用户名: 密码: 验证码:
常压等离子体辅助去除磷酸酯淀粉和聚乙烯醇混合浆料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在纺织工业中,淀粉及其改性淀粉、聚乙烯醇(PVA)和聚丙烯酸酯是常用几种浆料。上浆织物必须要经过退浆工序来满足后道加工(染色、印花和后整理)的要求。传统的退浆是利用热的烧碱溶液来完成退浆,但是这种方法产生的废液pH值较高,且废液必须经过漂洗和中和,所以会造成水资源的大量浪费,产生较高的能耗。据有关报道,纺织工业每年排放污水达到9亿多吨。此外,过度的碱液退浆还会造成纤维的损伤。这对环境造成了严重的污染,不符合当今环保的要求,不利于纺织工业的可持续发展。要彻底解决这个问题,需要对原有的纺织后整理工艺路线进行改进。
     等离子体技术与传统化学处理相比,不需要水和化学试剂,大大减少了环境污染和污水处理成本。它是一种环境友好型的技术,同时该处理方法不会对纺织品的主体性能产生影响。作为一种高效的表面改性技术,等离子体技术在纺织品预处理和退浆等方面的应用越来越受到关注因此,将等离子体技术应用到纺织工业的退浆过程中,不仅能大大减少化学药品的用量和污水的排放,还能降低能耗和减少用水量,具有重大的环境效益和经济效益。
     然而,过去大量得研究主要集中在低压等离子体对纺织品的处理方面。低压等离子体需要一个昂贵的真空系统,这样导致其不能对样品进行连续处理。与低压等离子体相比,常压等离子体不需要真空系统,可实现在线的连续化处理样品。此外,常压等离子体中的电子温度要比低压等离子体低得多。因此,常压等离子体特别适合应用到对温度敏感的基体处理。同时,常压等离子体处理能将大量的化学活性基团引入到基体表面,进而改善基体的润湿性能、印染性能、粘结性能等。利用常压等离子体处理纺织品时等离子体和纺织品之间的相互作用与低压等离子的情况是不同的。在常玉下,尤其是喷射式常压等离子体系统,等离子体是在一个喷头中产生后向外喷射而形成等离子体射流,然后和被处理基体接触完成处理过程。因此,喷头与基体间距离、处理时间、气体成份及流速等因素对处理效果有着显著影响。此外,由于在常压等离子体处理过程中,基体是置于外界大气环境中,会吸收空气中的水分而使材料具有一定的回潮率。水分的存在使得等离子体和被处理基体间的相互作用变得更为复杂,对等离子体的处理效果产生一定的影响。
     等离子体退浆的研究大多集中在单一的浆料上(如PVA浆料),而对混合浆料及与传统退浆方法相结合退浆的报道较少。因此本课题采用实验室中常压等离子体射流(APPJ)装置,从混合浆料膜到混合浆上浆织物系统地研究了常压等离子体射流预处理对NaHCO3退浆、超声波退浆相结合对织物退浆效果的影响,并探讨了等离子体处理参数和织物含湿量对浆膜刻蚀、表面形态的影响。通过一系列的表面分析测试方法,如扫描电子显微镜(SEM)、院子力显微镜(AFM)以及X射线光电子能谱(XPS)等标面形态和化学分析方法测试了经等离子体处理前后,浆膜表面发生的物理和化学的变化。通过测量浆膜和上浆织物的刻蚀失重率及其退浆率来分析等离子体处理直接去除浆料和对后道退浆效果的影响。通过芯吸高度的变化来表征处理后织物的润湿性。
     首先,本文研究了He/O2常压等离子体处理参数(时间、喷头与薄膜距离和流量)对磷酸酯淀粉和聚乙烯醇(PVA)混和浆料膜表面的刻蚀及形态的影响。研究发现随着处理时间的延长和氧气流量的增加,浆膜的失重率、表面粗糙度和表面积增加,但处理时间超过45s后,失重率的增量放缓。随着喷头与浆膜距离的增加,浆膜的失重率、表而粗糙度和表面积先增加后减小。当处理距离超过6mm,处理效果几乎为0,而当距离为2mm时,处理效果最佳。研究还发现,等离子体处理使得大量的含氧活性基团引入到浆膜表而,提高了浆料的亲水性
     其次,为了研究磷酸酯淀粉和聚乙烯醇(PVA)混和浆膜含湿量对等离子体处理的影响,三组浆膜分别在相对湿度为10%、65%和97%的环境中平衡24小时,对应样品的回潮率分别为3.2%、10.5%和79.2%,然后经等离子体处理不同时间,研究浆膜含湿对等离子体刻蚀的影响。随后研究了浆膜不同含湿量对等离子体退浆效果的影响。原子力显微镜(AFM)测试结果发现,经等离子体处理后,样品表面的粗糙度值均有了明显提高。随着含湿量得增加,粗糙度呈现出先增加后减小的趋势。当处理环境的相对湿度丛10%增加到65%时,浆膜表面粗糙度从16.01mm增加到16.62nm。当处理环境相对湿度增加到97%时,浆膜表面粗糙度降低到13.59nm。失重率结果表明,随着含湿量得增加,经等离子体处理后,失重率增加,但与粗糙度结果相比,可以看出,在一定条件下,两者并没有直接的联系,也就是说等离子体处理过程中,高的刻蚀率不一定能产生较粗糙的基体表面。退浆结果显示,随着等离子体处理时间的延长,所有样品的退浆率增加。并且,随着含湿量的增加,退浆率是在降低的。当在10%RH下处理,样品经过20min退浆的退浆率最大,达到96%左右。而当相对湿度达到最大值97%时,样品的退浆率最小,为90%左右。
     为了研究等离子体处理对传统化学退浆的影响,利用He/O2常压等离子体射流(APPJ)对混合浆料上浆的织物进行预处理,随后在NaHCO3溶液中进行退浆。AFM测试结果表明,经等离子体处理后,上浆织物表而变得粗糙。未处理样品和等离子体处理15s、45s后,表面平均粗糙度分别为2.2,8.9和26.8nm,粗糙度均方根分别为2.8,11.4和33.1nm。XPS测试表明,经等离子体处理后,上浆织物表面的化学成分发生了显著变化。样品表面的氧含量显著增加,说明大量的含氧活性基团引入到表面,增加了浆料的亲水性。退浆率结果显示,等离子体预处理大大的提高了NaHCO3退浆的效率.随着等离子体处理时间的增加,碱退浆率显著增加。对于未经等离子体处理的样品,碱退浆率仅为77%,而经等离子体处理45s后,随后进行相同工艺的碱退浆,退浆率可以达到95%以上。同时,等离子体预处理可以在一定程度上减小碱退浆的温度,并显著地缩短碱退退浆的时间。
     为了研究等离子体预处理对超声波退浆的影响,利用等离子体对混合浆料上浆的织物进行预处理,随后在超声波环境下进行退浆。随着等离子体处理时间的延长,上浆织物表面的粗糙度增加,并且有大量的亲水极性基因引入到织物表面。退浆试验结果表明,仅仅使用超声波,退浆效果基本没有。但仅通过等离子体处理就可在80℃下获得大约95%退浆率。然而,等离子体与超声波联合退浆,可在较低的温度下实现较高的退浆率。经等离子体处理50s后,再在60℃下经20分钟超声波退浆,退浆率可达到98%以上,并且随着等离子体处理时间的增加,超声波退浆率增加。此外,与仅通过等离子体退浆的试样相比,等离子体和超声波联合退浆的试样的芯吸高度分别增加了9.7%,12.9%,15.1%和10.1%。芯吸高度的增加表明等离子体和超声波联合处理能够有效去除棉织物表面的绝大部分浆料,提高了退浆效率。
     在研究等离子体预处理对传统去除磷酸酯淀粉和聚乙烯醇(PVA)混合浆料后,本论文又研究了等离子体处理对NaHCO3去除涤纶织物上聚丙烯酸酯浆料的影响。AFM测试结果表明,随着等离子体处理时间的增加,聚丙烯酸酯浆料表面粗糙度显著增加。对于未经处理、35s处理和50s处理得薄膜,表面粗糙度(Ra)值分别为0.93,9.15和15.97nm。同时,浆料表面的氧含量也得到了大大提高,大量的亲水性基团C-O-H、 O=C-O在浆料表面生产,提高了聚丙烯酸酯浆料的亲水性。失重率结果显示,随着等离子体处理时间的延长,失重率增加。但当处理时间超过50s后,失重率的增量放缓。退浆结果显示,随着氦/氧气等离子体处理时间的增加,湿退浆的退浆率有了显著提高。经过65s的等离子体预处理,随后在经过5min的湿处理,退浆率可以达到99%以上。然面,在相同的湿退浆条件下,对于没有经过预处理的面料,退浆率仅有28%左右。此外,退浆率随着退浆温度和时间的增加面增大。等离子体处理不能明显的降低湿退浆温度,但能显著地减少退浆时间。
In the textile industry, many starches and modified starches, polyvinyl alcohol (PVA) and polyacrylate are widely used as sizing agent for fabric. But sized fabrics have to be desized to meet the subsequent processing (dyeing, printing and finishing). In conventional desizing processes, the sized fabrics are washed with hot water and NaOH to remove size agents. Because of the high pH values in this method, the treatment should be followed by intensive rinsing and neutralizing, which means that large amount of water and energy is also consumed. The status shows that about900millions tons of waste water is used every year in textile industry. Moreover, the aggressive scouring treatment conditions frequently damage the fiber. Obviously, this desizing process is unable to meet the requirement of environmental protection and quite adverse to the sustainable development of textile industry. Therefore, in order to deal with the problems, the processing route of desizing and finishing needs to be improved.
