作抑制剂时,在整个实验pH范围内,方铅矿和铁闪锌矿都受到强烈的抑制;pH〈3时,FCLS对黄铜矿和黄铁矿有很好的抑制效果,当pH>3, FCLS抑制能力较弱,FCLS对黄铜矿和黄铁矿的抑制能力随pH的增大有所降低。丁黄药作捕收剂,FCLS作抑制剂时,在较低的矿浆电位下黄铜矿和黄铁矿的可浮性较好,而方铅矿和铁闪锌矿的可浮性在实验矿浆电位范围内都很差,说明在较低的矿浆电位下可能实现黄铜矿、黄铁矿与方铅矿和铁闪锌矿的分离。
     采用杂醇黄药浮选平江铜铅锌矿石,与丁黄药相比发现,杂醇黄药对铅的捕收能力强于丁黄药,但对铜的捕收能力弱于丁黄药。FCLS与重铬酸钾相比,对铜铅分离效果好,并且对环境几乎没有影响,因此可以代替重铬酸钾实现铜铅分离。
     丁黄药在四种矿物表面的吸附发生在较宽的pH范围;LSC和FCLS在矿物表面吸附量的趋势与矿物浮选行为一致;FCLS在四种矿物表面吸附量大小顺序为:铁闪锌矿>方钳矿>黄铁矿>黄铜矿。ζ-电位测定表明,黄药的加入使矿物表而ζ-电位更负,表明黄药在矿物表而发生了吸附;LSC和FCLS的加入,矿物表面电位进一步降低,说明这两种药剂也在矿物表而发生了吸附。
     红外光谱分析发现,黄铁矿与黄药作用,表面疏水产物为双黄药,黄铜矿、方铅矿和铜活化的铁闪锌矿与黄药作用,表面产物为黄原酸盐;黄铜矿、黄铁矿和方铅矿与LSC作用后,矿物表面出现明显的LSC吸收峰,说明LSC在矿物表面发生了吸附;矿物与黄药及LSC混合药剂作用后,LSC与黄药在矿物表面出现竞争吸附。黄药在黄铜矿表面的吸附强于LSC,而在黄铁矿和方铅矿、铁闪锌矿表面,LSC吸附强于黄药。黄铜矿、黄铁矿与黄药和FCLS混合药剂作用后,黄原酸铜和双黄药特征峰仍然存在,出现微弱的FCLS特征峰。方铅矿和铁闪锌矿与黄药和FCLS混合药剂作用后,黄原酸盐特征峰明显减弱,并且出现明显的FCLS特征峰,说明FCLS与黄药之间存在竞争吸附,FCLS对矿物的抑制是通过阻止捕收剂在其表面吸附。
     XPS结果表明,与FCLS作用后,方铅矿表面Pb和S存在的化合态没有发生改变,但是峰的强度明显减弱,FCLS在方铅矿表面发生罩盖。黄铜矿与FCLS作用后,表面铜和铁的化合态也没有发生改变,峰的强度略有降低,说明FCLS在黄铜矿表面吸附较弱。
     循环伏安曲线研究表明,黄铜矿与FCLS作用后,黄铜矿氧化还原峰位置没有发生变化,氧化电流有所降低,说明FCLS在黄铜矿表面发生罩盖使得其表面电阻增大。黄药与FCLS同时存在时,黄铜矿优先与丁黄药发生电化学反应,因此,FCLS存在时,黄铜矿仍然可浮。FCLS与方铅矿作用后,方铅矿表面氧化还原反应没有发生变化,FCLS的抑制作用可归因于其化学吸附。
     黄铁矿与LSC及丁黄药作用的循环伏安曲线表明,无论是在LSC溶液中,还是在LSC和BX的混合溶液,黄铁矿伏安曲线几乎重合,表明有LSC存在时,捕收剂和黄铁矿表面的电化学反应不能发生,LSC与黄铁矿优先发生电化学反应。
     极化曲线研究表明,FCLS的存在对方铅矿表面电化学反应类型没有影响,只是改变其反应电流。FCLS对方铅矿的抑制作用是由于FCLS在方铅矿表面罩盖所致。
Copper, lead and zinc, as main mentallic minerals, can be used for industrial and agricultural fields. With the development of economy, the extensive exploitation and utilization of copper, lead and zinc mineral resources cause the shortage of resource, which increase the difficulty to separate the minerals, especially the separation of copper-lead, copper-zinc minerals. Simultaneously, the enviromental protection and the reduction of energy consumption have being drawn much more attention. Consequently, it is very important to exploit low-cost and high performance reagents to effectively separate complex polymetallic mineral. In this study, fusel xanthate collector and lignosulfonate calcium (LSC), ferric chromium lignin sulfonate (FCLS) depressants were synthesized from fusel oil and paper pulp effluent. Flotation behavior and mechanism of chalcopyrite, pyrite, galena and marmatite in the presence of different collectors and depressants have been studied based on flotation tests, FTIR analysis, adsorption measurements, X-ray Photoelectron Spectroscopy (xps) and electro-chemical measurements.
