用户名: 密码: 验证码:
中温固体氧化物燃料电池梯度多孔阴极制备及性能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)以其高的能量转化率,全固态组件以及燃料多样性等优点成为近年来燃料电池领域研究的热点。研究和开发在中低温(600-800℃)工作的固体氧化物燃料电池(Intermediate temperature solid oxide fuel cells, IT-SOFCs),可以扩大组元材料的选择范围并且有效地提高电池长期运行的稳定性,是目前固体氧化物燃料电池的发展方向。但是,工作温度的降低使电解质的欧姆阻抗迅速增加,同时电极的界面阻抗增大,通过采用阳极支撑的电池结构以及电解质薄膜化技术可以解决电解质欧姆阻抗随温度降低而升高的问题。因此,降低中低温下电极极化过电位,尤其是氧在阴极的还原反应所导致的极化损失,是提高IT-SOFCs性能的一种有效方法。目前可以降低阴极极化阻抗的途径主要有以下几种:(1)使用在中低温温度下具有更高催化活性的离子-电子混合导体;(2)添加第二相氧离子传导材料制备复合电极;(3)通过优化阴极的微观结构,使极化损失达到最小。在本研究中,采用流延成型工艺制备La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极并通过微观结构的优化,提高了LSCF阴极在中低温下的电化学性能;使用溶液浸渗工艺对LSCF多孔阴极表面改性,从而提高了电池长期运行的稳定性和可靠性。
     LSCF由于其高的离子-电子混合导电性成为近年来IT-SOFC阴极材料研究的热点。在本论文中,研究了不同造孔剂对LSCF阴极微观形貌和电化学性能的影响,通过不同的合成方法制备不同粒径的LSCF粉体,在此基础上,采用流延成型工艺制备了颗粒粒径、气孔大小以及气孔率呈梯度变化的三层LSCF阴极。研究表明,当内层(与电解质接触层)石墨含量为10wt%,中间层石墨和淀粉含量分别为15wt%,外层淀粉含量为35wt%,烧结温度为1050℃时,LSCF梯度多孔阴极在800-650℃的界面极化阻抗分别为0.053,0.11,0.27,0.65Ωcm2,低于文献中报道的采用不同工艺制备的单一结构LSCF阴极;以加湿的氢气为燃料,梯度LSCF为阴极的Ni-YSZ/YSZ/SDC/LSCF单电池在800和700℃操作温度下的最大功率密度分别为1.0和0.58 Wcm-2;SEM扫描图显示LSCF梯度阴极与SDC过渡层及YSZ电解质之间烧结良好,且三层LSCF阴极之间也没有明显裂纹出现。对梯度LSCF阴极的交流阻抗谱分析发现,通过微观结构的优化能够改善阴极/电解质界面,并能促进氧在阴极内部的传输和吸附,从而进一步提高阴极材料的电化学反应活性。
     虽然LSCF阴极在中低温下显示出良好的反应活性,然而与传统阴极材料La0.85Sr0.15MnO3-δ(LSM)相比,其长期稳定性并不理想。在本论文的第二部分,采用浸渗工艺对LSCF多孔阴极进行表面修饰,以提高LSCF阴极的电化学性能和长期稳定性。本论文首先以离子传导氧化物Sm0.2Ce0.8O2-δ(SDC)作为浸渗材料,采用一次浸渗工艺制备了LSCF-SDC复合电极。XRD图谱表明LSCF-SDC复合电极中没有其它物相生成;SEM显示新生成的SDC颗粒粒径为20-80nm,在LSCF表面分散均匀且具有较小的粒径分布。当浸渗量为10μL,浸渗浓度为0.25mol/L时,LSCF-SDC复合电极的界面极化阻抗最小,在800-650℃分别为0.041,0.074,0.17和0.44Ω-cm2,比纯LSCF阴极的界面极化阻抗降低约~50%。浸渗溶液浓度从0增加至0.35mol/L时,欧姆阻抗在800和650℃时均没有明显变化,LSCF-SDC复合电极性能的提高归因于LSCF表面反应活性区域的增加。以加湿的氢气为燃料, SDC浸渗LSCF为阴极的阳极支撑的薄膜电解质单电池在800℃和750℃操作温度下的输出功率密度分别为1.11和0.85 Wcm-2。100小时测试表明,SDC浸渗LSCF阴极后的电池稳定性有所提高。这说明采用SDC氧离子导体浸渗,不仅能够提高LSCF阴极电化学性能,也有助于稳定性能的提高。
     本论文的第三部分以LSM为浸渗剂,制备了LSCF-LSM复合阴极,研究了极化条件下LSCF-LSM阴极的电化学性能和长期稳定性,并对LSCF阴极的衰减机理和LSM浸渗LSCF (LSCF-LSM)阴极的增强机理进行了初步探讨。700℃时纯LSCF阴极和LSCF-LSM阴极在不同极化偏压下的交流阻抗谱表明,在开路状态下,LSCF-LSM阴极的界面极化阻抗为0.35Ωcm2,高于纯LSCF的阻抗0.24Ωcm2。这是由于LSM为纯电子导体,与具有高离子-电子混合导电性的LSCF阴极相比,具有较少的TPB反应活性区域,因此电化学活性较差。继续增加阴极极化过电位,LSCF-LSM阴极的界面阻抗迅速下降,而LSCF阴极的界面阻抗降低缓慢。当阴极极化过电位为80mV时,纯LSCF阴极的界面极化阻抗为0.21Ωcm2,而LSM浸渗后LSCF阴极的界面极化阻抗降低至0.18Ωcm2。LSCF-LSM/SDC/YSZ/NiO-YSZ电池则表现出良好的稳定性能,且电池输出电压(加载电流为400mA/cm2)在测试时间内一直增长,120小时测试后的输出电压为0.753V;经过120小时放电后,电池在700℃的最大输出功率达到0.40/Wcm2,比电池放电测试前的功率高27%。
     采用无线电频率磁电管溅射工艺分别制备了LSCF以及LSM涂覆的LSCF电池模型,并对两者在相同极化条件下的电化学性能进行了研究。结果表明,LSM涂覆LSCF阴极具有更好的表面催化活性,在一定程度上增强了LSCF阴极表面的氧交换反应,提高了LSCF在极化条件下的电化学催化性能。拉曼光谱分析发现,对于LSM涂覆LSCF阴极在极化测试前后并没有发现波数偏移现象,说明LSM涂覆能够抑制LSCF中Sr的迁移,从而提高LSCF阴极在工作状态下的长期稳定性。
Solid oxide fuel cells (SOFCs) have attracted much attention due to their high energy efficiency, modularity, and excellent fuel capability. To study and develop intermediate temperature solid oxide fuel cells (IT-SOFCs), which operate at 600-800℃, is the developmental direction of SOFCs in order to widen the selectivity of component materials and improve the reliability of SOFC system. On the other hand, the overall electrochemical performance of SOFC will decrease as temperature drops. This is mainly due to the increased polarization resistances for electrode reactions and the decreased electrolyte conductivity at lower temperature.
     The resistive contribution of the electrolyte can be reduced by decreasing the thickness of electrolyte to the microscale on an anode-supported structure. Thus, the overall performance loss is increasingly dominated by the polarization loss of the electrode reactions, and especially the cathode one. There are several approaches which can be employed to decrease the cathodic polarization resistance:(1) using mixed ionic-electronic conductor materials with higher catalytic activity at lower temperature; (2) adding an ionically conducting second phase to form a composite cathode; (3) optimizing the microstructure of the cathode, such as the pore size, porosity and grain size. During recent years, many research efforts have been made to develop alternative cathodes or composite with high performance but few studies have been conducted to optimize properties by microstructure design.