     Compared with the conventional chemical processes, plasma treatment does not require the use of water and chemicals, resulting in the drastic reduction in pollutants and a corresponding cost reduction for effluent treatment. Plasma treatment is an environmentally friendly technique without affecting the bulk properties of textiles. As a high-efficiency surface modification technology, more and more researchers pay close attention to the application of plasma treatment in the pre-treatment and finishing of textiles. If plasma technology can be applied in textile desizing process, both chemical agents and wastewater will be significantly reduced. Meanwhile, the consumption of energy and water can be greatly decreased. Therefore, it has great environmental and economical benefits.
     However, previously study mostly focused on the treatment of low-pressure plasma to textiles. The low-pressure plasma involves a vacuum system and thus may not be continuous processes. Compared with low-pressure plasma, the atmospheric pressure plasma treatments do not require a vacuum system and therefore can be applied on-line for substrates. And it is not doubtable that the electron temperature is much lower in the atmospheric pressure plasma in comparison to the typical low-pressure reactor, therefore they are particularly suited to apply to textile processing because most textile materials are heat sensitive polymers. In addition, it is a versatile technique, where a large variety of chemically active functional groups can be incorporated into the textile surface. The possible aims of this are improved wettability, adhesion of coatings, printability, induced hydro-and/or oleophobic properties, changing physical and/or electrical properties, cleaning or disinfection of fiber surfaces etc. But, there is difference in interaction of plasma and textiles between low and atmospheric pressure. At atmospheric pressure, especially for atmospheric pressure plasma jet, plasma is generated in noddle and ejects to form plasma jet, then reaches onto the surface of the materials. So, the plasma treatment parameters, such as the distance between noddle and material, treatemt time, component and flow velocity of gas, etc., influence the plasma treatment effect. Moreover, because the atmospheric pressure plasma treatment is in atmosphere, the substrate material may absorb significant amount of water. The existence of water molecules can lead to a more complicated interaction between active species in plasma and substrate surface
     The previously study of plasma desizing mostly focused on the removal of the single size agent (such as PVA). and up to now, there are few report about plasma desizing blended size and combination of plasma and traditional desizing method. Therefore, the objective of this study is to investigate the influence of plasma-wet treatment on desizing of sized fabrics with blended size agent by atmospheric pressure plasma jet (APPJ), andi studied the influence of plasma treatment parameters and moisture content in fabric on plasma etching and surface morphological of size film. Morphological and chemical changes on the fabric surface are characterized by Scanning Electron Microscope (SEM), Atomic force Microscope (AFM) and X-ray Photoelectron Spectra (XPS), respectively. My measurement of weight loss and percent desizing rate lo discuss and analyse the inlluence of plasma treatment on plasma directly removal of size and on subsequence wet desizing effect. The wettability of desized fabric is characterized by wicking height.
     Firstly, the inlluence of different processing parameters (treatment lime, jet to substrate distance and gas flow rale) on the etching effect and surface morphology of blended size film of phosphate starch and PVA by He/O2atmospheric pressure plasma jet (APPJ). The results show that as the increase of treatment time and O2flow rate, the weight loss, surface roughness and surface area of size film increase. But, after treatment time is over45s, the increment of weight loss decreases. Moreover, the weight loss, surface roughness and surface area of size film increase firstly and then decrease as the jet to substrate distance increases. When the distance is over6mm, there almost are no treatment effect on the surface, but when the distance is2mm, the best treatment effect can be observed. The research results also show that plasma treatment can introduce more oxygen-contained active groups onto the size film surface, which improve the hydrophilcity of blended size.
     Secondly, to investigate the relationship between the absorbed moisture and plasma treatment effect, atmospheric pressure plasma jet (APPJ) is used to treat the blended size film of phosphate starch and PVA with moisture regain (MR) of3.2%、10.5%and79.2%corresponding to10%、65%and97%relative humidity (RH), respectively. Atomic Force Microscope (AFM) result shows that after plasma treatment, the surface roughness of all three group samples obviously increase. As the increase of absorbed moisture, the surface roughness increase firstly and then decrease. When increase the RH from10%to65%. the surface roughness increase from16.01nm to16.62nm. But further increase RH to97%. the roughness is only13.59nm. The weight loss result indicates that the weight loss increase as the increase of absorbed moisture. But compared with surface roughness, there is no direct relation between weight loss and roughness under certain conditions, that is higher etching rate may be not result in rougher surface after plasma treatment. The desizing results show that as the increase of plasma treatment, the percent desizing rale (PDR) increase for the all samples. And the PDR decrease as the increase of absorbed moisture of blended size. When plasma treatment is under10%RH, the PDR is the biggest, about96%. But when RH is97%. the PDR is only about90%.
     To investigate the influence of plasma treatment on conventional wet desizing. the sized fabrics are treated by He/O2atmospheric pressure plasma jet (APPJ). subsequently the treated fabrics are desized by NaHCO3. AFM analysis shows that the surfaces of sized fabrics become rougher after plasma treatment. The Ra values were2.2.8.9and26.8nm and the Rms values were2.8,11.4and33.1nm for untreated, the plasma treated for15and45s. respectively. XPS analysis indicates that the surface chemical composition of sized fabrics is greatly changed after plasma treatment. Compared to the untreated, the oxygen content increased significantly indicating oxygen containing polar groups introduced onto the surface after He/O2plasma exposure, which improves the hydrophilicity of blended size. The desizing results show that plasma pre-treatment significantly improves the NaHCO3desizing effect. As the increase of plasma treatment time, the percent desizing rate of NaHCO3increases. Only about77%PDR could be reached for the untreated fabrics, whereas more than95%PDR was achieved after45s plasma treatment followed by the same NaHCO3desizing process. Plasma pre-treatment can decrease the NaHCO3desizing temperature to some extent, and significantly shorten NaHCO3desizing time.
     To investigate the influence of plasma pre-treatment on ultrasound desizing, the sized fabrics with blended size is treated by APPJ, and subsequently the treated fabric is desized by ultrasound. As the increase of plasma treatment time, the surface of sized fabric becomes rougher, and more oxygen-containing polar groups are introducted onto the surface of fabric. The desizing results show that only ultrasound treatment almost can not remove the size from fabric surface. But, only plasma treatment can observe about95%PDR at80°C. However, the combination of plasma and ultrasound can observe higher PDR at lower desizing temperature. The PDR reached98.3%for the fabrics with50s plasma treatment followed by ultrasound desizing at60°C for20min. And as the increase of plasma treatment time, the PDR of ultrasound treatment increase. Moreover, compared with the samples with plasma treatment only, the relative increase of the capillary height of the fabrics desized by the plasma-ultrasound were9.7%.12.9%.15.1%and10.1%. respectively. The increase of capillary heights indicated that plasma treatment followed by the ultrasound desizing could effectively remove most of the blended size on cotton fabrics
     Finally, the relationship between APPJ and NaHCO3removing polyacrylate sixes from PET fabric is also studied. AFM analysis shows that the surfaces became progressively rougher after the plasma treatment. The Ra values are0.93,9.15and15.97nm for the untreated sample, the plasma treated for35and50s. respectively. And compared to the untreated sample, the O/C ratios for all two plasma-treated fabrics increased dramatically with an increase of treated time suggesting that oxidation occurred and a higher level of oxygen-based functional groups (C-O-H, O=C-O)were formed on the surface exposed to He/O2APPJ. The increase of these polar groups is responsible for the higher hydrophibilily of the polyaerylate size. The weight loss result indicates that the weight loss increased with an increase of plasma treatment time. Hlowever, after50s exposure time, the increment of weight losses slow down. The desizing results show that as the helium/oxygen plasma treatment time increase, the PDR has a significant increase after wet desizing. More than99%PDR was achieved after65s plasma treatment followed by a5min wet desizing, whereas only about28%PDR can be reached for the untreated fabrics. Moreover, the PDR of the all samples increases with the increase of wet desizing temperature and time. Meanwhile plasma treatment can not observably decrease desizing temperature but dramaticlly reduce desizing time.
引文
[1]Claire Tendero. Christelle Tixier. Pascal Tristant, Jean Desmaison. Philippe Leprince. Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B 61 (2006) 2-30
    [2]H.R Yousefi. M. Ghoranneviss. A.R. Tehrani, S. Khamseh. Investigation of Glow Discharge Plasma for Surface Modification of Polypropylene. Surf. Interface Anal. 35(2003) 1015-1017.
    [3]Z.S. Cai, Y.P. Qiu, Y. J. Hwang. C.Zhang. The Use of Atmospheric Pressure Plasma Treatment in Desizing PVA on Ciscose fabries. Journal of Industrial Textiles. 2(2002) 18-27.
    [4]N. Abidi. E. Hequet. Cotton Fabric Graft Copolymerization Using Microwave Plasma. J. Appl. Polym.Sci. 93(2004) 145-154.
    [5]H.Conrads. M. Schmidt. Plasma generation and plasma sources. Plasma Sources Sci. Technol. 9 (2000)441-454.
    [6]N. Braithwaite, Introduction to gas discharges. Plasma Sources Sci. Technol. 9 (2000) 517-527.
    [7]M.I. Boulos, P. Fauchais, E. Pfender, Thermal Plasmas: Fundamental and Applications. Volume Ⅰ, Plenum Press, New York, ISBN: 0-306-44607-3, 1994, 452 pp.