     Flotation results showed that chalcopyrite, pyrite, galena and marmatite exhibited very good flotation response in pH 2-10 range by using butyl xanthate, fusel xanthate as collector and remained good floatable. Chalcopyrite exhibited good floatability while pyrite was inhibited extensively in pH 2~12 using LSC as a depressant, galena and marmatite were slightly inhibit, indicated that LSC has selectively depress for pyrite. The float of galena and marmatite were intensively restrained in wider pH range when FCLS used as depressant, chalcopyrite and pyrite was slightly depressed in a wide pH region and its recovery increased as the pH increased, indicated FCLS could be used to separate the chalcopyrite-galena and chalcopyrite-marmatite. The floatability of chalcopyrite and pyrite is better at lower pulp potential, while the floatability of galena and marmatite is very poor in wider potential range. It indicates that the flotation separation of chalcopyrite, pyrite from galena and marmatite may be possible at lower pulp potential.
     Batch flotation tests for Pingjiang copper-lead-zinc ore have been conducted. The results showed that in contrast to butyl-xanthate, flotation by fusel xanthate have better collecting capability for lead, but for copper was reverse. It is better for FCLS to seperate copper from lead than potassium dichromate, and it have hardly influence on environment. So FCLS can replace potassium dichromate to separate copper and lead.
     The adsorption of butyl xanthate on chalcopyrite, pyrite, galena and marmatite can take place in winder pH region. The adsorption of LSC and FCLS on minerals surface is corresponding to their flotation behavior. The adsorption density of FCLS on four sulfides minerals surface decreased according to the following order:marmatite>galena>pyrite> chalcopyrite. Zeat potential measurements showed that the addition of xanthate and LSC, FCLS make the zeta potential of minerals more negative indicated the adsorption of the collector and depressant on those four sulfide minerals.
     The formation of dixanthogen for BX has been observed on pyrite by FTIR. Xanthogenate is formed after the interaction of xanthate with chalcopyrite, galena and marmatite activated by copper ion. While obvious absorption peak of LSC appears on the surfaces of chalcopyrite, pyrite and galena interacted with LSC, which indicates that adsorption takes place on the surface of these minerals when interacted with LSC. Competitive adsorption emerges on the surfaces of minerals when interacted with the mixture of xanthate and LSC. The adsorption of xanthate is stronger than that of LSC on the surface of chalcopyrite, while the case is opposite on the surfaces of pyrite, galena and marmatite. When chalcopyrite, pyrite interacted with the mixture of xanthate and FCLS, characteristic peaks of xanthated cupric and dixanthogen still exit but that of FCLS does not. There is evident characteristic peaks of FCLS while characteristic peaks of xanthogenate become weaken when galena and marmatite were interacted with the mixture of xanthate and FCLS, which shows that FCLS and xanthate interactes with minerals by competitive adsorption.
     The XPS results shows that compounds of Pb and S on the surface of galena do not changes after interacted with FCLS, but the intensity of adsorption peak decreases sharply because of the covering produced when FCLS interacts on the surface of galena. When chalcopyrite interacted with FCLS, the compounds of Cu and Fe do not change also but the peak intensity decreased a little, which indicates the adsorption of FCLS on the surface of chalcopyrite is weak.
     Cyclic voltamnogram measurements showed that the postions of redox peaks don't change and the current of oxidation is reduced. This indicates that FCLS covering on the surface of chalcopyrite leads to the increase of its surface resistence. When xanthates and FCLS coexist, chalcopyrite interacts with xanthate electrochemically in advance to FCLS. So chalcopyrite is still floatable even with FCLS. The surface redox reactions of galena don't change when FCLS interacted with galena, the inhibition of FCLS can be arributed to its chemical adsorption.