     La0.6Sr0.4Co0.2Fe0.8O3-δperovskite oxide has been extensively investigated and utilized as a cathode material for IT-SOFCs due to its high ionic and electronic conductivity at lower temperatures. In this thesis, the effects of pore formers on microstructure and electrochemical performance of LSCF were studied firstly, then, LSCF powders with different particle sizes were synthesized using different synthesis methods. Based on these results, the 3-layer LSCF cathodes with graded grain size, pore size and porosity were fabricated by low-cost tapecating technique. It was showed that when graphite content for inner layer is 10wt% and corn starch content for outer layer is 35wt%, the graded LSCF fired at 1050℃exhibited the best performance. The lowest interfacial resistances at 800-650℃were 0.053,0.11,0.27 and 0.65Ω·cm2, respectively, which were much lower than that reported in literatures. The maximum power density of Ni-YSZ| YSZ| SDC| LSCF cell with graded LSCF cathode is 1.0 and 0.58 Wcm-2 at 800 and 700℃, respectively. SEM micrographs showed that 3-layer porous structure was good bonded to the electrolyte support and no cracking can be found among different layers. Impedance spectra analysis showed that both charge transfer reactions and the oxygen mass transport were enhanced for graded porous LSCF cathode.
     While cells with (La, Sr)(Co, Fe)O3-δcathodes offer significantly higher power densities than those with La(Sr)MnO3 cathodes, long-term stability of LSCF cathodes seem to be a concern. Thus, the following part in this thesis would focus on modification of LSCF surface by infiltration process to improve the electrochemical performance and long term stability. In first part, LSCF-Sm0.2Ce0.8O1.95 (SDC) composite cathode was fabricated by infiltration using SDC as infiltrant. XRD spectra showed that the phase formation temperature of SDC was 900℃and no other phase was found in SDC infiltrated LSCF cathode at this temperature. The diameters of new formed SDC nanoparticles were around 20-80nm, which are distributed uniformly on the surface of LSCF backbone with narrow size distribution. The SDC particle size can be controlled by changing concentration of infiltrated solution. Impedance analysis indicates that the SDC infiltration has dramatically reduced the polarization of LSCF cathode, reaching the lowest interfacial resistances of 0.074, and 0.44Ω·cm2 at 750 and 650℃, respectively, which was more than 50% improvement as compared to measurement on the blank LSCF cathode. Meanwhile, ohmic resistance of the symmetrical cell at 800 and 650℃did not show ant increase when the concentration of infiltrant increasing from 0 to 0.35mol/L. The dramatic decrease in the electrode polarization resistance is mainly attributed to the extension of triple phase boundary (TPB) reaction area. The maximum power density of anode-supported cell with SDC infiltrated LSCF cathode was about 1.11 and 0.85 Wcm-2 using H2+3%H2O as fuel. Furthermore, the infiltrated cell showed improved long-term stability within the time range of testing although the detailed mechanism is yet to be determined. These results indicated that the potential promise of ionic conductor infiltration as a method for enhancing the electrocatalytic activities and long-term stability of MIEC cathodes such as LSCF.