    [8]A. Schu tze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources, IEEE Trans. Plasma Sci. 26 (6) (1998) 1685- 1693.
    [9]J. Salge, Plasma-assisted depositon at atmospheric pressure, Surf. Coat. Technol. 80 (1996) 1 -7.
    [10]J. Rahel, W. Chen, J.R. Roth. The Penetration Depth of Plasma Treatment into Porous Media at Atmospheric Pressure. IEEE International Conference on Plasma Science. 2003, 299.
    [11]J. Park, I. Henins, H.W. Herrmann, G.S. Selwyn, J.Y. Jeong, R.F. Hicks, D. Shim, C.S. Cluing, An atmospheric plasma source, Appl. Phys. Lett. 76 (3) (2000) 288-290.
    [12]陈杰珞.等离子清洁技术在纺织印染中的应用[M].中国纺织出版社,2005,1-3
    [13]Yu. Akishev, S. Kroepke, J. Behnisch, A. Hollander, A. Napartovich, N. Trushin. Proc. of 7th International Symposium on High Pressure Low Temperature Plasma Chemistry. Greifswald, Germany, vol. 2, 2000, p. 481.
    [14]E. Temmerman, C. Leys. Surface modification of cotton yam with a DC glow discharge in ambient air. Surface & Coating Technology. 200 (2005) 686.
    [15]Y.S. Akishev, M.E. Grushin, A.E. Monich, A.P. Napartovich, N.I. Trushkin. One-atmosphere argon dielectric-barrier corona discharge as an effective source of cold plasma for the treatment of polymer films and fabrics . High Energy Chemistry. 37 (2003) 2.S6.
    [16]A.M.Wrobel, M. Kryszewski.W. Rakowski. M. Okoniewski, Z. Kubacki. Plasma Polymerization. Polymer 19 (1978) 90S.
    [17]T.H.C. Costa. M.C. Feitor, C. Alvcs. P.B. ITeirc, C.M. de Bezerra, Effects of gas composition during plasma modification of polyester fabrics. Journal of Materials Processing Technology. 173 (2006)40.
    [18]R. Molina. P. Jovancic. D. Jocic, E. Berlran. Surface characterization of keratin fibres treated by water vapour plasma. Surface and Interface Analysis. 35 (2003) 128.
    [19]G. Uorcia, C.A. Anderson, N.M.D. Brown, Dielectric barrier discharge for surface treatment: application to selected polymers in film and fibre form. Plasma Sources Science and Technology. 12 (2003)335.
    [20]G. Borcia, C.A. Anderson, N.M.D. Brown. Surface treatment of natural and synthetic textiles using a dielectric barrier discharge. Surface & Coating Technology. 201 (2006) 3074.
    [21]C. Cheng, L. Y. Zhang, and R. J. Zhan, Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet. Surface & Coatings Technology, 24(2006) 6659-6665
    [22]T. Oktem, N. Seventekin, H. Ayhan, E. Piskin, Improvement in surface-related properties of poly (ethylene terephthalate)/cotton fabrics by glow-discharge treatment. Indian journal of fibre & textile research. 27 (2002) 161.
    [23]F. Ferrero, C. Tonin, R. Peila, Improving the dyeability of synthetic fabrics with basic dyes using in situ plasma polymerisation of acrylic acid, Coloration Technology. 120 (2004) 30.
    [24]MM. El-Zawahry, N.A. Ibrahim, M.A. Eid, The impact of nitrogen plasma treatment upon the physical-chemical and dyeing properties of wool fabric. Polymer-Plastics Technology and Engineering. 45 (2006) 1123.
    [25]Zaisheng Cai, Yiping Qiu. Dyeing Properties of Wool Fabrics Treated with Atmospheric Pressure Plasmas. Journal of Applied Polymer Science, Vol. 109, 1257-1261 (2008)
    [26]T. Wakida. S. Tokino, S.H. Niu, M Lee. H. Uchiyama, M. Kaneko, Surface characteristics of wool and poly (ethylene terephthalate) fabrics and film treated with low-temperature plasma under atmospheric pressure. Textile Research Journal. 63 (1993) 438.
    [27]T.Wakida. S. Cho. S. Tokino. M. Lee. Effect of low temperature plasma treatment on color of wool and nylon 6 fabrics dyed with natural dyes. Textile Research Journal. 68 (1998) 848.
    [28]A. Raffaele-Addamo. L. Selli. R. Barni. C. Riccardi. F. Orsini. G. Polelti. L. Meda. M.R. Massafra. B. Marcandalli. Cold plasma-induced modification of the dyeing properties of poly (ethylene terephthalate) fibers. Applied Surface Science. 252 (2006) 2265
    [29]E. Selli. R. Barni. C. Riccardi. F. Orsini. G. Poletti. L. Mecla, M. R. Massafra. and B. Marcandalli. Cold plasma-induced modification of the dyeing properties of poly(ethylenc terephthalate) fibers Applied Surface Science. 6 (2006) 2265-2275
    [30]M. Radetic, D. Jocic, P. Jovancic, R. Trajkovic,Z.L. Petrovic. The Effect of Low-Temperature Plasma Pretreatment on Wool. Text. Chem. Color. Am. D. 32 (2000) 55.
    [31]J.C.Jin, J.J, Dai, Dyeing behaviour of nitrogen low-temperature glow discharge treated wool. Indian journal of fibre & textile research. 28 (2003) 477.
    [32]D. Jocic, S. Vilchez, T. Topalovic, R.Molina. A. Navarro, P. Jovancic, M.R. Julia. P. Erra. Effect of low-temperature plasma and chitosan treatment on wool dyeing with Acid Red 27. Journal of Applied Polymer Science. 97 (2005) 2204.
    [33]P.X. Riccobono, Plasma treatment of textiles: A novel approach to the environmental problems of desizing. Text. Chem. Color. 5 (1973) 239.
    [34]Z.S. Cai, Y.P. Qiu, C.Y. Zhang, YJ. Hwang, M. McCord, Effect of atmospheric plasma treatment on desizing of PVA on cotton. Textile Research Journao. 73 (2003) 670.
    [35]Z . Cai, Y. Qiu, Y.J. Hwang, C. Zhang, M. McCord, The use of atmospheric pressure plasma treatment in desizing PVA on viscose fabrics. Journal of Industrial Textile. 32 (2003) 223.
    [36]Z.S. Cai, Y.P. Qiu, The mechanism of air/oxygen/helium atmospheric plasma action on PVA. Journal of Applied Polymer Science. 99 (2006) 2233-2237.
    [37]Peng Shujing, Sun Jie, Liu Xiulan, Gao Zhiqiang, Yao Lan, Qiu Yiping. Influence of processing parameters on atmospheric pressure plasma etching and solubility of Polyviny alcohol films. Advanced Materials Research 299-300 (2011) 608-611.
    [38]Shujing Peng, Zhiqiang Gao, Jie Sun, Lan Yao, Yiping Qiu, Influence of argon/oxygen atmospheric dielectric barrier discharge treatment on desizing and scouring of poly (vinyl alcohol) on cotton fabrics. Applied Surface Science. 255 (2009) 9458-9462.
    [39]S. Peng, Z. Gao, J. Sun, L. Yao, C. Wang, Y. Qiu, Influence of absorbed moisture on solubility of Poly(vinylaleohol) film during atmospheric Pressure Plasma jet treatment. Surface & Coating Technology. 204(2010) 1222-1228.
    [40]Shujing Peng. Xiulan Liu, Jie Sun. Zhiqiang Gao,Lan Yao. Yiping Qiu. Influence of absorbed moisture on desizing of poly(vinyl alcohol) on cotton fabrics during atmospheric pressure plasma jet treatment. Applied Surface Science 256 (2010)4103- 4108.
    [41]J.Y. Kang, M. Sarmadi. Textile plasma treatment review : natural polymer-hased textiles. AATCC Review. 4 (2004)28.
    [42]C.W. Kan, K. Chan, C.W.M. Yuen, M.H. Miao, Surface properties of low-temperature plasma treated wool fabrics. Journal of Materials Processing Technology. 83 (1948) 180.
    [43]C.W. Kan, K. Chan, C.W.M. Yuen, M.H. Miao,Effect of Low Temperature Plasma. Chlorination, and Polymer Treatments and Their Combinations on the Properties of Wool Fibers. Textile Research Journal. 68 (1998) 814.
    [44]C.W. Kan, K.Chan, C.W.M. Yuen, M.H. Miao, Low temperature plasma on wool substrates: The effect of the nature of the gas. Textile Research Journal. 69 (1999) 407.
    [45]C.W. Kan, K. Chan, C.W.M. Yuen, Low-temperature plasma treatment of wool fabric for its industrial use. Indian Journal of Fibre and Textile Research. 29 (2004) 385.
    [46]C.W. Kan, K. Chan, C.W.M. Yuen, Influence of plasma treated wool fiber. Indian Journal of Fibre and Textile Research. 30 (2005) 60.
    [47]C.W. Kan, C.W.M. Yuen, Low temperature plasma treatment for wool fabric. Textile Research Journal. 76 (2006) 309.
    [48]C.W. Kan, K. Chan, C.W.M. Yuen, Effect of low temperature plasma on different wool dyeing systems, Autex Research Journal. 3 (2003) 194.
    [49]C.W. Kan, K. Chan, C.W.M. Yuen, A study of the oxygen plasma treatment on the serviceability of a wool fabric. Fibers and polymers. 4 (2004) 37.