     The polarization curves show that FCLS has no influence on electrochemical reaction type of surface of galena but change its current. The inhibition of FCLS to galena is due to FCLS covering over galena surface.
引文
[1]方振鹏,胡岳华,戴晶平,等.缅甸某铅锌硫化矿选矿工艺试验研究.国外金属矿选矿,2004,(1):28-30
    [2]高崇峰,周源.某难选铅锌矿石浮选分离新工艺试验研究.江西有色金属,2003,17(3):24-27
    [3]磨学诗,黄伟中,张雁生,等.提高多金属硫化铅锌矿浮选指标的研究.有色金属(选矿部分),2007,(1):9-12
    [4]张锦林.小铁山多金属矿选矿新工艺试验研究.甘肃冶金,2008,30(6):14-18
    [5]叶雪均,魏宗武,钟常明.某低品位铅锌分离无氰工艺的研究.矿业工程,2004,(3):27-29
    [6]陈波.大厂铅锌分离浮选氰化钠抑制机理研究及新药剂的开发:[硕士学位论文].南宁:广西大学,2005
    [7]李正要,王玲.某铅锌多金属矿铅锌分离试验研究.金属矿山,2009,(7):53-57
    [8]林美群,魏宗武,莫伟,等.广西某难选铅锌矿石铅锌分离试验研究.金属矿山,2007,(10):72-74
    [9]陈锦全,魏宗武,陈哗.越南某难选铅锌矿石浮选分离试验研究.矿业研究与开发,2008,28(6):44-46
    [10]王恒峰,李兵容.川西某铅锌矿选矿试验研究.中国矿业2007,(12):
    [11]马晶,任金菊,原连肖.某难选多金属硫化矿浮选分离试验研究.有色金属(选矿部分)2008,(3):8-11
    [12]林美群,魏宗武,陈建华,等.新型抑制剂DZ在铅锌分离中的试验研究.矿产保护与利用,2008,(1):30-32
    [13]邱廷省,罗仙平,陈卫华,等.提高会东铅锌矿铅锌选矿指标的试验研究.金属矿山,2004,(9):34-36
    [14]陈家模.多金属硫化矿浮选分离.贵阳:贵州科技出版社,2001.91
    [15]罗仙平,王淀佐,孙体昌,等.某铜铅锌多金属硫化矿电位调控浮选试验研究.金属矿山,2006, (6):30-34
    [16]杨金林,张红梅,谢建宏,等.铜铅分离试验研究.矿业快报,2005,(8)15-16
    [17]刘冬明,方文.无毒抑制剂铜铅分离浮选的研究.冶金矿山设计与建设,2001,33 (3) : 6-9
    [18]艾光华,朱易春,魏宗武.组合抑制剂在铜铅分离浮选中的试验研究.中国矿山工程,2005,34(5):11-12,16
    [19]陈建华,冯其明,卢毅屏.新型铜铅分离有机抑制剂ASC的研究.矿产保护与利用,2000, (5):39-42
    [20]李江涛,库建刚,黄加能.亚硫酸钠在铜铅分离浮选中的应用.中国矿业,2007,16(10):74-76
    [21]王中生,郭月琴.CMC在铜铅分离浮选中的应用.矿产保护与利用,2002,(1) : 30-32
    [22]邬顺科,戴晶平,刘运财.易浮难分离的铜铅锌硫化矿石的浮选工艺优化研究.国外金属矿选矿,2006, (10):21-24
    [23]于雪.铜锌硫化矿难以分离的可能原因及解决途径.国外金属矿选矿,2004,(9):4-8
    [24]邱廷省,邱仙辉.铜锌硫化矿浮选分离技术的研究与进展.世界有色金属,2009,(2):28-31
    [25]肖巧斌,历平,王中明.西藏某铜铅锌多金属矿选矿研究.有色金属(选矿部分),2008, (2):1-5
    [26]尹江生,贺锐岗,沈凯宁.铜铅锌铁矿选矿工艺流程研究.有色金属(选矿部分),2007, (1):1-5
    [27]黄锦庆.广西某高砷铜锌矿选矿工艺研究.有色金属(选矿部分),2007,(3) : 18.21
    [28]景世妍.铜锌矿选矿试验研究与生产实践.甘肃冶金,2003,25(B12):34-37
    [29]叶雪均,张亚娟,刘军.某钨锡矿枱浮中尾矿铜锌浮选试验研究.中国钨业,2006,21(6):23-24
    [30]吴熙群.铜锌铁多金属矿石分选.矿冶,1994,(3):39-45
    [31]江冠男,孙体昌,纪军.复杂多金属银铅锌矿渣选矿研究.有色金属(选矿部分),2007, (1):20-23
    [32]胡为柏.浮选.北京:冶金工业出版社,1983
    [33]陈建华,冯其明.铜硫浮选分离技术进展.矿产保护与利用,1997,4:17-21
