用户名: 密码: 验证码:
高填方路基加宽后处理技术及变形性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国经济的快速增长,特别是加入WTO以来,物流业的发展,城市间的合作往来更加紧密,高速公路的交通流量日益增加,现在有相当一部分已不能适应交通量增长和社会发展的要求,迫切需要扩大道路通行能力,由于近距离新建高速公路,投资规模大,占用土地多,且容易造成路网分布不均,因而在现阶段我国高速公路扩建大多采用老路加宽的方案。
     高速公路的扩建加宽就必然涉及到新老公路的融合贯通、新老路堤的相互影响等问题,原有路堤经过多年运营,沉降已基本完成,在其边坡上进行扩建加宽,新填的土方和运营后的汽车荷载必然会引起既有路基的附加沉降,并在新老路基之间产生相对过大的差异沉降,进而会引起既有路基变形,严重时则出现路基拉裂,下沉过速等病害,将会对高速公路的正常营运带来难以估量的不良后果;同时,高速公路加宽扩建工程通常工期紧、施工场地狭窄,同时还要维持正常的交通运输,较新建高速公路具有更高的要求。因此选择经济、快速、可靠的加宽处治措施以确保现有高速公路营运安全、确保减小加宽后高速公路新旧路面的差异沉降就显得尤为重要。本文基于以上工程背景,主要研究内容如下:
     1.高填方路基后处理技术即投石压浆无砂砼小桩技术是一种新的地基处理技术,通过对无砂砼小桩技术的施工工艺、压力注浆、后处理机理的详细分析可知,后处理技术具有堆载预压、快速排水、排气固结、固化、竖向置换增强等综合作用机理;投石压浆无砂砼小桩复合地基由于其特殊的施工工艺,其承载力大小除与工程地质条件有关外,还与灌浆材料、灌浆压力和灌浆量、灌浆工艺及置换率有关,所以在无砂砼小桩复合地基承载力计算公式中引入参数β_1(投石压浆无砂砼小桩单桩承载力发挥系数)和β_2(桩间土承载力增强系数);通过对无砂砼小桩复合地基桩土竖向变形协调、桩间土的应力和竖向变形的分析,解决了无砂砼小桩复合地基基于变形控制下的优化设计问题。
     2.高填方路基后处理技术中后处理先填土高度的确定是非常关键的一个技术环节,直接关系到后处理技术的经济和社会效果,对于不同的地质条件,采用不同的分析确定方法,当浅层含有饱和软弱土层,地基承载力较低时,采用基于统一双剪强度理论的分析方法分析确定后处理先填土高度,可以充分发挥天然地基的原有承载力,达到降低造价的目的;当地基承载力较高时,基于小坡堤稳定的分析方法可以方便地分析确定后处理先填土高度,消除了后处理之前由于填土自身稳定问题给工程带来的不良影响。
     3.基于高填方路基加宽时加宽填土荷载的特殊性,对各种荷载形式作用下地基土体的初始有效应力和超孔隙水压力进行了分析;对后处理技术先填土、成孔施工各阶段的固结过程进行了详细分析,得出了各阶段土体超孔隙压力和固结度的计算分析结果。
     4.基于统一强度理论和柱形孔扩张弹性理论,分析了无砂砼小桩注浆期间注浆压力与桩周土体的应力状态,得出了考虑中主应力影响下桩周土体处于弹性状态和弹塑性状态时注浆压力计算公式以及注浆压力与塑性开展半径的关系式;通过对桩周土体处于不同应力状态时土体注浆开裂与挤密之问的相关关系以及中主应力权系数b和初始应力p_0取不同值时注浆压力p与塑性开展半径r_c的关系进行了分析,为后处理技术注浆施工工艺的优化选择提供理论依据。
     5.基于高速公路双侧对称加宽的工程背景,对加宽路基不进行处理和采用先处理及后处理三种情况下,加宽填土荷载的施工对原有地基和老路路堤的变形性状的影响进行了详细的数值模拟对比分析。
     6.在无砂砼小桩后处理技术在路基加宽工程的应用中,通过对老路坡肩和新加宽路基坡肩位置水平及竖向变形监测结果可知,小桩后处理技术不仅能够增强新老路基之间的结合,而且能够协调新老路基之间的变形,大大减小工后沉降变形。
In recent years, with the rapid growth of economic construction in our country,especially since the accession to the WTO and the development of the logistics industry, city-to-city cooperation between more closely and traffic flow of highway increasing, the considerable portion of highway has been unable to meet the demand of traffic growth and the requirements of the social development, there is an urgent need to expand the capacity of the road. Because the construction of a new highway near the old highway would cause the large-scale of investment and the use of more land, and easily lead to uneven distribution network, the old road widening programme were adopted by the most of China's highway expansion projects at the present stage
     Highway expansion will inevitably involve the integration and link of old and new highway, and mutual influence of old and new embankments and other issues, After years of operating the existing embankment, the settlement has been completed, in its wider expansion on the slope, reclamation of the earth and the operation of the vehicle load is bound to cause additional settlement of the existing roadbed, and the relatively large difference settlement between in the new and old roadbed, then not only will cause deformation of roadbed, while there is a serious road-Kira, have been sinking fast, and other diseases, the immeasurable negative consequences will bring to the normal operation of highway; At the same time, the construction time of widening expansion projects of highway is normally tight, and the construction site is narrow, while also maintaining the normal transport, there are higher demands compared to the construction of a new highway. So it appears to be particularly important that to choose the economic, fast and reliable treatment measures in widening the existing highway to ensure the security operations of the existing highway and the reduceing of the differential settlement between the old and new hughway pavement after widening. Based on the above background of the project, the main contents of the study are listed as follows:
     1. The post-processing technology of small non-sand concrete pile is a new processing technology of thick filling area, through the detailed analysis of the construction technology and the pressure grouting and the post-processing mechanism of small non-sand concrete pile technology, we can see the post-processing technology have preloading, rapid drainage, exhaust consolidation, curing, the vertical displacement, and so on a comprehensive mechanism; Composite foundation with small non-sand concrete pile because of its unique construction process, its bearing capacity related in addition to the engineering and geological conditions, but also to filling materials, grouting and pressure grouting, grouting process and the replacement rate, so the parametersβ_1 (pile capacity to play a factor of small non-sand concretepile) andβ_1 (enhancing factor of bearing capacity of inter-pile soil) were introduced inthe bearing capacity formula of composite foundation with small non-sand concrete pile; Through the analysis of the vertical deformation coordination of the pile-soil, and the soil stress and deformation between the piles of composite foundation with small non-sand concrete pile, the optimal design based on the deformation control was solved
     2. First filling height is a key technical parameters in the post-processing technology of thick filling area, it direct related the economic and social effects of post-processing technology, so different methods of analysis were used for different geological conditions, when the weak saturated with shallow soil, bearing capacity is low, the calculation methods of first filling height based on the twin shear unified strength theory is discussed, which can give full play to the natural foundation of the original capacity, to achieve the purpose of reducing costs; When bearing capacity is high, the methods of analysis based on the stability of embankment can easily determined the first filling height, which eliminated the adverse effects due to filling its own stability before post-processing.
     3. Based on the particularity of widening filling load of thick filling area, analysis of the initial effective stress and ultra-pore water pressure of soil under various forms of loads were carried out; results of pore water pressure and degree of consolidation of soil were obtained in various stages based on the detail analysis of consolidation process for the first filling and construction of hole in the post-processing technology.
     4. Based on the expansion elastic theory of cylindrical cavity and the twin shear unified strength theory, analysis of stress state of soil around the pile and grouting pressure of small non-sand concrete pile is given, grouting pressure is obtained in the elastic limit state and elastic-plastic state of soil around the pile considered the intermediate principal stress, and the relationship is obtained between the grouting pressure and the plastic radius; When the soil around the pile is in different stress state, the correlativity of crack and densification of grouting is analyzed, and the relationship between the grouting pressure p and the plastic radius r_p is discussed withthe right coefficient b of the intermediate principal stress and initial press p_0 underdifferent value, which has provided theoretical basis for optimazation of grouting construction technology of small non-sand concrete pile.