    [50]B.O. Bateup, H.D. Feldtman, B.E. Fleischfresser, The Application of Shrink-resist Polymers to Wool Pre-treated in a Corona Discharge. Journal of the Textile Institute. 72 (1981) 34.
    [51]Zaisheng Cai. Yiping Qiu. Effect on the Anti-Felt Properties of Atmospheric Pressure Plasma Treated Wool. Journal of Applied Polymer Science, Vol. 107, 1142-1146 (2008)
    [52]Helan Xu, Shujing Peng, Chunxia Wang, Lan Yao. Jie Sun. Feng Ji, Yiping Qiu. Influence of Absorbed Moisture on Antifelting Property of Wool Treated with Atmospheric Pressure Plasma. Journal of Applied Polymer Science, Vol. 113,3687-3692 (2009)
    [53]H. Mocker. Plasma treatment oflextile fibers. Pure Appl. Chem. 74(2002)423.
    [54]P. Erra. R. Molina. D. Jocic. A. Cuesta. J.M.D. Tascon. Shrinkage properties of wool treated with low temperature plasma and chitosan biopolymer. Textile Research Journal. 69 (1999) 811.
    [55]R. Molina. P. Jovancic, F. Comelles. E. Bertran. P. Erra, Shrink-resistance and wetting properties of keratin fibres treated by glow discharge. Journal of Adhesion Science and Technology. 16 (2002) 1469.
    [56]A. Hesse,H. Thomas,H Hocker, Zero-AOX Shrinkproollng Treatment for Wool Top and Fabric Part Ⅰ:Gow Discharge Treatment. Textile Research Journal. 65 (1995) 355.
    [57]A.Hesse,H. Thomas. H Hocker, Zero-AOX Shrinkproollng Treatment for Wool Top and Fabric Part Ⅱ: Collagen Resin Application. Textile Research Journal. 65 (1995) 371.
    [58]Poisson C, Hervais V, Lacrampe MF, Krawezak P. Journal of Applied Polymer Science 2006; 101(1):118-27.
    [59]Awaja F. et al. Adhesion of polymers. Progress in Polymer Science. 9(2009). 948-968
    [60]Rongzhi Li, Lin Ye and Yiu-Wing Mai. Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments. Composites Part A: Applied Science and Manufacturing. 28 (1997) 73-86
    [61]Steluta Teodoru, Yukihiro Kusano, Noemi Rozlosnik, Poul K. Michelsen. Continuous Plasma Treatment of Ultra-High-Molecular-Weight Polyethylene (UHMWPE) Fibres for Adhesion Improvement. Plasma Processes and Polymers. 2009
    [62]Uwe Lommatzsch, Dirk Pasedag, Alfred Baalmann, Guido Ellinghorst, Hans-Erich Wagner. Plasma Processes and Polymers. 2007, 4, S1041-S1045
    [63]N. Dumitrascu, C. Borcia. Adhesion properties of polyamide-6 fibres treated by dielectric barrier discharge. Surface & Coatings Technology 201 (2006) 1117-1123
    [64]Sheu, G.S. and Shyu, S.S. Surface properties and interfacial adhesion studies of aramid fibres modified by gas plasmas. Composites Science and Technology. 52 (1994). 489-497.
    [65]Sheu, G.S. and Shyu. S.S. Surface Modification of Kevlar-149 Fibers by Gas Plasma Treatment.2. Improved Interfacial Adhesion to Epoxy-Resin. Journal of adhesion science and technology. 1994, 8,531-542.
    [66]Sheu, G.S. and Shvu. S.S. Surface modification of Kevlar 149 fibers by gas plasma treatment. Part Ⅱ. Improved interfacial adhesion to epoxy resin. Journal of adhesion science and technology. 1994,8, 1027-1042
    [67]L.Liu, Q. Jiang. T. Zhu. X. Guo, Y. Sun. Y. Guan. Y. Qiu. Influence of moisture regain of aramid fibers on effects of atmospheric pressure plasma treatment on improving adhesion with epox Journal of Applied Polymer Science. 102 (2006). 242 247
    [68]T. Wang. C. Wang. Y. Qiu. Surface modification of ultra high modulus polyethylene fibers by an atmospheric pressure plasma jet, Journal of Applied Polymer Science. 108 (2007). 25-33
    [69]Luo, S.; Van Ooij. W. J. Surface modification of textile fibers for improvement of adhesion to polymeric matrices: a review. Journal of Adhesion Science and Technology 2002. 16. 1715.
    [70]Qiu. Y.; Zhang. C.; Hwang, Y.J.;Bures. B.I.; Mccord, M. The effect of atmospheric pressure helium plasma treatment on the surface and mechanical properties of ultrahigh-modulus polyethylene fibers. Journal of Adhesion Science and Technology. 2002. 16, 99.
    [71]Qiu, Y.; Hwang. Y. J.; Zhang. C.; Bures, B. L.; Mccord. M. Atmospheric pressure helium oxygen plasma treatment of ultrahigh modulus polyethylene fibers. Journal of Adhesion Science and Technology. 2002, 16, 449
    [72]M. Jasso, I. Hudec, P. Alexy, D. Kovacik, H. Krump. Grafting of maleic acid on the polyester fibres initiated by plasma at atmospheric pressure. International Journal of Adhesion & Adhesives. 26 (2006) 274-284
    [73]Marcel Simor, Jozef Rahel, Mirko Cernak, Yoji Imahori, Miloslav Stefecka, Masashi Kando. Atmospheric-pressure plasma treatment of polyester nonwoven fabrics for electroless plating. Surface and Coatings Technology. 172 (2003) 1-6
    [74]C.W.M. Yuen, S.Q. Jiang, C.W. Kan, W.S. Tung, Influence of surface treatment on the electroless nickel plating of textile fabric. Applied Surface Science. 253 (2007) 5250-5257.
    [75]Kingsley Kin Chee Ho, Adam F. Lee, Alexander Bismarck. Fluorination of carbon fibres in atmospheric plasma. Carbon 45 (2007) 775-784
    [76]Kingsley K.C. Ho, Steven Lamoriniere, Gerhard Kalinka, Eckhard Schulz, Alexander Bismarck. Interfacial behavior between atmospheric-plasma-fluorinated carbon fibers and poly(vinylidene fluoride). Journal of Colloid and Interface Science 313 (2007) 476-484
    [77]Kingsley K.C. Ho, Adam F. Lee, Steven Lamoriniere, Alexander Bismarck. Continuous atmospheric plasma fluorination of carbon fibres. Composites: Part A 39 (2008) 364-373
    [78]Yu-Bin Chang. Pei-Chi Tu, Mien-Win Wu, Tien-Hsiang Hsueh, and Shan-hui Hsu. A study on chitosan modification of polyester fabrics by atmospheric pressure plasma and its antibacterial effects, fibers and Polymers. 9 (2008) 307-311
    [79]M. W. Huh, l. K. Kang, D.H. Lee. D.H. Lee, L. S. Park. K. L. Min. and K.H. Seo, Surface characterization and antibacterial activity of chitosan-grafted poly (ethylene terephthalate) prepared by plasma glow discharge. Journal of Applied Polymer Science. 81 (2001) 2769-2778.
    [80]Mu-Rong Yang. Ko-Shao Chen, Jui-Che Tsai. Ching-Cing Tseng. Shuen-Eun Lin. The antibacterial activities of hydrophilic-modified nonwoven PET. Materials Science and Engineering C 20 (2002) 167-173
    [81]Maja Radeti, Vesna Hi, Vesna Vodnik. Su/ana Dimitrijevi. Petar Jovani, Zoran Saponji.Jovan M. Nedeljkovi. Antibacterial effect of silver nanoparticles deposited on corona-treated polyester and polyamide fabrics. Polymers for Advanced Technologies. 19(2008) 1816-1821
    [82]Young Yeon Ji, Hong Ki Chang, Yung Cheol Hong, Suck Hyun Lee. Water-repeHent improvement of polyester fiber via radio frequency plasma treatment with argon/hexamethyldisiloxane (HMDSO) at atmospheric pressure. Current Applied Physics 9 (2009) 253-256
    [83]Young-Yeon Ji, Yong-Cheol Hong, Suck-Hyun Lee, Sung-Dae Kim, Sang-Sik Kim. Formation of super-hydrophobic and water-repellency surface with hexamethyldisiloxane (HMDSO) coating on polyethyleneteraphtalate fiber by atmosperic pressure plasma polymerization. Surface & Coatings Technology 202 (2008) 5663-5667
    [84]Fiorenza Fanelli, Francesco Fracassi, Riccardo d'Agostino. Fluorination of Polymers by Means of He/CF4 - Fed Atmospheric Pressure Glow Dielectric Barrier Discharges. Plasma Processes Polymer. 2008, 5, 424-432
    [85]F. Leroux, C. Campagne, A. Perwuelz, L. Gengembre. Fluorocarbon nano-coating of polyester fabrics by atmospheric air plasma with aerosol. Applied Surface Science 254 (2008) 3902-3908
    [86]X.-M. Jiang, Y.-N. Rui, G.-Q. Chen. Improved properties of cotton by atmospheric pressure plasma polymerization deposition of sericin. Journal of Vinyl and Additive Technology. 15 (2009) 129-133.
    [87]澎庆东,李荣平,潘洪永.SM-315C等速卷染机织物碱退浆的工艺研究.装饰织物,1996,(2):27-28.