     The last part in this thesis studied La0.85Sr0.1503-δ(LSM) infiltrated LSCF cathodes. The electrochemical performance of LSCF-LSM electrodes and long term stability was investigated under cathodic polarization. At last, the mechanism of LSCF degradation and LSM enhanced LSCF cathode stability was analyzed. The resistance impedance spectra of blank LSCF and LSM infiltrated LSCF cathode under different overpotentials at 700℃showed that under open circuit, the interfacial resistance of LSM infiltrated LSCF cathodes was 0.35Ω·cm2, higher than that of blank LSCF cathodes 0.24Ω·cm2. This was because LSM was pure electronic conductor with less TPB length comparing with mix-conducting LSCF materials. While continuing increasing the cathodic overpotentials, the interfacial resistance of LSM infiltrated LSCF cathodes decreased dramatically. In contrast, the interfacial resistance of LSCF cathodes decreased slowly at the same conditions. The interfacial resistance of LSM infiltrated LSCF cathodes was 0.18Ω·cm2 comparing that of 0.21Ω·cm2 for blank LSCF cathodes. The cell Ni-YSZ| YSZ| SDC| LSCF-LSM showed good stability during 120h test and the output voltage (at 400 mA/cm2 constant current) was increasing all the time. The output voltage was 0.753V operation and the maximum power density was 0.401 Wcm-2 at 700℃after 120h operation, implying about 27% improvement.
     A new electrode prepared by radio frequency (RF) sputtering is designed to study the electrochemical reactions on the air-exposed surface. It was found that LSM thin film enhanced surface activity for oxygen reduction reaction and the electrochemical performance was improved for LSM coated LSCF cathode under polarization conditions. Raman spectroscopy showed that no obvious main peaks shift were experienced for LSM coated LSCF cathode before and after polarization, representing superior stability of this new cathode.
引文
[1]孟广耀.陶瓷膜燃料电池(CMFC)—新型高效绿色能源的发展方向[J].新材料产业,2005,(7):35-38.
    [2]N.Q. Minh and T.Takahashi. Science and Technology of Ceramic Fuel Cells. Elsevier Science B.V., Amsterdam, Netherlands,1995.
    [3]S.D. Park, M.J. Vohs, R.J. Gorte. Direct Oxidation of Hydrocarbons in a Solid Oxide Fuel Cell. Nature,2000,404:265-267.
    [4]O. Costa-Nunes, J.M. Vohs and R.J. Gorte. A Study of Direct Conversion SOFC with n-Butane at Higher Fuel Utilization. J. Electrochem. Soc.,2003,150[7]:A858-A863.
    [5]B.C.H. Steele. Running on Natural Gas. Nature,1999,400:619-621.
    [6]H. Kim, S. Park, J.M. Vohs and R.J. Gorte. Direct Oxidation of Liquid Fuels in a Solid Oxide Fuel Cell. J. Electrochem. Soc.,2001,148[7]:A693-A695.
    [7]G.J. Saunders, J. Preece and K. Kendall. Formulating Liquid Hydrocarbon Fuels for SOFCs. J. of Power Sources,2004,131:23-26.
    [8]Z.F. Zhou, C. Gallo, M.B. Pague, H. Schobert and S.N. Lvov. Direct Oxidation of Jet Fuels and Pennsylvania Crude Oil in a Solid Oxide Fuel Cell. J. of Power Sources,2004, 133:181-187.
    [9]L. Aguilar, S. Zha, Z. Cheng, J. Winnick and M. Liu. A Solid Oxide Fuel Cell Running on Hydrogen Sulfide and Sulfur-Containing Fuels. J. of Power Sources,2004,135:17-24.
    [10]Subhash C. Singhal and Kevin Kendall. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Application. Elsevier Limited,2003.
    [11]http://americanhistory.si.edu/fuelcells/so/sofcmain.htm
    [12]Brian C. H. Steele and Angelika Heinzel. Materials for fuel-cell technologies. Nature,2001, 414:345-352.
    [13]http://fossil.energy.gov/programs/powersystems/fuelcells
    [14]http://www.fuelcelltoday.com/media/pdf/archive
    [15]http://www.netl.doe.gov/publications/press/2009
    [16]http://science.nasa.gov/headlines/y2003/18mar_fuelcell.htm
    [17]T. Z. Sholklapper. Nanostructured Solid Oxide Fuel Cell Electrodes. PhD dissertation, University of California, Berkeley,2007.
    [18]Y. Liu. Fabrication of Nanostructures Electrodes and Interfaces Using Combustion CVD. PhD dissertation, Georgia Institute of Technology,2005.
    [19]http://www.csa.com/discoveryguides/fuecel/overview.php
    [20]Harumi Yokokawa, Natsuko Sakai, Teruhisa Horita and Katsuhiko Yamaji. Recent developments in solid oxide fuel cell materials. Fuel cells,2001,1(2):117-131.
    [21]D. Brdar, C. Bentley, M. Farooque, P. Oei, T. Rauseo, Honolulu, Hawaii. Fuel Cells in Paradise-30th Anniversary, Fuel Cell Seminar,2006.