     5. Based on the engineering background of the widening bilateral symmetry of highway, a detailed comparative analysis of the influence of The characters of deformation of the original foundation and the old embankment with the construction of the widening filling load on numerical simulation is carried out considering both cases that widening embankment is not used for processing and use of pre-processing and post-processing.
     6. In the applications of the post-processing technology in the road widening project, through the level and vertical deformation monitoring results of the old sloping shoulders and widening road shoulders slope position, we can see the post-processing technology not only can enhance the combination between the old and new embankment, but also can coordinate deformation between the old and new roadbed, significantly reduce the settlement after construction.
引文
[1]Brauns J.Die Anfangstraglastvon Schottersaulen imbindigen Untergrund[J].Die Bautechnik,1978(8):263-271.
    [2]林孔锱.碎石桩地基的承载力与沉降计算探讨[J].岩土工程学报,1984(2):1-6.
    [3]Goughnour R R,Bayuk AA.Analysis of stone column soli matrix interaction under verticalload[C].Proc.NPCLCPCC.R.Coll,Int,Reinforcement desSols,Paris,1979:271-277
    [4]Goughnour R R.Settlement of vertically loaded stone columns in soft ground[J].Proc.of 8ECSMFE,1983(1):235-240.
    [5]盛崇文.碎石桩复合地基的沉降计算[J].土木工程学报,1986,19(1):72-80.
    [6]郭蔚东.饱和黄土碎石桩地基沉降计算[J].土木工程学报,1989,22(2):13-21.
    [7]陆贻杰,周国均.搅拌桩复合地基模型试验及三维有限元分析[J].岩土工程学报,1989,11(5):86-91.
    [8]韩杰,叶书麟.碎石桩复合地基的有限元分析[J].岩土工程学报,1992,14(5):13-19.
    [9]姜前.计算碎石桩复合地基变形模量的新方法[J].岩土工程学报,1992,14(7):53-57.
    [10]杨有海.加筋碎石桩的承载力分析[J].岩土工程学报,1993,15(5):107-111.
    [11]林琼等.水泥搅拌桩复合地基的特性初探[C].第六届全国土力学与基础工程学术会议论文集[A].上海:同济大学出版社,1991:581-584.
    [12]陈竹昌,王建华.采用弹性理论分析搅拌桩性能的探讨[J].同济大学学报,1996,21(1):17-25.
    [13]段继明,龚晓南,曾国熙.水泥搅拌桩的荷载传递规律[J].岩土工程学报,1994,16(4):1-7.
    [14]吴春林.CFG桩复合地基承载力简易计算方法[J].岩土工程学报,1993,15(2):94-103.
    [15]张雁,黄强.半刚性桩复合地基的性状分析[J].岩土工程学报,1993,15(2),86-93.
    [16]阎明礼.水泥粉煤灰碎石桩复合地基试验研究[J].岩土工程学报,1996,18(2):55-62.
    [17]王盛源,关锦荷,王保田.大粒径碎石桩现场大型综合试验[J].岩土工程学报,1997,19(6):43-48.
    [18]李立新.地基处理方法的模糊选[J].勘察科学技术,1997(2):25-29.
    [19]李立新.软土地基变形的混沌性与承载力识别[J].工程地质学报,1997,5(3):257-261.
    [20]梁伟平,黄宏伟,陆善飞等.粉喷桩固化剂新型材料强度的影响因素[J].岩土工程学报,1998,20(2):23-25.
    [21]金宗川.垫层作用下石灰桩复合地基工作性状[J].岩土工程学报,1998,20(2):37-49.
    [22]蒋军.含竖向增强体复合土体的极限承载力[J].岩土工程学报,1998,20(2):55-58.
    [23]杨天林.论石灰搅拌桩的有效性[J].土木工程学报,1993,26(1):74-78.