    [34]李崇德,孙传尧.铜硫浮选分离的研究进展.国外金属矿选矿,2000,(8):2-7
    [35]周源.低碱介质铜硫分离技术的研究.矿产综合利用,1999, (3):1-5
    [36]欧乐明,冯其明,陈建华,等.低碱度铜硫分离新工艺工业应用.湖南有色金属,2001,17(2):9-11
    [37]黄崇惠,刘建国,尹启华,等.低碱度铜硫分离新工艺的工业应用.矿产保 护与利用,1998, (1):34-36
    [38]刘智林,许方.低碱度下组合抑制剂对易浮黄铁矿的抑制机理研究.矿冶工程,2005,25(5):33-35
    [39]B·A·伊格纳特金娜.用改性的二硫代磷酸盐浮选铜、铁、锌和金的硫化矿物.国外金属矿选矿,2006,(6):15.17
    [40]N·N·马克西莫夫.在莎菲亚诺夫斯克矿床铜-锌矿石浮选工艺制定时应用有效地药剂.国外金属矿选矿,2006,(2):25.28
    [41]K·M·阿松奇克.在盖伊斯克铜锌矿石浮选时提高铜精矿质量[J].国外金属矿选矿,2007,(9):42-43
    [42]万玲.阿舍勒铜矿选矿技术进步.有色金属(选矿部分),2006,(5):12-16
    [43]王淀佐.浮选剂的作用原理及应用.北京:冶金工业出版社,1982.
    [44]胡锦华.国外无氰浮选现状.国外金属矿选矿,1990,(10):35-42
    [45]朱建光.浮选药剂.北京:冶金工业出版社.1993.
    [46]张剑峰.新型有机抑制剂的合成及结构与性能关系研究.长沙,中南大学博士学位论文,2002
    [47]林强.微型浮选药剂合成及结构与性能关系研究.长沙:中南工业大学博士学位论文,1989
    [48]蒋玉仁,周立辉,薛玉兰.新型有机小分子抑制剂DPS的性能研究.有色金属,2000,52(4):33.36
    [49]冯其明,陈建华.硫化矿浮选分离有机抑制剂研究进展.国外金属矿选扩1998,(4):12-15
    [50]Kimble K B, Bresson C R, Mark H W. Trithiocarbonates as depressants in oreflotation. U.S. US 4,650,568(1987)
    [51]Kimble K B, et al. Alkali carboxyalkyl dithiocarbamates and their use as ore flotation reagents. U.S. US 4,554,108(1985)
    [52]Klimpel R R, Hansen R D, Fazio M J. Pyrite depression during flotation of using sulfur-containing amines. U.S.:US 4,826,588(1989)
    [53]Kitchener J A. Flocculation in mineral processing. In:K J Ives (Editor).The Scientific Basis of Flocculation. Sijthoff&Noordhoff, Alphen a/d Rijn, 283-328
    [54]吴永云.淀粉在选矿工艺中的应用.国外金属矿选矿11999,(11):26-30
    [55]刘亚辉,孙炳泉.赤铁矿的正-反浮选研究.金属矿山,2004,(1):39-41
    [56]李海普,胡岳华,蒋玉仁,等.变性淀粉在铝硅矿物浮选分离中的作用机理.中国有色金属学报,2001,11(4):697-701
    [57]刘润清.新型有机抑制剂对铅锑锌铁硫化矿浮选分离影响的研究:[硕士学位论文].长沙:中南大学,2006.6
    [58]张剑峰,胡岳华,邱冠周.浮选有机抑制剂研究的进展.有色矿冶,2002,16(2):14-17
    [59]赵军伟,陈建华.硫化矿浮选分离有机抑制剂研究的进展.矿产保护和利用,1998, (2):32-36
    [60]梁经冬.腐殖酸钠分离浙江龙泉铜铅混合精矿的研究.矿冶工程,1985,(2): 21-24
    [61]陈建华,冯其明,欧乐明,等.低碱度铜硫浮选分离新型有机抑制剂应用研究.有色金属,1997,49(4):29-33
    [62]陈建华,冯其明.新型有机抑制剂CTP对硫化矿的抑制性能.湖南有色金属,1995,11(6):29-30
    [63]齐丁丁.用聚丙烯酸钠分离黄铜矿和方铅矿.矿冶工程,1991, (3):32-35
    [64]王晖,邵青.我国水污染的防治及其相关问题的思考.湖南师范大学自然科学学报,2005,28(1):84-87
    [65]陈志恺.中国水资源的可持续利用问题[N].中国气象报,2004.