    [1]B Navinsek, P Panjan, I Milosev. PVD coatings as an environmentally clean alternative to electroplating and electroless processes. Surface & Coatings Technology. 116-119(1999) 476-487.
    [2]L. Sorrentino, L. Carrino, Innuence of process parameters of oxygen cold plasma treatment on wettability ageing time of 2024 aluminium alloy International Journal of Adhesion and Adhesives 209(2009) 1400-1409.
    [3]Gherardi N., Gouda G., Gat E., Massines F., Transition from glow silent discharge to micro-discharges in nitrogen gas. Plasma Sources Science & Technology. 2000:9(3):340-346.
    [4]Ben Gadri R., Roth J.R., Moniie T.C., Kelly-Winienberg K., Tsai P.P.Y., Helfritch D.J., Feldman P., Sherman D.M., Karakaya F., Chen Z.Y., Team U.T.K.P.S.; Sterilization and Plasma Processing of room temperature surfaces with a one atmosphere uniform glow discharge Plasma (OAUGDP). Surface & Coatings Technology. 2000:13 l(l-3):528-542.
    [5]Yi C.H., Lee Y.H., Kim D.W., Yeom G.Y; Characteristic of a dielectric barrier discharges using capillary dielectric and its application to photoresist etching. Surface & Coatings Technology. 2003; 163:723-727.
    [6]Yi C.H., Lee Y.H., Yeom G.Y: The study of atmospheric Pressure Plasma for surface cleaning. Surface & Coatings Technology. 2003:171 (l-3):237-240.
    [7]Jung M.H., Choi H.S.; Photoresist etching using Ai/O2 and He/O2 atmospheric Pressure Plasma. Thin Solid Films. 2006;515(4):2295-2302.
    [8]J.Y. Jeong, S.E. Babayan, V.J. Tu. Etching materials with an atmospheric-pressure plasma jet. Plasma Sources Science & Technoly. 7(1998) 282-285.
    [9]J. Park, I. Henins, H.W. Herrmann, An atmospheric pressure plasma source. Applied Physics Letters. 76(2000)288-291.
    [10]R. Morent, N. Geyter, J. Verschuren, K. Clerck, P. Kiekens, C. Leys, Non-thermal plasma treatment of textiles. Surface & Coatings Technology. 202(2008)3427-3449.
    [11]S.R. Matthews. M.G. McCord. M.A. Vourham. Poly(vinyl alcohol) desizing mechanism via atmospheric pressure plasma exposure. Plasma Processes and Polymers. 2(2005)702-708.
    [12]Qin Y., Hwang Y J., Zhang C. Bures B.L., MeCord M.: Aimospheric Pressure helium plus oxygen plasma treatment of ultrahigh modulus polyethylene fibers. Journal of Adhesion Seience and Tcchnology.2002:16(4):449-457.
    [13]Riekerink M.B.O., Terlingen J.G.A., Feijen J. Selective etching of semicrystalline Polymers: CF4 gas Plasma treatment of Poly(ethylene). Langmuir. 1999:15(14): 4847-4856.
    [14]Weikart C.M., Yasuda H.K.; Modification, degradation, and stability of Polymeric surfaces treated with reactive plasmas. Journal of Polymer Science. Part a-Polymer Chemistry 2000:38(17): 3028-3042.
    [15]Powell H.M., Lannutti J.J.; Nanofibrillar surfaces via reactive ion etching. Langmuir 2003:19:9071-9078.
    [16]Svoreili V., Kolarova K., SlePiekaP., Mackova A., Novotna M., Hnatowiez Ⅴ: Modification of surface Properties of high and low density Polyethylene by Ai Plasma discharge. Polymer Degradation and Stabilily.2006:9|(6): 1219-1225
    [17]Svoreik V., Kotal V, Siegel J. Sajdl P., Maekova A., Hnatowiez Ⅴ: Ablation and water etching of Poly(ethylene) modified by argon plasma. Polymer Degradation and Stability. 2007:92: 1645-1649.
    [18]Guimond S., Werthcimer M.R.. Surface degradation and hydrophobic recovery of polyolefins treated by air corona and nitrogen atmospheric pressure glow discharge. Journal of Applied Poiymer Science. 2004:94:129-1303.
    [19]Zhiqiang Gao, Shujing Peng, Jie Sun. Lan Yao, Yiping Qiu, Influence of processing parameters on atmospheric pressure plasma etching of polyamide 6 film. Applied Surface Science. 255(2009)7683-7688.
    [20]Peng Shujing, Sun Jie, Liu Xiulan, GaoZhiqiang, Yao Lan, QiuYiping. Influence of processing parameters on atmospheric pressure plasma etching and solubility of Polyviny alcohol films. Advanced Materials Research 299-300 (2011) 608-611.
    [21]Helan Xu, Shujing Peng,Chunxia Wang, Lan Yao, Jie Sun, Feng Ji, Yiping Qiu. Influence of Absorbed Moisture on Antifelting Property of Wool Treated with Atmospheric Pressure Plasma. Journal of Applied Polymer Science, Vol. 113(2009), 3687-3692.
    [22]S. Peng, Z. Gao, J. Sun, L. Yao, C. Wang, Y. Qiu, Influence of absorbed moisture on solubility of Poly(vinylaleohol) film during atmospheric Pressure Plasma jet treatment. Surface & Coatings Technology. 204 (2010) 1222-1228.
    [23]Shujing Peng, Xiulan Liu, Jie Sun, Zhiqiang Gao, Lan Yao, Yiping Qiu. Influence of absorbed moisture on desizing of poly(vinyl alcohol) on cotton fabrics during atmospheric pressure plasma jet treatment. Applied Surface Science 256 (2010) 4103-4108.
    [24]Ren Y, Qiu Y.P. Influence of aramid fiber moisture regain during atmospheric pressure plasma processing on the surface properties of the modified libers. Proceedings of the 2007 International Conference on Advanced Fibers and Polymer Materials Vols 1 and 2. 2007:23 1-234.
    [25]Lu Zhu, Weihua Feng, Helan Xu, Yan Liu, Qiuran Jiang, Chunxia Wang. Yiping Qiu. Effect of absorbed moisture on the atmospheric plasma etching of polyamide libers. Surface & Coatings Technology 202(2008)1966-1974.
    [26]Y. Liu, H. Xu, L. Ge, C. Wang,, L. Han. H. Yu, Y. Qiu, Influence of environmental moisture on atmospheric pressure plasma jet treatment of ultrahigh-modulus polyethylene fibers. Journal of Adhesion Science and Technology. 21 (2007)663 076.
    [27]J.Y. Jeong, S.E. Babayan. V.J. Tu. Etching materials with an atmospheric-pressure plasma jet. Plasma Sources Sci. Technol. 7 (1998) 282-285.
    [28]J. Park. I.Henins,H.W. Herrmann. An atmospheric pressure plasma source. Applied Physics Letters 76 (2000)288-291.
    [24]Kim K.S., Yun Y.I., Banik I., Park C.E., Ryu C.M.; Investigation of surface rearrangement of oxygen plasma treated polyethylene using X-ray absorption spectroscope (NEXAFS). Abstracts of Papers of the American Chemical Society. 2003:225:301.
    [30]Kim K.S., RyllC.M., park C.S., Sur GS., park C.E.; Investigation of cryslallinily effects on the surface of oxygen plasma treated low density Polyethylene using X-ray photoelectron spectroscopy. Polymer 2003: 44(20): 6287-6295.
    [31]K. Navancetha Pandiyitraj, V. Selvarajan, R.R. Deshmukh, Mosto Bousmina. The effect of glow discharge plasma on the surface properties of Poly (ethylene terephthalate)(PET) film. Surface & Coatings Technology. 202(2008) 42 18-4226.
    [32]Hopkins, J., & Badyal, J.P.S. XPS and atomic force microscopy of plasma-treated polysulfone. Journal of Polymer Science. Part A: Polymer Chemistry.34(1996)1385-1393.
    [33]Mozetic, M. Discharge cleaning with hydrogen plasma. Vacuum, 61)2001)367-371.
    [34]S.S. Asad, C. Tendero, C. Dublanche-Tixier, et al. Effect of atmospheric microwave plasma treatment on organic lubricant on a metallic surface. Surface & Coatings Technology. 203(2009)1790-1796.
    [35]N. De Geyter, R. Morent, C. Leys. Surface modification of a polyester non-woven with a dielectric barrier discharge in air at medium pressure. Surface & Coatings Technology. 201 (2006) 2460-2466.
    [36]B. Gupta, J. Hilborn, CH. Hollenstein, C. J. G. Plummer, R. Houriet, N. Xanthopoulos. Surface modification of polyester films by RF plasma. Journal of Applied Polymer Science. 78 (2000) 1083-1091.
    [1]A. Raffaele-Addamo. C. Riccardi, E. Sell:. Characterization of plasma processing for polymers. Surface & Coalings Technology 174(2003) 886-890.
    [2]T. Schuman, B. Adolfsson. M.Wikstrom. Surface treatment and printing properties of dispersion-coated paperboard. Progress in Organic Coatings. 54 (2005) 188-197.
    [3]Y. Qiu, Y.J. Hwang. Atmospheric pressure helium+oxygen plasma treatment of ultrahigh modulus polyethylene fibers. Journal of Adhesion Science and Technology. 16 (2002) 449-457.
    [4]Y. Qiu, C. Zhang, Y.J. Hwang. The effect of atmospheric pressure helium plasma treatment on the surface and mechanical properties of ultrahigh-modulus polyethylene libers. Journal of Adhesion Science and Technology. 16 (2002) 99-107.