    [24]陈环.石灰桩加固软土地基效果分析[J].岩土工程学报,1987,9(6):101-104.
    [25]王伟堂.石灰桩加固软弱地基试验研究[J].岩士工程学报,1987,9(1):72-82.
    [26]叶书麟,韩杰,叶观宝.地基处理与托换技术[M].北京:中国建筑工业出版社,1994.
    [27]Seed H B.Soil Liquefaction and Cyclic Mobility Evaluation for level Ground during Earthquakes[J].JGTD,ASCE,1979,105(2):201-255.
    [28]Seed H B and Booker I B.Stabilization of Potentially Liquefiable Sand Deposits Using grave Drains[J].JGTD,ASCE,1977,103(7):312-335.
    [29]王士风,王余庆.不同布置方案的砾石排水桩防止砂基液化的效果[J].工业建筑,1990(3):11-15.
    [30]龚晓南.复合地基引论[M].杭州:浙江大学出版社,1991.
    [31]郑俊杰,区剑华,吴世明,袁内镇.多元复合地基的理论与实践[J].岩土工程学报,2002,24(2):208-212.
    [32]郭院成,周同和,刘海涛.路基工后沉降控制新技术与桥头跳车处理[C].中国土木工程学会第九届土力学及岩土工程学术会议论文集[A],北京:清华大学出版社,2003.10:766-770.
    [33]李宁,韩煊.单桩复合地基加固机理数值试验研究[J].岩土力学,1999,20(4):42-49.
    [34]李宁,韩煊.复合地基中褥垫作用机理研究[J].岩土力学,2000,21(1):10-15.
    [35]丁洲祥,龚晓南,李又云,唐启.考虑变质量的路基沉降应力变形协调分析法[J].中国公路学报,2005,18(2):6-11.
    [36]杨涛.复合地基沉降计算理论、位移反分析模型和二灰土桩软基加固实验研究[河海大学博士学位论文D].南京:河海大学,1997.
    [37]Randolph M F,Worth C P.Analysis of deformation of vertically loaded piles[J].Journal of the geotechnical engineering division,ASCE,1978,104(12):1465-1488.
    [38]刘杰,张可能.柔性基础下群桩复合地基荷载传递规律及计算[J].岩土力学,2003,24(2):178-182.
    [39]姚笑青.桩基沉降的实践与负摩擦阻力的理论分析[浙江大学博士学位论文D].杭州:浙江大学,1993.
    [40]陈希哲.土力学与地基基础[M].北京:清华大学出版社,1994.
    [41]Alamgir M,Miura N,Poorooshasb H B,M R Madhar.Deformation analysis of soft ground reinforced by columnar inclusion[J].Computers and Geoteehnics,1996,18(4):267-289.
    [42]李海芳,龚晓南.填土荷载下复合地基加固区压缩量的简化算法[J].固体力学学报,2005,26(1):111-114.
    [43]刘添俊,李彰明.公路路堤荷载下水泥土搅拌桩复合地基的沉降计算分析[J].广东土木建筑,2005,(1):18-20.
    [44]张兴强,闫澍旺,赵成刚.台背填土受交通荷载反复作用和桥台影响分析[J].公路,2002,(5):31-35.
    [45]Geddes J D.Stress in Foundation Soils Due to Vertical Subsurface Loading[J].Geotechnique,1966,(16):231-255.
    [46]龚晓南.复合地基[M].浙江大学出版社,1992.
    [47]王启铜.柔性桩的沉降特性及荷载传递规律[浙江大学博士学位论文D].杭州:浙江大学,1991.
    [48]段继伟.柔性桩复合地基数值分析[浙江大学博士学位论文D].杭州:浙江大学,1993
    [49]叶观宝.深层搅拌桩桩身荷载传递量测与分析[C].第三届地基处理学术讨论会论文集[A],杭州:浙江大学出版社,1992:149-156
    [50]刘利民,杨春林,张建新.柔性桩复合地基沉降计算[J].港口工程,1997,(1):31-33
    [51]张忠苗,陈洪,吴慧明.柔性承台下复合地基应力和沉降计算研究[J].岩土力学,2004,25(3):451-454.