    [22]J.W. Kim, A.V. Virkar, K.Z. Fung, et al. Polarization Effects in Intermediate Temperature, Anode-Supported Solid Oxide Fuel Cells. J. Electrochem. Soc.,1999,146:69-78.
    [23]A.J. Appleby, F.R. Foulkes. A fuel cell handbook,2nd Ed. Kreiger Publshing Co.22.
    [24]S. P. S. Badwal. Zirconia-Based Solid Electrolytes:Microstructure, Stability and Ionic-Conductivity. Solid State Ionics,1992,52(1-3):23-32.
    [25]Y. Arachi, H. Sakai and O. Yamamoto. Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system. Solid State Ionics,1999,121:133-139.
    [26]S.P.S. Badwal. Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cell operation. Solid State Ionics,2000,136-137:91-99.
    [27]N. Q. Minh. Ceramic Fuel Cells. J. Am. Ceram. Soc.,1993,76[3]:563-88.
    [28]http://www.doitpoms.ac.uk/tlplib/fuel-cells/printall.php
    [29]M.G. Chourashiya, J.Y. Patil and S.H. Pawar. Studies on structural, morphological and electrical properties of Ce1-xGdxO2-(x/2). Materials Chemistry and Physics 109 (2008) 39-44.
    [30]A. Tsoga, A. Naoumidis, D. Stover. Total electrical conductivity and defect structure of ZrO2-CeO2-Y2O3-Gd2O3 solid solutions. Solid State Ionics,2000,135:403-409.
    [31]Riccardo Polini, Alessia Falsetti and Enrico Traversa. Sol-gel synthesis, X-ray photoelectron spectroscopy and electrical conductivity of Co-doped (La, Sr)(Ga, Mg)O3-δ perovskites. J. Euro. Ceram. Soc.,2007,27:4291-4296.
    [32]K. Yamaji, T. Horita, M. Ishikawa, N. Sakain and H. Yokokawa. Chemical stability of the Lao.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere. Solid State Ionics,1999, 121:217-224.
    [33]S.W. Tao, F.W. Poulsen, GY. Meng and O.T. Sorensen. High-temperature stability study of the oxygen-ion conductor La0.9Sr0.1Ga0.8Mg0.2O3-x, J. Mater. Chem.,2000,10:1829-1835.
    [34]H. Iwahara, H.Uchida, K. Ono, et al. Proton Conduction in Sintered Oxides Based on
    BaCeO3. J. Electrochem. Soc.,1988,135:529-533.
    [35]K.H. Ryu, S.M. Haile. Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions. Solid State Ionics,1999,125:355-367.
    [36]A. Mineshige, S. Okada, K. Sakai, et al. Oxygen nonstoichiometry in SrCeO3-based high-temperature protonic conductors evaluated by Raman spectroscopy. Solid State Ionics, 2003,41:162-163.
    [37]N. Bonanos, K.S.Knight and B. Ellis. Perovskite solid electrolytes:Structure, transport properties and fuel cell applications. Solid State Ionics,1995,79:161-170.
    [38]K. Katahira, Y. Kohchi, T. Shimura, et al. Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics,2000,138:91-98.
    [39]C. Zuo, S. Zha, M. Liu. Ba(Zr0.1Ce0.7Y0.2)O3_δ as an Electrolyte for Low-Temperature Solid Oxide Fuel Cells. Adv. Mater.,2006,18:3318-3320.
    [40]Kostogloudis, Ftikos Ch. Properties of A-site deficient La0.6Sr0.4Co0.2Fe0.8O3-δ based perovskite oxides. Solid State Ionics,1999,126:143-151.
    [41]Doshj, V. Rajiv Richards, J.Carter. Development of solid-oxide fuel cells that operate at 500 ℃. J. Electrochem. Soc.,1999,146:1273-1278.
    [42]L.W. Tai, M.M.Nasrallah, H.U.Anderson, et al. Structure and electrical properties of LaxSr1-xCoyFe1-yO3. Part 1:The system La0.8Sr0.2CoyFe1-yO3. Solid State Ionics,1995, 76:259-271.
    [43]L.W. Tai, M.M.Nasrallah, H.U.Anderson,etc. Structure and electrical properties of LaxSr--xCoyFe1-yO3. Part 2:The system La1-xSrxCo0.2Fe0.8O3. Solid State Ionics,1995, 76:273-283.
    [44]F. Tietz, V.A.C. Haanappel, A. Mai, et al. Performance of LSCF cathodes in cell tests. J. Power Sources,2006,156:20-22.
    [45]J.Y. Kim, V.L. Sprenkle, N.L. Canfield, et al. Effects of chrome contamination on the performance of La0.6Sr0.4Co0.2Fe0.8O3 cathode used in solid oxide fuel cells. J. Electrochem. Soc.,2006,153:A880-A886.
    [46]A. Mai, M. Becker, W. Assenmacher, et al. Time-dependent performance of mixed-conducting SOFC cathodes. Solid State Ionics,2006,177:1965-1968.
    [47]S.P. Simmer, M. D. Anderson and M.H. Engelhard. Degradation Mechanisms of La-Sr-Co-Fe-O3 SOFC Cathodes. Electrochemical and Solid-State Letters,2006, 9:A478-A481.