    [5]E.M. Liston, L, Martinu, M.R. Wertheimrr, Plasma surface modification of polymers for improved adhesion: a critical review. Journal of Adhesion Science and Technology. 7(1993) 1091.
    [6]M.J. Shenton. G.C. Stevens. Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments. Journal of Physics D: Applied Physics.34 (2001) 2761-2768.
    [7]K. Sugiyama. K. Kiyokawa. H. Matsuoka. Generation of non-equilibrium plasma at atmospheric pressure and application for chemical process. Thin Solid films 316 (1998) 117-122.
    [8]S. Yang, M.C. Gupta, Surface modification of polyethyleneterephthalate by an atmospheric-pressure plasma source. Surface & Coatings Technology. 187 (2004) 172-176.
    [9]A. Schutze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. IEEE Transactions on Plasma Science. 26(1998) 1685-1694.
    [10]Lu Zhu, Weihua Teng, Helan Xu, Yan Liu, Qiuran Jiang, Chunxia Wang, Yiping Qiu. Effect of absorbed moisture on the atmospheric plasma etching of polyamide fibers. Surface & Coatings Technology 202 (2008) 1966-1974.
    [11]Ren Y, Qiu Y.P. Influence of aramid fiber moisture regain during atmospheric pressure plasma processing on the surface properties of the modified fibers. Proceedings of the 2007 International Conference on Advanced Fibers and Polymer Materials Vols 1 and 2. 2007:231-234.
    [12]L. Zhu, Y. Qiu. Influence of the amount of absorbed moisture in nylon fibers on atmospheric pressure plasma processing. Surface & Coatings Technology. 201 (2007) 7453-7461.
    [13]K. Ichikawa. T. Mori,H. Kitano, M. Fukuda, A. Mochizuki, M. Tanaka, Fourier transform infrared study on the sorption of water to various kinds of Polymer thin films. Journal of" Polymer Science. Part B-Polymer Physics. 39 (2001) 2175-2182.
    [14]Y. Ron. C.X. Wang. Y.P. Qiu. Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability. Applied Surface Science. 253 (2007)9283-9289.
    [15]Y. Liu. H. Xu. F. Ge. C. Wang. F. Man. H. Yu. Y. Qiu. Influence of environmental moisture on atmospheric pressure plasma jet treatment of ultrahigh-modulus polyethylene fibers. Journal of Adhesion Science and Technology. 21 (2007)663-676.
    [16]F. Liu. Q. Jiang,T. Zhang. X. Ciuo. Y. Sun. Y. Guan, Y. Qiu, Influence of Moisture Regain of Aramid Fibers on Effects of Atmospheric Pressure Plasma Treatment on Improving Adhesion with Fpoxy. Journal of Applied Polymer Science. 102(2006)242-247.
    [17]Hlelan Xu. Shujing Peng.C'hunxia Wang, Fan Yao. Jie Sun, Feng Ji, Yiping Qiu. Influence of Absorbed Moisture on Antilelting Property of Wool Treated with Atmospheric Pressure Plasma. Journal of Applied Polymer Science, Vol. 113(2009), 3687-3692.
    [18]S. Peng,Z. Gao,J. Sun. F. Yan, C. Wang, Y. Qiu, Influence of absorbed moisture on solubility of Poly(vinylaleohol) film during atmospheric Pressure Plasma jet treatment. Surface & Coalings Technology. 204 (2010) 1222-1228.
    [19]Shujing Peng, Xiulan Liu, Jie Sun, Zhiqiang Gao, Lan Yao, Yiping Qiu. Influence of absorbed moisture on desizing of poly(vinyl alcohol) on cotton fabrics during atmospheric pressure plasma jet treatment. Applied Surface Science 256 (2010) 4103-4108.
    [20]M.H. Jung, H.S. Choi, Photoresist etching using Ar/O2 and He/O2 atmospheric pressure plasma. Thin Solid Films 515 (2006) 2295 - 2302.
    [21]K.N. Pandiyaraj, V. Selvarajan, M. Bousmina, The effect of surface Properties of Polyethylene terephthalate)(PET)film. Surface & Coatings Technology.202 (2008) 4218-4226.
    [22]D. Pappas, A. Bujanda, J. Demaree, Surface modification of Polyamide fibers and films using atmospheric Plasmas. Journal of Applied Polymer Science. 201 (2006) 4384-4388.
    |23] V. Svoreik, V. Kotal, A. Mackova, V. Hnatowicz. Ablation and water etehing of Poly(ethylene) modified by argon Plasma. Polymer Degradation and Stability. 92 (2007) 1645-1649.
    [24]R.li. Allied. W.C. Schimpf. CO2 plasma modification of high-modulus carbon fibers and their adhesion to epoxy resins. Journal of Adhesion Science and Technology. 8 (1994) 383-388.
    [1]Pervin Auis, Asim Davuleu et al. Enzymatic Pre-Treatment of Cotton. Part Ⅰ. Desizing and Glucose Generation in Desizing Liquor. FIBRES & TLXTILLS in Eastern Europe, 2008(16), 100-103.
    [2]J. P. Moreau, Polymeric Sizing Agents for Cotton Yarn. Textile Chemist and Colorist & American Dyestuff Reporter. 13 (1981)22.
    [3]J.E. Moreland, Textile Chemist and Colorist & American Dyestuff Reporter. 12 (1980) 71.
    [4]J. W. Cacho, CMC Warp Sizing vs. PolyvinyAlcohol. Textile Chemist and Colorist & American Dyestuff Reporter. 12(1980) 78.
    [5]Hashem, M. M. An Approach Towards a Single Pre-treatment Recipe for Different Types of Cotton. Fibres and Textiles in Eastern Europe. 15 (2007)90.
    [6]K K Wong, X M Tao, C W M Yuen and K W Yeung.Effect of Plasma and Subsequent Enzymatie Treatment on Linen Fabries.JSDC 116 (2000) 208-215
    [7]J.R. Chen, X.Y. Wang, W. Tomiji. Wettability of Poly (ethylene terephthalate) Film Treated With Low-temperature Plasma and Their Surface Analysis In ESCA. Journal of Applied Polymet Science. 72 (1999) 1327-1333.
    [8]P.H. Bae, Y.J. Hwang, H.J. Jo, H.J. Kim, Y. Lee, Size Removal on Polyester Fabries by Plasma Source lon Implantation Device. Chemosphere 63 (2006) 1041-1047.
    [9]H. Zhuang, J.P. Wightman, The Influence of Surface Properties on Carbon Fiber/Epoxy Matrix Interfacial Adhesion. Journal of Adhesion Science and Technology. 62 (1997) 213-245.
    [10]Z.S. Cai, Y.P. Qiu, Dyeing Properties of Wool Fabrics Treated with Atmospheric Pressure Plasmas. Journal of Applied Polymer Science. 109 (2008) 1257-1261.
    [11]Jozef Rahel, Marcel Simor, Mirko Cernak, Miloslav Stefecka, Yoji Imahori, Masashi Kando, Hydrophilization of Polypropylene Nonwoven Fabric Using Surface Barrier Discharge. Surface & Coatings Technology. 169 (2003) 604-608.
    [12]Y.P. Qiu, N. Anantharamaiah, S. Xie, Atmospheric Pressure Helium Plasma Treatment of Ultrahigh Modulus Polyethylene Fibres. Advanced Composites Letter. 10 (2001) 135-139.
    [13]R. Morent et al. Non-thermal Plasma Treatment of Textiles. Surface & Coatings Technology. 202 (2008) 3427-3449.
    [14]E. Fatarella. Ciabatti, J. Cortez. Plasma and Electron-beam Processes as Pretreatments for Enzymatic Processes. Enzyme and Microbial Technology 46 (2010) 100-106.
    [15]Jia-Jie Long, Hong-Wei Wang, Tong-Qing Lu. Ren-Cheng Tang. Ya-wei Zhu. Application of Low-Pressure Plasma Pretreatment in Silk Fabric Degumming Process. Plasma Chem Plasma Process 28 (2008) 701-713.
    [16]N.A. Ibrahim, M. El-Hossamy. R. Refai. B.M. Lid. Novel Pre-treayment Processes In Promote Linen-containing Fabrics Properties. Carbohydrate Polymers. 74 (2008) 880-891.
    [17]C. W. KAN. C. W. M. YULN. S. Q. JIANG. Effect of Surface Treatment on theEnzy matic Treatment of Cellulosic Fiber. Surface Review and Letters. 14 (2007) 565-569.
    [18]Shujing Peng. Zhiqiang Gao.Jie Sun. Lan Yao. Yiping Qiu. Intluence of Argon/oxygen Atmospheric Dielectric Barrier Discharge Treatment on Desizing and Scouring of Poly(vinyl alcohol) on Cotton l'abrics. Applied Surface Science. 255 (2009) 9458-9462.
    [19]Shujing Peng. Zhiqiang Gao. Jie Sun. Lan Yao. Chunxia Wang. Yiping Qiu. Influence of Absorbed Moisture on Solubility of Poly (vinyl alcohol) Film During Atmospheric Pressure Plasma Jet Treatment. Surface & Coatings Technology 204 (2010) 1222-1228.
    [20]Shujing Peng , Xiulan Liu. Jie Sun. Zhiqiang (iao. Lan Yao. Yiping Qiu. Inlluence of Absorbed Moisture on Desizing of Poly (vinyl alcohol) on Cotton Fabrics During Atmospheric Pressure Plasma Jet Treatment. Applied Surface Science. 256 (2010) 4 103-4 108.