    [52]李小杰.高压旋喷桩复合地基承载力与沉降计算方法分析[J].岩土力学,2004,25(9):1499-1502.
    [53]张定.碎石桩复合地基的作用机理分析及沉降计算[J].岩土力学,1999,20(2):81-86.
    [54]池跃军,宋二祥,金淮,高文新.刚性桩复合地基应力场分布的试验研究[J].岩土力学,2003,24(3):339-343.
    [55]宋二祥,沈伟,金淮,刘彦生.刚性桩复合地基—筏板基础体系内力、沉降计算方法[J].岩土工程学报,2003,25(3):268-272.
    [56]沈伟,池跃军,宋二祥.考虑桩、土、垫层协调作用的刚性桩复合地基沉降计算方法[J].工程力学,2003,20(2):36-42.
    [57]徐洋,谢康和,胡茂刚.考虑变形协调的刚性桩复合地基沉降计算[J].岩土工程学报,2003,25(3):268-272.
    [58]潘星.CFG桩复合地基沉降计算探讨[J].岩土力学,2005,26(增刊):248-251.
    [59]葛忻声,温育琳,龚晓南.刚柔组合桩复合地基的沉降计算[J].太原理工大学学报,2002,33(6):647-648.
    [60]饶卫国,赵成刚.复合地基工后沉降的薄板变形模拟[J].应用力学学报,2002,19(2):133-136.
    [61]李海芳,温晓贵,龚晓南.路堤荷载下复合地基加固区压缩量的解析算法[J].土木工程学报,2005,38(3):77-80.
    [62]李海芳,龚晓南.路堤下复合地基沉降影响因素有限元分析[J].工业建筑,2005,35(6):49-51.
    [63]杨涛,殷宗泽.复合地基沉降的复合本构有限元分析[J].岩土力学,1998,19(2):19-25.
    [64]杨涛,徐永福.复合地基沉降计算的复合本构有限元法适应性研究[J].岩土力学,2004, 25(增刊):243-246.
    [65]曾芳金,魏超玉,王军.水泥土搅拌桩复合地基沉降计算方法及有限元分析[J].甘肃水利水电技术,2004,40(2):93-95.
    [66]刘金龙,夏麾.加筋路堤竖向沉降的非线性有限元分析[J].岩土工程技术,2006,20(2):84-87.
    [67]赵尚栋.309国道济南经十东路拓宽改造工程设计[J].山东交通科技,2003(3):12-14.
    [68]王兴旺,黄坦,徐涛.202国道改扩建工程路基加宽及翻浆处理的设计思路和施工控制要点[J].辽宁交通科技,2005(5):16-18.
    [69]梁兵.CFG桩在高速公路软基路段加宽处理中的应用[J].水运工程,2003(8):59-61.
    [70]张敏方,张波,丁建明.EPS材料特性及其在公路拼接中的应用[J].交通标准化,2005(1):58-61.
    [71]蔡国军,朱晓宁,王军.G312拓宽改建路基拼接技术及效果评价[J].路基工程,2006(2):44-48.
    [72]蒋仲渊,张建忠.袋装砂井与土工格栅在软弱地基路基加宽中的应用[J].交通科技,2006(1):40-42.
    [73]李宏逵.单侧加宽路基填筑施工方法[J].辽宁省交通高等专科学校学报,2005,7(4):6-8.
    [74]王艳茹,姜丽敏,付宏博.风化碎石土填筑旧路加宽路基及软土基处理的特点[J].黑龙江交通科技,2001(4):9-13.
    [75]李会群.改建工程路基拓宽和加高的处理[J].广西交通科技,2001,26(4):60-61.
    [76]张湧.高等级公路路基加宽工程特点及技术对策[J].路基工程,2006(2):8-9.