    [48]H. Fukunaga, M. Koyama, N. Takahashi, et al. Reaction model of dense Sm0.5Si0.5CoO3 as SOFC cathode. Solid State Ionics,2000,132:279-285.
    [49]Xia C R, W Rauch, F L Chen, et al. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics,2002,149:11-19.
    [50]X. Zhang, J. Gazzarri, M. Robertson, et al. Stability study of cermet-supported solid oxide fuel cells with bi-layered electrolyte. J. Power Sources,2008,185:1049-1055.
    [51]M. Backhaus-Ricoult. Interface chemistry in LSM-YSZ composite SOFC cathodes. Solid State Ionics,2006,177:2195-2200.
    [52]L. Zhang, F. Zhao, Ranran Peng, et al. Effect of firing temperature on the performance of LSM-SDC cathodes prepared with an ion-impregnation method. Solid State Ionics,2008, 179:1553-1556.
    [53]G. Dotelli, C. M. Mari, R. Ruffo, et al. Electrical behavior of LSGM-LSM composite cathode materials. Solid State Ionics,2006,177:1991-1996.
    [54]V. Dusastre, J. A. Kilner. Optimization of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics,1999,126:163-174.
    [55]Y.J. Leng, S.H. Chan, S.P. Jiang, et al. Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ionics,2004,170:9-15.
    [56]X. Zhang, M. Robertson, S. Yick, et al. Sm0.5Sr0.5CoO3+Sm0.2Ce0.8O1.9 composite cathode for cermet supported thin Sm0.2Ce0.8O1.9 electrolyte SOFC operating below 600℃. Journal of Power Sources,2006,160:1211-1216.
    [57]邹玉满,王世忠.湿化学法制备Sm0.5Sr0.5CoO3-La0.8Sr0.2Ga0.8Mg0.15Co0.05O3复合阴极及其性能表征.物理化学学报,2006,22(8):958-961.
    [58]E. V. Tsipis, V. V. Kharton. Electrode materials and reaction mechanisms in solid oxide fuel cells:a brief review. Solid State Electrochem.,2008,12:1367-1391.
    [59]R. Vaben, D. Simwonis, D. Stover. Modelling of the agglomeration of Ni-particles in anode of solid oxide fuel cells. Journal of Materials Science,2001,36:147-151.
    [60]Wang J B, Jiun-Ching J, Huang T J. Study of Ni-samaria-doped ceria anode for direct oxidation of methane in solid oxide fuel cells. J. Power Sources,2003,122:122-131.
    [61]F. Meschke, F.J. Dias, F. Tietz. Porous Ni/TiO2 substrates for planar solid oxide fuel cell
    applications. Journal of Materials Science,2001,36:5719-5728.
    [62]K. Kendall. Progress in solid oxide fuel cell materials. International Materials Reviews,2005, 50:257-264.
    [63]K. Kendall, J. Preece and G. Saunders. Formulating liquid hydrocarbon fuels for SOFCs. J. Power Sources,2004,131:23-26.
    [64]Olga C N, Raymond J G, John M V. Comparison of the performance of Cu-CeO2-YSZ and Ni-YSZ composite SOFC anodes with H2, CO, and syngas. J. Power Sources,2005, 141:241-249.
    [65]R. J. Gorte, J.M. Vohs and S. McIntosh. Recent developments on anodes for direct fuel utilization in SOFC. Solid State Ionics,2004,175:1-6.
    [66]L. Yang, S. Wang, K. Blinn, et al. Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs:BaZr0.1Ce0.7Y0.2-xYbxO3-δ.Science,2009,326:126-129.
    [67]T. Horita, K.Yamaji, N. Sakai, et al. Electrode reaction of La1-xSrxCoO3-d cathode on La0.8Sr0.2Ga0.8Mg0.2O3-y electrolyte in solid oxide fuel cells. J. Electrochem. Soc.,2001, 148:456-462.
    [68]S.B. Alder. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews,2004,104:4791-4843.
    [69]M. Godickemeier, K. Sasaki and L.J. Gauckler. Electrochemical Characteristics of Cathodes in Solid Oxide Fuel Cells Based on Ceria Electrolyte. J. Electrochem. Soc.,1997, 144:1635-1645.
    [70]S.B. Alder, J.A. Lane and B.C.H. Steele. Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes. J. Electrochem. Soc.,1996,14:3554-3564.
    [71]G. J. IaO, B. Yildiz, S. McEuen and Y. Shao-Horn. Probing oxygen reduction reaction kinetics of Sr-doped LaMnO3 supported on Y2O3-stabilized ZrO2. J. Electrochem. Soc.,2007, 154:B427-B438.
    [72]B. Kieback, A. Neubrabd and H. Riedel. Processing techniques for functionally graded materials. Materials Science and Engineering,2003, A362:81-105.
    [73]N.T.Hart, N.P.Brandon, M.J.Day, et al. Functionally graded cathodes for solid oxide fuel cells. Journal of Materials Science,2001,36:1077-1085.
    [74]N.T.Hart, N.P.Brandon, M.J.Day, et al. Functionally graded composite cathodes for solid oxide fuel cells. J. Power Sources,2002,106:42-50.
    [75]Ying Liu, Charles Composon, Meilin Liu. Nanostructure and functionally graded cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources,2004,138:194-198.