    [21]Cai. Z. Qiu. Y. The Mechanism of Air/Oxygen/Helium Atmospheric Plasma Action on PVA. Journal of Applied Polymer Science. 99 (2006) 2233-2237.
    [22]Cai, Z. Qiu, Y. Hwang, Y. Zhang, C. Mccord, M. The Use of Atmospheric Pressure Plasma Treatment in Desizing PVA on Viscose Fabrics . J. Ind. Text. 32 (2003) 223-229.
    [23]Cai, Z. Qiu, Y. Zhang, C. Hwang, Y. Mcord, M. Effect of Atmospheric Plasma Treatment on Desizing of PVA on Cotton. Textile Research Journal. 73 (2003) 670-674.
    [24]Cai, Z.; Hwang, Y. Park, Y. Zhang, C. Mccord, M. Qiu, Y. Preliminary Investigation of Atmospheric Pressure Plasma-aided Desizing for Cotton Fabrics. AATCC Rev. 2 (2002) 18.
    [25]Suzanne R. Matthews, Marian G. McCord, Bourham. Poly (vinyl alcohol) Desizing Mechanism via Atmospheric Pressure Plasma Exposure. Plasma Process. Polym. 2 (2005) 702-708.
    [26]Y. Ren, C.X. Wang, Y.P. Qiu, Influence of Aramid Fiber Moisture Regain During Atmospheric Plasma Treatment on Aging of Treatment Effects on Surface Wettability and Bonding Strength to Epoxy. Applied Surface Science. 253(2007) 9283-9289.
    [27]J.Y. Jeong, S.E. Babayan. V..I. Tu, Etching Materials with an Atmospheric-pressure Plasma Jet. Plasma Sources Science and Technology. 7 (1998) 282-285.
    [28]J. Park, I. llenins.H.W. Herrmann, An Atmospheric Pressure Plasma Source. Applied Surface Science. 76(2000)288-291.
    [29]N. De Geyter. R. Morent, C. Leys. Surface Modification of a Polyester Non-woven With a Dielectric Barrier Discharge in Air at Medium Pressure. Surface & Coatings Technology. 201 (2006) 2-460-2466.
    [30]B. Ciupla. J. Hilborn. CH. HloHenstein. C.J.G. Plummer, R. Houriet, N. Xanlhopoulos. Surface Modification of Polyster Films by RF Plasma. Journal of Applied Polymer Science. 78 (2000) 1083-1091.
    [31]D. Pappas, A. Bujanda. J. Demarce. Surface Modification of Polyamide Fibers and films Using Atmospheric Plasmas. Journal of Applied Polymer Science. 201 (2006)4384-4388.
    [32]V. Svoreik, V. Kotal. J. Siegel. P. Sajdl. A. Mackova. V. Hnatowicz. Ablation and Water Etching of Poly (ethylene) Modilled by Argon Plasma. Polymer Degradation and Stability. 92 (2007) 1645-1649.
    [1]Takeshi Fukuda, Michiko Kato-Murai, Kouichi Kuroda, Mitsuyoshi Ueda, Shin-iehiro Suye. Improvement in enzymatic desizing of starched cotton cloth using yeast codisplaying glucoamylase and cellulose-binding domain. Applied Microbiology and Biotechnology. 77 (2008) 1225 -1232.
    [2]C.D. Livengood. C. Tomasion,How Much Energy Should It Take to Remove Water Soluble Sizes. Textile Chemist and Colorist & American Dyestuff Reporter. 12 (1980) 67-70.
    [3]J.P. Moreau, Polymeric sizing agents for cotton yarn. Textile Chemist and Colorist & American Dyestuff Reporter. 13 (1981) 22-27.
    [4]Pervin Anis, Asim Davuleu, Huseyin Aksel Eren. Enzymatic Pre-Treatment of Cotton. Part Ⅰ. Desizing and Glucose Generation in Desizing Liquor. FIBRES & TEXTILLES in Eastern Europe. 16(2008) 100-103.
    [5]Lange N. K. Lipase-assisted desizing of woven cotton fabries. Textile Chemist and Colorist 29 (1997)23-26.
    [6]Opwis K., Knittel D., Kele A., Schollmeyer E. Enzymatic Recycling of Starch-Containing Desizing Liquors. Starch/Starke 51 (1999) 348-353.
    [7]Tatsuma Mori, Michio Sakimoto, Takashi Kagi. Enzymatic Desizing of Polyvinyl Alcohol from Cotton Fabrics. Journal of Chemical Technology and Biotechnology. 68 (1997) 151-156.
    [8]Hashem, M. M. An Approach towards a Single Pie-treatment Recipe for Different Types of Cotton. Fiber and Textiles in Eastern Europe. 15 (2007) 90.
    [9]J.R. Chen, X.Y. Wang, W. Tomiji, Wettability of poly(ethylene terephthalate) film treated with low-temperature plasma and their surface analysis by ESCA. Journal of Applied Polymer Science. 72(1999)1327-1333.
    [10]Jozef Rahel, Marcel Simora, Mirko Cernaka, Miloslav Stefeckab, Yoji Imahoric, Masashi Kando. Hydrophilization of polypropylene nonwoven fabric using surface barrier discharge. Surface & Coatings Technology. 169 (2003) 604-608.
    [11]H. Zhuang, J.P. Wightman, The influence of surface properties on carbon fiber/epoxy matrix interfacial adhesion. The Journal of Adhesion. 62 (1997) 213-245.
    [12]Z.S. Cai, Y.P. Qiu, Dyeing properties of wool fabrics treated with atmospheric pressure plasmas. Journal of Applied Polymer Science. 109 (2008) 1257-1261.
    [13]Y.P. Qiu, N. Anantharamaiah. S. Xie, Atmospheric pressure helium plasma treatment of ultrahigh modulus polyethylene fibres. Adv. Compos. Lett. 10 (2001) 135-139.
    [14]P.M. Bae, Y.J. Hwang. H.J.Jo, H.J. Kim. Y.Lee. Size removal on polyester fabrics by plasma source ion implantation device. Chemosphere 63 (2006) 1041-1047.
    [15]S.R. Matthews. M.G. Mccord. M.A. Bourham. Poly (vinyl alcohol) desizing mechanism via atmospheric pressure plasma exposure. Plasma Processes and Pulymers. 2 (2005) 702-708.
    [16]Shujing Peng, Zhiqiang Gao. Jie Sun.Lan Yao. Yiping Qiu. Influence of argon/oxygen atmospheric dielectric barrier discharge treatment on desizing and scouring of poly (vinyl alcohol) on cotton fabrics. Applied Surface Science. 255 (2009)9458-9462.
    [17]Shujing Peng,Zhiqiang Gao, Jie Sun.Lan Yao. Chunxia Wang. Yiping Qiu. Inlluence of absorbed moisture on solubility of poly (vinyl alcohol) film dining atmospheric pressure plasma jet treatment. Surface & Coatings Technology. 204 (2010) 1222-1228.
    [18]Shujing Peng, Xiulan Liu.Jie Sun,Zhiqiang Gao, Lan Yao, Yiping Qiu. Influence of absorbed moisture on desizing of poly (vinyl alcohol) on cotton fabrics during atmospheric pressure plasma jet treatment. Applied Surface Science. 256 (2010) 4103-4108.
    [19]Cai,Z. Qiu, Y. The mechanism of air/oxygen/helium atmospheric plasma action on PVA . Journal of Applied Polymer Science. 99 (2006) 2233-2237.
    [20]Cai, Z. Qiu, Y. Hwang, Y. Zhang, C. Mccord, M. The use of atmospheric pressure plasma treatment in desizing PVA on viscose fabrics. J. Ind. Text. 32 (2003) 223-229.
    [21]Cai, Z. Qiu, Y. Zhang, C. Hwang, Y. Mcord, M. Effect of atmospheric plasma treatment on desizing of PVA on cotton. Textile Research Journal. 73 (2003) 670-674.
    [22]Cai, Z.; Hwang, Y. Park, Y. Zhang, C. Mccord, M. Qiu, Y. Preliminary investigation of atmospheric pressure plasma-aided desizing for cotton fabrics. AATCC Rev. 2 (2002) 18.
    [23]Sivakumar V, Rao PG. Application of power ultrasound in leather processing: an eco-friendly approach. Journal of Cleaner Production. 9(2001) 25-23.
    [24]Mason TJ. Sonochemistry: The uses of ultrasound in chemistry. Royal Society of Chemistry. (1990)3.
    [25]Contamine F, Faid F, Wilhelm AM, Berlan J, Delmas H. Chemical reactions under ultrasound: discrimination of chemical and physical effects. Chemical Engineering Science. 49(1994) 5865.
    [26]Ando T, Sumi S, Kawate T, Ichihara J, Hanafusa T. Sonochemical switching of reaction pathways in slid-liquid two-phase reactions. Journal of the Chemical Society. 7(1984) 439-440.
    [27]Suslick KS, Casadonte DJ. Heterogeneous sonocatalysis with nickel powder. Journal of the American Chemical Society. 109(1987) 3459-3461.
    [28]Niyaz Mohammad Mahmoodi. Mokhtar Arami. Firoozmehr Mazaheri. Shahram Rahimi. Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. Journal of Cleaner Production. 18(2010) 146-151.
    [29]Y. Ren, C.X. Wang. Y.P. Qiu. Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wellability and bonding strength to epoxy. Applied Surface Science. 253(2007)9283-9289.