    [77]祖学东.高速公路改建路基加宽施工技术[J].铁路工程造价管理,2005(3):51-56.
    [78]黎志光.高速公路加宽扩建工程新老路衔接的处理措施[J].广东公路交通,2001(2):9-10.
    [79]王波,张朋声.高速公路路基病害成因及在改扩建工程中保证加宽质量的措施研究[J].交通标准化,2006(2/3):124-127.
    [80]张丽新,王志军,孙莞.高速公路路基加宽施工技术[J].辽宁省交通高等专科学校学报,2004,6(1):48-49.
    [81]王海溶.高速公路拼接路基施工技术探讨[J].公路,2005(10):137-140.
    [82]钱军,王惠勇,林琳,黄海明,朱晓宁.高速公路拓宽改造工程路基拼接技术应用综述[J].现代交通技术,2005(6):16-20.
    [83]方国民.公路路堤加宽的沉降差异及其相互作用[J].建材技术与应用,2006(2):44-46.
    [84]刘芳兰,燕平,李海军.公路路基拓宽处理方法探讨[J].湖南交通科技,2006,32(1):34-35.
    [85]毛爱明.公路拓宽的沉降分析和技术处理[J].公路,2005(8):85-87.
    [86]陈海珊,胡永深.广佛高速公路加宽工程的软基处理[J].广东公路交通,1998(3):47-50.
    [87]刘建兰,龚照东.沪宁高速公路(江苏段)拓宽路面的拼接施工技术[J].上海公路,2005(4):33-36.
    [88]王新安,张树山,李劲,刘志.旧路加宽沉降理论分析[J].黑龙江交通科技,2002(11):5-9.
    [89]朱蕊.旧路加宽的变形分析[J].青海交通科技,2005(5):27-30.
    [90]张艳.旧路加宽改造综合处治技术的探析[J].黑龙江交通科技,2005(2):20-26.
    [91]孙四平,侯芸,郭忠印,吴志昂.旧路加宽综合处治技术的模型试验研究[J].合肥工业大学学报,2004,27(5):513-517.
    [92]王占宇,郭占余.旧路路基拓宽处理浅析[J].辽宁交通科技,2004(8):37-38.
    [93]黄琴龙,凌建明,唐伯明,蒙华.旧路拓宽工程的病害特征和机理[J].同济大学学报,2004,32(2):197-201.
    [94]王云祥,王鹏艳,苑巍,李冲.旧路加宽施工的做法与体会[J].辽宁交通科技,2005(9):21-22.
    [95]刘桂强.软弱地基上旧路加宽的路基综合处治设计[J].城市道桥与防洪,2005(2):26-29.
    [96]国莉.软土地基公路扩建加宽工程的研究[J].交通世界,2006,2(3):77-79.
    [97]高翔,刘松玉,石名磊.软土地基上高速公路路基扩建加宽中的关键问题[J].公路交通科技,2004,21(2):29-33.
    [98]刘奉侨,曲向进,聂鹏,马松林.沈大高速公路改扩建工程路基加固技术[J].辽宁交通科技,2005(1):1-7.
    [99]吴波,张傲宁.沈大高速公路路基改造技术应用[J].辽宁交通科技,2004(10):89-90.
    [100]刘守良.沈大高速公路路基加宽改造及质量控制[J].辽宁交通科技,2004(5):4-5.
    [101]马东旭,李卫兵,李魏红,王永明.土工格栅砂砾垫层在软弱地基路基加宽段的应用设计[J].安阳工学院学报,2005(3):23-25.
    [102]孙向前.土工格栅在道路拓宽改造工程中的应用[J].山西交通科技,2004(2):20-21.
    [103]张清平,周志刚.土工合成材料在旧路加宽中的机理研究[J].公路与汽运,2006(1):93-95.
    [104]郑明辉,曹小林,袁明.新加宽路基填筑对既有路堤工后沉降的影响分析[J].铁道工程学报,2005(3):47-49.
    [105]周宇,肖裕民.新旧路基拓宽常见病害分析[J].重庆交通学院学报,2006,25(1):71-74.