    [76]Xingyan Xu, Changrong Xia, Guoliang Xiao, et al. Fabrication and performance of functionally graded cathodes for IT-SOFCs based on doped ceria electrolytes. Solid State Ionics,2005,176:1513-1520.
    [77]Shaowu Zha, Yuelan Zhang, Meilin Liu. Functionally graded cathodes fabricated by sol-gel/slurry coating for honeycomb SOFCs. Solid State Ionics,2005,176:25-31.
    [78]Ze Liu, Minfang Han, Wenting Miao. Preparation and characterization of gaded cathode La0.6Sr0.4Co0.2Fe0.8O3-δ. J. Power Sources,2007,173:837-841.
    [79]Meng Ni, Michael K. H. Leung, Dennis Y.C. Leung. Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes. J. Power Sources,2007,168:369-378.
    [80]Eric S.Greene, Wilson K.S.Chiu, Maria G. Medeiros. Mass transfer in graded microstructure solid oxide fuel cell electrodes. J. Power Sources,2006,161:225-231.
    [81]J. Simonet, G. kappelski and D. Bouvard. A sedimentation process for the fabrication of solid oxide fuel cell cathodes with graded composition. J. Euro. Ceram. Soc.,2007,27:3113-3116.
    [82]H. A. Hamedani, K. Dahmen, D. Li, et al. Fabrication of gradient porous LSM cathode by optimizing deposition parameters in ultrasonic spray pyrolysis. Materials Science and Engineering,2008, B153:1-9.
    [83]T. Z. Sholklapper, H. Kurokawa, C.P. Jacobson, et al. Nanostructured Solid Oxide Fuel Cell Electrodes. Nano Lett.,2007,7:2136-2141.
    [84]M. Shah and S.A. Barnett. Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3-δ into Gd-Doped Ceria. Solid State Ionics,2008,179:2059-2064.
    [85]J. Chen, F. Liang, L. Liu, S.P. Jiang. Nano-structured (La, Sr)(Co, Fe)O3+YSZ composite cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources,2008,183: 586-589.
    [86]W.S. Wang, M.D. Gross, J.M. Vohs and R.J. Gorte. The stability of LSF-YSZ Electrodes Prepared by Infiltration. J. Electrochem. Soc.,2007,154(5):B439-B445.
    [87]M. Sahibzada, S. J. Benson, R.A. Rudkin, et al. Pd-promoted La0.6Sr0.4Co0.2Fe0.8O3 cathodes. Solid State Ionics,1998,113-115:285-290.
    [88]Y. Sakito, A.Hirano, N.Imanishi, et al. Silver infiltrated La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources,2008,182:476-481.
    [89]T.Z.Sholklapper, V. Radmilovic, C.P.Jacobson, et al. Nanocomposite Ag-LSM solid oxide fuel cell electrodes. J. Power Sources,2008,175:206-210.
    [90]K.Yamahara, C.P. Jacobson, S.J. Visco and X. Zhang. Thin film SOFCs with cobalt-infiltrated cathodes. Solid State Ionics,2005,176:275-279.
    [91]K.Yamahara, C.P. Jacobson, S.J. Visco and L.C. Dejonghe. Catalyst-infiltrated supporting cathode for thin-film SOFCs. Solid State Ionics,2005,176:451-456.
    [92]J.M. Vohs and R.J. Gorte. High-Performance SOFC Cathodes Prepared by Infiltration. Adv. Mater.,2009,21:943-956.
    [93]Y.K. Lee, J.Y. Kim, Y.K. Lee, I. Kim and H.S. Moon. Conditioning effects on La1-xSrxMnO3-yttria stabilized zirconia electrodes for thin-film solid oxide fuel cells. J. Power Sources,2003,115:219-228.
    [94]张全生,武田保雄.过渡金属氧化物渗透对LSM-YSZ阴极性能的影响.无机材料学报,2007,23:1287-1290.
    [1]Yu-Mi Kim, Su-Il Pyun, Ju-Sik Kim et al. Mixed Diffusion and Charge-Transfer-Controlled Oxygen Reduction on Dense La1-xSrxCo0.2Fe0.803-δ Electrodes with Various Sr Contents. J. Electrochem. Soc.,2007,154:B802-B809.
    [2]A. Esquirol, N. P. Brandon, J.A. Kilner et al. Electrochemical Characterization of La0.6Sr0.4Co0.2Fe0.8O3 Cathodes for IT SOFCs. J. Electrochem. Soc.,2004,151:A1847-A1855.
    [3]San Ping Jiang, Sam Zhang and Y. D. Zhen. Deposition of Cr Species at (La, Sr)(Co, Fe)O3 Cathodes of SOFCs. J. Electrochem. Soc.,2006,153:A127-A134.
    [4]L. Baque, A. Caneiro, M.S. Moreno nad A.Serquis. High performance nanostructured IT-SOFC cathodes prepared by novel chemical method. Electrochemistry Communications,2008, 10:1905-1908.
    [5]F.M. Figueiredo, J.A. Labrincha, J.R. Frade, et al. Reactions between a zirconia-based electrolyte and LaCoO3-based electrode materials. Solid State Ionics,1997,101:343-349.
    [6]F. Tietz, A. Mai and D. Stover. From powder properties to full cell performance-A holistic approach for SOFC cathode development. Solid State Ionics,2008,179:1509-1515.