    [30]J.Y. Jeong. S.E. Babayan. V.J. Tu,Etching materials with an atmospheric-pressure plasma jet. Plasma Sources Science and Technology. 7 (1998) 282-285.
    [31]J. Park. I.Henins, H.W. Herrmann. An atmospheric pressure plasma source. Applied Physics Letters. 76 (2000)288-290.
    [32]Zhiqiang Ciao. Shujing Peng, Jie Sun,Lan Yao, Y. Qiu, Iniluence of processing parameters on atmospheric pressure plasma etching of polyamide 6 films. Applied Surface Science. 255 (2009) 7683-7688.
    [33]N. De Cieyter, R. Morent, C. Leys. Surface modification of a polyester non-woven with a dielectric barrier discharge in air at medium pressure. Surface & Coatings Technology. 201 (2006) 2460-2466.
    [34]B. Gupta, J. Hilborn, CH. Hollenstein, C. J. G. Plummer, R. Houriet, N. Xanthopoulos. Surface modification of polyester films by RF plasma. Journal of Applied Polymer Science. 78 (2000) 1083-1091.
    [35]Daphne Pappas, Andres Bujanda, J. Derek Demaree, James K. Hirvonen, Wendy Kosik, Robert Jensen, Steven McKnight. Surface modification of polyamide fibers and films using atmospheric plasmas. Surface and Coatings Technology. 201 (2006) 4384-4388.
    [36]V. Svorcik, V. Kotal, J. Siegel, P. Sajcll, A. Mackova, V. Hnatowicz, Ablation and water etching of poly (cthylene) modified by argon plasma. Polymer Degradation and Stability. 92 (2007) 1645-1649.
    [37]D. Sun. G.K. Stylios,Effect of low temperature plasma treatment on the scouring and dyeing of natural fabrics. Textile Research Journal. 74 (2004) 751-756.
    [1]C.D. Livengood, C. Tomasion, How Much Energy Should It Take to Remove Water Soluble Sizes. Textile Chemist and Colorist & American Dyestuff Reporter. 12 (1980) 67-70.
    [2]J.P. Moreau, Polymeric sizing agents for cotton yarn. Textile Chemist and Colorist & American Dyestuff Reporter. 13 (1981) 22-27.
    [3]Zhifeng Zhu, Zhiyong Qiao, Cuizhen Kang, Yuehua Li. Effect of acrylate constituent units on the adhesion of polyacrylate sizes to fiber substrates. Journal of Applied Polymer Science 91(2004) 3016-3022
    [4]K K Wong, X M Tao, C W M Yuen and K W Yeung. Effect of plasma and subsequent enzymatic treatment on linen fabrics. JSDC 116 (2000) 208-2 15.
    [5]J.R. Chen. X.Y. Wang. W. Tomiji, Wettabiiity of poly (ethylene terephthalate) film Healed with low-temperature plasma and their surface analysis by E.SCA. Journal of Applied Polymer Science. 72(1999) 1327 1333.
    [6]P.H. Bae, Y.J. Hwang, H.J. Jo, H.J. Kim, Y. Lee, Size removal on polyester fabrics by plasm source ion implantation device . Chemosphere 63 (2006) 1041-1047.
    [7]H. Zhuang,J.P. Wightman, The Influence of Surface Properties on Carbon Fiber/Epoxy Matrix Interfacial Adhesion. Journal of Adhesion Science and Technology. 62 (1997) 213-245
    [8]Z.S. Cai, Y.P. Qiu, Dyeing properties of wool fabrics treated with atmospheric pressure plasmas. Journal of Applied Polymer Science. 109(2008) 1257-1261.
    [9]Jozef Rahel, Marcel Simor, Mirko Cernak, Miloslay Stefecka, Yoji Imahori, Masashi Kando, Hydrophilization of polypropylene nonwoven fabric using surface barrier discharge. Surface & Coatings Technology. 169 (2003) 604-608.
    [10]Y.P. Qiu, N. Anantharamaiah, S. Xie, Atmospheric pressure helium plasma treatment of ultrahigh modulus polyethylene fibres. Adv.Compos. Lett. 10 (2001) 135-139.
    [11]Cai, Z. Qiu, Y. The mechanism of air/oxygen/helium atmospheric plasma action on PVA . Journal of Applied Polymer Science. 99 (2006) 2233-2237.
    [12]Cai, Z. Qiu, Y. Zhang, C. Hwang, Y. Mcord M., Effect of atmospheric plasma treatment on desizing of PVA on cotton. Textile Research Journal. 73 (2003) 670-674.
    [13]Cai, Z.; Hwang, Y. Park, Y. Zhang, C. Mccord, M. Qiu, Y. Preliminary investigation of atmospheric pressure plasma-aided desizing for cotton fabrics. AATCC Rev. 2 (2002) 18.
    [14]Cai, Z. Qiu, Y. Hwang, Y. Zhang, C. Mccord, M. The use of atmospheric pressure plasma treatment in desizing PVA on viscose fabrics. J. Ind. Text. 32 (2003) 223-229.
    [15]Shujing Peng, Zhiqiang Gao, Jie Sun, Lan Yao, Yiping Qiu. Influence of argon/oxygen atmospheric dielectric barrier discharge treatment on desizing and scouring of poly (vinyl alcohol) on cotton fabrics . Applied Surface Science. 255 (2009) 9458-9462.
    [16]Shujing Peng, Zhiqiang Gao, Jie Sun, Lan Yao, Chunxia Wang, Yiping Qiu. Influence of absorbed moisture on solubility of poly (vinyl alcohol) film during atmospheric pressure plasma jet treatment. Surface & Coatings Technology. 204 (2010) 1222-1228.
    [7]Shujing Peng. Xiulan Liu, Jie Sun. Zhiqiang Gao, Lan Yao, Yiping Qiu. Influence of absorbed moisture on desizing of poly (vinyl alcohol) on cotton fabrics during atmospheric pressure plasma jel treatment. Applied Surface Science. 256(2010)4103-4108.
    [18]Pibo Ma. Xin Wang. Weilin Xu. Genyang Cao. Application of corona discharge on desizing of polyvinyl alcohol on cotton fabrics. Journal of Applied Polymer Science 114 (2009) 2887-2892.
    [19]Suzanne R. Matthews, Marian G. Me Cord, Mohamed A. Bourham. Poly (vinyl alcohol) desizing mechanism via atmospheric pressure plasma exposure. Plasma Process. Polym. 2 (2005) 702-708.
    [20]Y. Ren. C.X. Wang. Y.P. Qiu, Influence of aramid liber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy. Applied Surface Science. 253(2007)9283-9289.
    [21]J.Y. Jeong. S.L. Babayan, V.J. Tu. Etching materials with an atmospheric-pressure plasma jet, Plasma Sources Sci. Technol. 7 (1998) 282-285.
    [22]J. Park, I.Henins,H.W. Herrmann, An atmospheric pressure plasma source. Applied Physics Letters 76 (2000) 288-291.
    [23]M.H. Jung, H.S. Choi, Photoresist etching using Ar/O2 and He/O2 atmospheric pressure plasma. Thin Solid Films 515 (2006) 2295-2302.
    [24]K. Navaneetha Pandiyaraj, V. Selvarajan, R.R. Deshmukh, Mosto Bousmina. The effect of glow discharge plasma on the surface properties of Poly (ethylene terephthalate)(PET) film . Surface & Coatings Technology. 202 (2008) 4218-4226.
    [25]Zhiqiang Gao, Shujing Peng, Jie Sun, Lan Yao, Y. Qiu, Influence of processing parameters on atmospheric pressure plasma etching of polyamide 6 films. Applied Surface Science. 255 (2009) 7683-7688.
    [26]Riekerink, M., Terlingen, J., Engbers, G., Feijen, J. Selective etching of semicrystalline polymers: CF4 gas plasma treatment of poly (ethylene). Langmuir 15(1999) 4847-4856.
    [27]U. Kogelschatz, Dielectric-barrier discharges: Their history, discharge physics, and industrial applications . Plasma Chem. Plasma Process. 23 (2003) 1-46.
    [28]N. De Geyter, R. Morent, C. Leys. Surface modification of a polyester non-woven with a dielectric barrier discharge in air at medium pressure. Surface & Coalings Technology. 201 (2006) 2460-2466.
    [29]B. Gupta, J. Hilborn, CH. Hollenstein, C. J. G. Plummer. R. Houriet. N. Xanthopoulos. Surface modification of polyester films by RF plasma. Journal of Applied Polymer Science. 78 (2000) 1083-1091.
    [30]Z. Fang, Y. Qiu, Y. Luo, Surface modification of polytetrafluoroethylene film using the atmospheric pressure glow discharge in air.J. Phys.D: Appl. Phys. 36 (2003) 2980.
    [31]X.J. Dai, L. Kviz, Proc. Study of atmospheric and low pressure plasma modification on the surface properties of synthetic and natural fibres. Textile Institute 81st World Conference Melbourne-Australia, 2001. p. 1.
    [32]D. Pappas, A. Bujanda, J. Demaree, Surface modification of polyamide fibers and films using atmospheric plasmas. Surface & Coatings Technology. 201 (2006) 4384 -4388.
    [33]V. Svorcik, V. Kotal, J. Siegel, P. Sajdl, A. Mackova, V.Hnatowicz. Ablation and water etching of poly (ethylene) modified by argon plasma. Polymer Degradation and Stability. 92 (2007) 1645-1649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700