    [106]章定文,刘松玉.软土地基上高速公路加宽工程中的问题与对策探讨[J].路基工程,2004(3):34-38.
    [107]Wu T H.Effectiveness of tensile reinforcement in alleviating bridge approach[C].Geosynthetics '89 Conference[A].[s.1.]:[s.n.],1989:104-111.
    [108]Mitchell J K,Villet W C B.Reinforcement of earth slops and embankment[C].NCHRP Report 290[C/CD]:Washington D C:TRB,1987.
    [109]Andrews B.RN 2000 EYRE highway,(South Austrilia) pavement rehabilitation[C].http//www.csstech.com/eyebg.html,2002-02-06.
    [110]H.G.B.Allersma,L.Ravenswaay,E.Vos.Investigation of road widening on soft soil using a small centrifuge[J].Transportation research record 1462.1994:47-53.
    [111]Vos.E.,J.F.Couvreur,M.Vermaut.Comparison of numerical analysis with field data of a road widening project on peaty soil[C].Proc.International Workshop:Advances in understanding and modeling the mechanical behavior of peat[A].Roterdam:Balkema,1994:267-274.
    [112]A.N.G.Van Meurs,A.Van Den Berg,et.Embankment widening with the gap-method[C].Geotechnical engineering for transportation Infrastructure[J].Roterdam:Balkema,1999:1133-1138.
    [113]Juha Foreman.Veli-Matti Uotinen.Synthetic reinforcement in the widening of a road embankment on soft ground[C].Geotechnical engineering for transportation in frastructure[A].Balkema:Rotterdam,1999:1489-1496.
    [114]Horvath J S.Expanded polystyrene (ESP) geofoam:an introduction to material behavior[J].Geotextiles and Geomembrances,1994,(13):263-280.
    [115]Duskov M.Materials research on EPS20 and EPS 15 under representative conditions in pavement structures[J].Geotextiles and Geomembrances,1997(15):147-181.
    [116]D.J.Thompsett.Design and construction of expended polystyrene embankments[J].Construction and Building Materials.1995,9(6):402-411.
    [117]Giselher Beinbrech.EPS in road construction-current situation in Germany[J].Geotextiles and Geomembrances.1997(15):39-57.
    [118]Horvath J S.Special issue on geofoam:Overview and Summary[J].Geotextiles and Geomembrances,1997(15):1-3.
    [119]A.G.I.Hjortnaes-Pedersen,H.Broers.The behaviour of soft subsoil during construction of an embankment and its wideningfC].Proc.Centrifuge 94[A].Roterdam:Balkema,1994:567-574.
    [120]B.J.Brinkgreve,P.A.Vermeer.Constitutive aspects of an embankment widening project[C].Proc.International Workshop:Advances in understanding and modeling the mechanical behavior of peat[A].Roterdam:Balkema,1994:143-158.
    [121]Richard J.Deschamps,Christopher S.Hynes,Philippe Bourdeau.Embankment widening design guidelines and construction procedures[R].Research Project Final Report:Purdue University,1999.
    [122]Jones,C.J.F.P.,Lawson,C.R .,Ayres,D.J..Geotextile reinforced piled embankments[C].Proc.4th Int.Conf.on Geotextiles:Geomembranes and related products,Den Hoedt[A].Roterdam:Balkema,1990,155-160.
    [123]Han,J.,Gabr,M.A..Numerical analysis of Geosynthetic-reinforced and pile-supported earth platforms over soft soil[J].Geotechnical and Geoenvironmental Engineering,ASCE.2002,128(1):44-53.
    [124]Hewlet,W.J.,Randolph,M.F..Analysis of piled embankments[J].Ground Engineering,1998,21(3):12-18.
    [125]Han,J.,Akins,K..Use of geogrid-reinforced and pile-supported earth structures[C].Procee dings of International Deep Foundation Congress,ASCE,2002:668-679.