    [66]张锐.中国水污染的沉重报告.中外企业文化,2007,(9):12-15
    [67]全国环境统计公报,www.cache.maodi.com
    [68]Watanabe Y., Shimada Y., Sugihara A., et al. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase.Journal of the American Oil Chemists' Society.2000,77 (4):355-360
    [69]冯忠厚.酒精副产物——杂醇油的开发利用.广西化工,1999,28(4):36-38
    [70]杂醇油开发前景好.化工生产与技术,2004,11(1):39
    [71]Dormo N., Belafi-Bako K., Bartha L., et, al. Manufacture of an environmental-safe biolubricant from fusel oil by enzymatic esterification in solvent-free system. Biochemical Engineering Journal,2004,21(3):229-234
    [72]张嫦,杂醇油的利用及其深加工.西南民族学院学报(自然科学版),2001,27(4): 440-442
    [73]De Castro H.F., Moriya R.Y., Oliveira P.C., et al. Fusel oil as precursor for aroma generation by biotransformation using lipase:scientific note. Applied Biochemistry and Biotechnology,1999,77-79:817-826
    [74]Welsh F.W., Williams R.E., Lipase mediated production of flavor and fragrance esters from fusel oil. Journal of Food Science.1989,54 (6):1565-1568
    [75]A. O zgulsun, F. Karaosmanoglu, Applied Biochemistry and Bio- technology, 1999,7:83-89
    [76]A. Ozgulsun, F. Karaosmanoglu, M. Tuter, JAOCS 77 (2000):105-110
    [77]市场了望:杂醇油可大力开发.技术与市场,2000,5:6
    [78]华南工学院等.制糖工业分析.北京:轻工业出版社,1980.324-331
    [79]陈有为,李绍兰等.甘蔗糖蜜酒精废液混菌发酵菌体蛋白研究.工业微生物,1996(2):13-16
    [80]赵吉友,等.从杂醇油中提取各类醇.安徽化工.1992(1):30-32
    [81]吴大为.杂醇油分离异戊醇的研究.信阳师范学院学报(自然科学版),1994,7(4) : 402-406
    [82]谢文化,杂醇油的综合开发利用研究进展.甘蔗糖业,2003,6:27-29
    [83]钱栋英,周金汉.杂醇油的混合酯化与分离.浙江化工,1996,27(4):27-29
    [84]Guvenc A., Kapucu N., Kapucu H.. Enzymatic esterification of isoamyl alcohol obtained from fusel oil:Optimization by response surface methodolgy. Enzyme and Microbial Technology,2007,40 (4):778-785
    [85]Patil A. G., Koolwal S. M., Butala H. D.. Fusel oil:composition, removal, andpotential utilization. Internation Sugar Journal.2002,104 (1238):51-58
    [86]朱继生.新型甲基异戊基复合黄药研制及其浮选性能评价.有色金属(选矿部分),2006,(5):47-49
    [87]李润科.杂黄药选铜工业试验.有色金属(选矿部分),19813,(2):57-58
    [881沈阳冶金选矿药剂厂研究所选矿组.混基黄药的浮选效果-有色金属(选矿部分),1983,(1): 59-60
    [89]吴庆胜,陈龙.制浆造纸废水的分类处理.黑龙江造纸,1999,2:38-40
    [90]胡杰,邓宇.草浆黑夜的处理方法与回收应用新技术.西南造纸,2006,35(4):27-29
    [91]何争光,刘军深,曹书霞,等.废纸制浆造纸废水的治理实例.中国给水排水,2004,20(1):78-80
    [92]李燕,胡亮.制浆造纸废水的处理工艺.江苏煤炭,2003, (1):76-78
    [93]闫晓怀,刘兴旺,候杰.碱法麦草制浆造纸废水分类处理技术.环境保护,2002,(7):17-19
    [94]伍健东.制浆造纸废水的生物处理技术.造纸科学与技术,2002,21(1):34-38
    [95]闫冰,高扬,陈港.制浆造纸工业废水的处理方法及其选择.广东造纸,2000, (3):37-40
    [96]梁拴粉,张安龙.制浆造纸废水处理技术.西南造纸,2006,35(3):50-52
    [97]杨玲;李文俊,高焱仁.制浆造纸废水生物技术处理及其研究进展.湖南造纸,2008, (1):30-32
    [98]楚光诣,胡力华,刘莉,等.制浆造纸废水生物处理的研究进展.西南造纸,2006,35(5):15-17
    [99]薛建军,何娉婷,狄挺.膜技术在处理造纸黑液污染中的应用.膜科学与技术,2005,25(4):74-78
    [100]熊维.治理造纸黑液走综合利用之路.中国西部科技,2005, (6):61