    [7]A. Sanson, P. Pinasco and E. Roncari. Influence of pore formers on slurry composition and microstructure of tape cast supporting anodes for SOFCs. J. Euro. Ceram. Soc.,2008, 28:1221-1226.
    [8]Jinyan Hu, Zhe Lv, Kongfa Chen, et al. Effect of composite pore former on the fabrication and performance of anode-supported membranes for SOFCs. Journal of Membrane Science,2008, 318:445-451.
    [9]M. Guillodo, P. Vernoux, J. Fouletier. Electrochemical properties of Ni-YSZ cermet in solid oxide fuel cells:Effect of current collecting. Solid State Ionics,2000,127:99-107.
    [10]G. C. Mather, F. M. Figueiredo, J. R. Jurado, et al. Electrochemical behaviour of Ni-cermet anodes containing a proton-conducting ceramic phase on YSZ substrate. Electrochimica Acta, 2004,49:2601-2612.
    [11]D. Ding, B.B. Liu, Z. Zhu, et al. High reactive Ce0.8Sm0.2O1.9 powders via a carbonate co-precipitation methods as electrolyte for low-temperature solid oxide fuel cells. Solid State Ionics,2008,179:896-899.
    [12]王常珍,固体电解质和化学传感器.冶金工业出版社,北京:2000,33-38.
    [13]S.P.S. Badwal, N.Nardella, Polarization studies in solid oxide fuel cells with a fully automated galvanostatic current interruption technique. Solid State Ionics,1990, (40-41):878-881.
    [14]P. Plonczak, M. Gazda, B. Kusz and P. Jasinski. Fabrication of solid oxide fuel cell supported on specially performed ferrite-based perovskite cathode. J. Power Sources,2008,181:1-7.
    [15]R.M.C. Clemmer and S.F. Corbin. Influence of porous composite microstructure on the processing and properties of solid oxide fuel cell anodes. Solid State Ionics,2004,166:251- 259.
    [16]J.H. Yu, G.W. Park, S. Lee and S.K. Woo. Microstructure effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode. J. Power Sources,2007,163:926-932.
    [17]J.J. Haslam, A.Q. Pham, B.W. Chung, J.F. Dicarlo and R.S. Glass. Effects of the use of Pore Formers on Performance of an Anode Supported Solid Oxide Fuel Cell. J. Am. Ceram. Soc., 2005,88:513-518.
    [18]H.L. Lein, T. Tezuka, T. Grande and M.A. Einarsrud. Asymmetric proton conducting oxide membranes and fuel cells prepared by aqueous tape casting. Solid State Ionics,2008, 179:1146-1150.
    [1]H.T. Wang, S. Xie and W. Lai, et al. Preparation and characterization of perovskite ceramic powders by gelcasting. Journal of Materials Science,1999,34:1163-1167.
    [2]Y.J. Leng, S.H. Chan and Q.L. Liu. Development of LSCF-GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte. Jornal of Hydrogen Energy, 2008,33:3808-3817.
    [3]S.J. Xu and W.J. Thomson. Oxygen permeation rates through ion-conducting perovskite membranes. Chemical Engineering Science,1999,54:3839-3850.
    [4]C. Jin, J. Li, W.M. Guo, et al. Electrochemical characteristics of an Lao.6Sr0.4Co0.2Fe0.8O3-La0.8Sr0.2MnO3 multi-layer composite cathode for intermediate-temperature solid oxide fuel cells. J. Power Sources,2008,183:506-511.
    [5]S. P. Jiang. A comparison of O2 reduction reactions on porous (La, Sr)MnO3 and (La, Sr)(Co, Fe)O3 electrodes. Solid State Ionics,2002,146:1-22.
    [6]Yu-Mi Kim, Su-II Pyun, Ju-Sik Kim and Gyoung-Ja Lee. Mixed Diffusion and Charge-Transfer-Controlled Oxygen Reduction on Dense La1-xSrxCo0.2Fe0.8O3-δ Electrodes with various Sr Contents. J. Electrochem. Soc.,2007,154:B802-B803.
    [7]Zongping Shao and Sossina M. Haile. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature,2004,431:170-173.
    [8]Kun Zhang, Lei Ge, Ran Ran, et al. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia,2008,56:4876-4889.
    [9]Yingyi Huang, John M. Vohs and Raymond J. Gorte. Characterization of LSM-YSZ Composites Prepared by Impregnation Methods. J. Electrochem. Soc.,2005,152:A1347-A1353.
    [10]E. Perry Murray, M.J. Sever and S.A. Barnett. Electrochemical performance of (La, Sr)(Co, Fe)O3-(Ce,Gd)O3 composites cathodes. Solid State Ionics,2002,148:27-34.
    [11]Ying Liu, Charles Compson and Meilin Liu. Nanostructureed and functionally graded cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources,2004, 138:194-198.
    [12]Meng Ni, Michael K.H. Leung and Dennis Y.C. Leung. Micro-scale modeling of solid oxide fuel cellwith micro-structurally graded electrodes. J. Power Sources,2007,168:369-378.
    [13]Anne C. Co, Shenjiang Xia and Viola I. Birss. A Kinetic Study of the Oxygen Reduction Reaction at LaSrMnO3-YSZ Composite Electrodes. J. Electrochem. Soc.,2005,152:A570-A576.