    [126]American Association of State Highway and Transportation Officials(AASHTO).Innovative Technology for accelerated construction bridge and embankment foundations[R].AAS HTO Preliminary Summary Report,2002:1-11.
    [127]Low,B.K.,Tang,S.K,Choa,V..Arching in piled embankments[J].Journal of Geotechnical Engineering,ASCE,1993,120(11):1917-1938.
    [128]周志刚,郑健龙.旧路拓宽设计中的有限元分析[J].力学与实践,1995,17(5):18-20.
    [129]苏超,徐泽中,吴钰.高速公路拼接段地基参数反分析方法及其应用[J].河海大学学报,2000,28(6):38-42.
    [130]汪浩,黄晓明.软土地基上高速公路加宽的有限元分析[J].公路交通科技,2004,21(8):21-24.
    [131]蒋鑫,邱延峻.旧路拓宽全过程三维有限元分析[J].工程地质学报,2005,13(3):419-423.
    [132]聂鹏,曲向进,刘奉侨,丛林,郭忠印.沈大高速公路改扩建工程路基加宽容许工后不均匀沉降指标研究[J].公路交通科技,2005,22(11):18-21.
    [133]张留俊,王福胜,刘建都著.高速公路软土地基处理技术[M].北京:人民交通出版社,2002.
    [134]张诚厚,袁文明,戴济群.高速公路软基处理[M].北京:中国建筑工业出版社,1997.
    [135]王晓谋,袁怀宇编著.高等级公路软土地基路堤设计与施工技术[M].北京:人民交通出版社,2001.
    [136]张学言,闫澍旺.岩土塑性力学基础[M].天津:天津大学出版社,2004.
    [137]俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998.
    [138]俞茂宏.岩土类材料的统一强度理论及其应用[J].岩土工程学报,1994,16(2):1-10.
    [139]Mao-Hong Yu.Unified strength theory and it's applications[M].The Press of Springer-verlag,Berlin,Germany,2004.
    [140]胡中雄编著.土力学与环境土工学[M].上海:同济大学出版社,1998.
    [141]王宗生.软土泥沼地区公路路堤临界高度确定[J].东北公路,1994,1:23-26.
    [142]Vesic A S.Expansion of cavities in infinite soil mass[J].Proc.ASCE,1972,SM3:265-291.
    [143]蒋明镜,沈珠江.考虑材料应变软化的柱形孔扩张问题[J].岩土工程学报,1995,17(4):10-19.
    [144]王晓鸿,王家来,梁发云.应变软化岩土材料内扩孔问题解析解[J].工程力学,1999,16(5):71-76.
    [145]罗战友,杨晓军,龚晓南.考虑材料的拉压模量不同及应变软化特性的柱形孔扩张问题[J].工程力学,2004,21(2):40-45.
    [146]梁发云,陈龙珠.应变软化Tresca材料中扩孔问题解答及其应用[J].岩土力学,2004,25(2):261-265.
    [147]蒋明镜,沈珠江.考虑剪胀的弹脆塑性软化柱形孔扩张问题[J].河海大学学报,1996,24(4):65-72.
    [148]蒋明镜,沈珠江.考虑剪胀的线性软化柱形孔扩张问题[J].岩石力学与工程学报,1997,16(6):550-557.
    [149]周小平,张永兴,王建华.考虑中间主应力影响的圆筒形孔扩张问题的弹塑性解[J].重庆建筑大学学报,2002,24(2):35-38.
    [150]范文,廖红建,陈立伟.考虑材料剪胀及软化的扩孔问题的统一解[J].西安交通大学学报,2003,37(9):957-961.
    [151]王延斌,范文,徐栓强.基于统一强度理论的柱形孔扩张问题研究[J].岩土力学,2003,24(增刊):125-132.
    [152]李波,栾茂田.基于SMP破坏准则的柱形孔扩张问题理论解析[J].大连理工大学学报,2006,46(2):246-251.
    [153]曹黎娟,赵均海,魏雪英.基于统一强度理论的灰土挤密桩应力分析[J].岩土力学,2006,27(10):1786-1790.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700