    [101]亢树新,刘丰良.造纸黑液的综合利用技术.科技情报开发与经济,2004,14(11):206-207
    [102]林巧佳,刘景宏,杨桂娣,等.用硫酸盐纸浆黑液制木材胶粘剂.中国造纸学报,2005,20(1):106-110
    [103]林巧佳,刘景宏,杨桂娣,等.纸浆废液中有机物资源的利用.应用生态学报,2005,16(4):698-702
    [104]王宏斌.造纸黑液资源化全回收技术的应用.山西化工,2005,25(2):76-78.
    [105]何洁,刘秉钺.制浆黑液中糖类物质的回收利用.黑龙江造纸,2004,(3):24-26.
    [106]曾育才,张学先,刘小.造纸黑液木质素及其综合利用.广东化工,2005,(10):11-14.
    [107]王培录,朱学存,李爱萍.造纸废水综合利用研究.宁夏农林科技,2008,(2) : 18-19
    [108]赵天波,李凤艳,以造纸废液为主要原料的重油乳化剂的研究.石油炼制与化工,2001,32(5):29-32
    [109]王义镛,利用亚硫酸纸浆废液生产饲料酵母.天津造纸,2000,(4):30-31
    [110]朱玉霜,朱建光.浮选药剂的化学原理[M].长沙:中南工业大学出版社,1987,16-17
    [111]施先义,覃雪媚,邓钟燕.丁基钠黄药合成工艺的改进.化工技术与开发,2006,35(4):47-48
    [112]Lindberg Johan J., Kuusela T. A., Kalle L.. Specialty polymers from lignin [M] Lignin Property and Materials. Washington D C:ACS symposium series, 1989.190-204
    [113]Yasuyuki M., Seiichi Y.. Reactivity of a condensed-type lignin model compound in themannich reaction and p reparation of cationic surfactant from sulfuric acid lignin. J Wood Sci,2003,49:166-171
    [114]Chen Chen-Loung, Ewellyn A., Capanema H.. Reaction mechanisms in delignification of pine kraft pulp with hydrogen peroxide usingMn (IV)-Me DTNE as catalyst. Journal of Agriculture Food Chemistry,2003,51: 1932-1941
    [115]Adler E., KralM H. E.. Method of producing water soluble products from black liquor lignin:US.2680113[P].l954-06-01
    [116]Dilling P. Dye stuff composition:disperse or vat dye and lignin sulphonate:US,4551151 [P].1985-11-05
    [117]Sokolova I.V., Paramononva L.L., Chudakov M.L.. Sulfonate of lignin and its model compounds by sulfite in the presence of oxygen. Khim Drev,1976,4:117-118
    [118]梁文学,邱学青,杨东杰,等.麦草碱木质素的氧化和磺甲基化改性.华南理工大学学报(自然科学版),2007,35(5):117-121
    [119]Mielczarski J. The role of impurities of sphalerite in the adsorption of ethyl xanthate and its flotation. International Journal of Mineral Processing, 1986,16(3-4):179-194
    [120]张芹.铅锑锌铁硫化矿电化学浮选行为及表面吸附的研究:[博士学位论文].长沙:中南大学,2004
    [121]Barbara S.. Infrared spectroscopy:fundamentals and applications. Wiley Press Ltd,2004.74-78,85-86
    [122]Fullston D., Fornasiero D., Ralston J.. Zeta potential study of the oxidation of copper sulfide minerals. Colloids and Surfaces. A:Physicochemical and Engineering Aspects,1999,146 (1-3):113-121
    [123]Mustafa S., Hamid A., Naeem A.. Xanthate adsorption studies on chalcopyrite ore. International Journal of Mineral Processing,2004,74 (1-4):317-325
    [124]Lopez Valdivieso A., Celedon Cervantes T., Song S., et al. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector.Minerals Engineering,2004,17 (9-10):1001-1006
    [125]Todd E. C, Sherman D. M., Purton J. A.. Surface oxidation of pyrite under ambient atmospheric and aqueous (pH 2-10) conditions:lectronic structure and mineralogy from X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta,2003,67 (5):81-893
    [126]Miller J.D., Du Plessis R., Kotylar D. G., et al.The low-potential hydrophobic state of pyrite in amyl xanthate flotation with nitrogen. International Journal of Mineral Processing,2002,67 (1-4):1-15
    [127]Valdivieso Lopez A., Ojeda Escamilla C, Song S, et al. Adsorption of isopropyl xanthate ions onto arsenopyrite and its effect on flotation. International Journal of Mineral Processing,2003,69 (1-4):175-184
    [128]Fornasiero D., Li F S, John R., et al. Oxidation of Galena Surfaces II: Electrokinetic Study. Journal of Colloid and Interface Science,1994, 164,(2):345-353
    [129]Fornasiero D., Ralston J.. Effect of surface oxide/hydroxide products on the collectorless flotation of copper-activated sphalerite. International Journal of Mineral Processing,2006,78 (4):231-237
    [130]Shchukarev A.V., Kravets I.M., Buckley A.N., et al. Submonolayer adsorption of alkyl xanthates on galena. International Journal of Mineral Processing, 1994,41(1-2):99-114
    [131]Laajalehto K., Nowak P., Pomianowski A., et al. Xanthate adsorption at PbS/aqueous interfaces:comparison of XPS, infrared and electrochemical results. Colloids Surfaces.1991,57 (2):319-333
    [132]Kartio I., Laajalehto K., Suoninen E.. Characterization of the ethyl xanthate adsorption layer on galena (PbS) by synchrotron radiation excited photoelectron spectroscopy. Colloids and Surfaces, A:Physicochemical and Engineering Aspects.1999,154 (1-2):97-101
    [133]Wadsworth M E,Duby P. In:Somasundaran P ed,Advances in mineral Processing.Proceedings of a symp. Honoring Abiter N on his 75th birthday. New Orleans,1986:216-227
    [134]顾帼华.硫化矿磨矿-浮选体系中的氧化-还原反应与原生电位浮选:[博士学位论文].长沙:中南工业大学,1988,7
    [135]Esra B., Zafir E., Dee B.. Adsorption behaviour of xanthate and dithiophosphinate from their mixtures on chalcopyrite. Minerals Engineering, 2007.20(10):1047-1053
    [136]Taki G., Cahit H., Gulsun G., et al. Electrochemical behaviour of chalcopyrite in the absence and presence of dithiophosphate. International Journal of Mineral Processing,2005.75 (3-4):217-228
    [137]Pang J., Chander S.. Oxidation and wetting behaviour of chalcopyrite in the absence and presence of xanthates. Minerals Metall,1990,149-155
    [138]Tolley W., Kotlyar D., Van Wagoner R.. Fundamental electrochemical studies of sulfide mineral flotation. Minerals Engineering.1996,9(6):603-637
    [139]覃文庆.硫化矿颗粒的电化学行为与电位调控浮选技术.北京:高等教育出版社,2001.
    [140]冯其明,陈荩.硫化矿浮选电化学.长沙:中南工业大学出版社,1992:1-2,84-85,77-19,19,154-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700