    [14]S.M. Haile. Fuel cell materials and components. Acta Materialia,2003,51:5981-6000.
    [15]Z. Liu, M.F. Han and W.T. Miao. Preparation and characterization of graded cathode La0.6Sr0.4Co0.2Fe0.8O3. Journal of Power Sources,2007,173:837-841.
    [16]M. Mogensen, S. Skaarup, Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid State Ionics,1996,86-88:1151-1160.
    [17]M. Juhl, S. Primdahl, C. Manon and M. Mogensen. Performance/structure correlation for composite SOFC cathodes. Journal of Power Sources,1996,61:173-181.
    [18]S.B. Adler. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes. Chem. Rev.,2004,104:4791-4844.
    [19]H.Zhao, L. Huo, L. Sun, L. Yu, et al. Preparation, chemical stablility and electrochemical properties of LSCF-CBO composite cathodes. Materials Chemistry and Physics,2004, 88:160-166.
    [20]S. M. Liu, X. L. Qian and J. Z. Xiao. Synthesis and characterization of La0.8Sr0.2Co0.5Fe0.5O3±δ nanopowders by microwave assisted sol-gel route. J. Sol-Gel Sci Technol.,2007,44:187-193.
    [21]C.R. Xia, W. Rauch, W. Wellborn, M.L. Liu. Functionally Graded Cathodes for Honeycomb Solid Oxide Fuel Cells. Electrochemical and Solid-State Letters,2002,5:A217-A220.
    [22]S. Bebelis, N. Kotsionopoulos, A. Mai, et al. Electrochemical characterization of perovskite-based cathodes. Journal of Applied Electrochemistry,2007,37:15-20.
    [23]A. Esquirol, N.P. Brandon and J.A.Kilner. Electrochemical Characterization of Lao.6Sro.4Coo.2Feo.8O3 Cathodes for Intermediate-Temperature SOFCs. J. Electrochem. Soc., 2004,151(11):A1847-A1855.
    [24]M. Shah and S. A. Barnett. Solid oxide fuel cell cathodes by infiltration of Lao.6Sro.4Coo.2Feo.8O3 into Gd-Doped Ceria. Solid State Ionics,2008,179:2059-2064.
    [25]F.S. Baumann, J. Fleig, H. U. Habermeier, et al. Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-δ model electrodes. Solid State Ionics,2006,177:1071-1081.
    [26]F. Qiang, K. N. Sun, N. Q. Zhang, et al. Optimization on fabrication and performance of A-site-deficient La0.58Sr0.4Co0.2Fe0.8O3-δ cathode for SOFC. J. Solid State Electrochemical, 2009,13:455-467.
    [27]C. S. Hsu and B. H. Hwang. Microstructure and Properties of the La0.6Sr0.4Co0.2Fe0.8O3 Cathodes Prepared by Electrostatic-Assisted Ultrasonic Spray Pyrolysis Method. J. Electrochem. Soc.,2006,153(8):A1478-A1483.
    [28]S. M. Liu, X. L. Qian and J. Z. Xiao. Synthesis and characterization of La0.8Sr0.2Co0.5Fe0.5O3±δ nanopowders by microwave assisted sol-gel route. J. Sol-Gel Sci Technol,2007,44:187-193.
    [29]S. Lee, H.S. Song, S.H. Hyun, J. Kim and J. Moon. Interlayer-free nanostructured La0.58Sr0.4Co0.2Fe0.8O3-δ cathode on scandium stabilized zirconia electrolyte for intermediate-temperature solid oxide fuel cells. Journal of Power Sources,2009,187:74-79.
    [30]S.P. Simmer, M. D. Anderson, M.H.Engelhard. Degradation Mechanisms of La-Sr-Co-Fe-O3 SOFC Cathodes. Electrochemical and Solid-State Letters,2006,9:A478-A481.
    [31]A. Mineshige, S. Okada, K. Sakai, et al. Oxygen nonstoichiometry in SrCeO3-based high-temperature protonic conductors evaluated by Raman spectroscopy. Solid State Ionics,2003, 162-163:41-45.
    [32]N. Bonanos, K.S.Knight and B. Ellis. Perovskite solid electrolytes:Structure, transport properties and fuel cell applications. Solid State Ionics,1995,79:161-170.
    [1]V. Dusastre, J.A. Kilner. Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics,1999,126:163-174.
    [2]C. Fu, K. Sun, N.Zhang. Electrochemical characteristics of LSCF-SDC composite cathode for intermediate temperature SOFC. Electrochimica Acta,2007,52:4589-4594.
    [3]Y. Sakito, A. Hirano, N. Imanishi, et al. Silver infiltrated La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources,2008,182:476-481.
    [4]T.J. Armstrong, J. G. Rich. Anode-Supported Solid Oxide Fuel Cells with La0.6Sr0.4CoO3-λ-Zr0.84Y0.16O2-δ Composite Cathodes Fabricated by an Infiltration Method, J. Electrochem. Soc.,2006,152(3):A515-A520.
    [5]J. Chen, F.L. Liang, B. Chi, et al. Palladium and ceria infiltrated La0.8Sr0.2Co0.5Fe0.5O3-δ cathodes of solid oxide fuel cells. J. Power Sources,2009,194:275-280.
    [6]N. Imanishi, R. Ohno, K.Murata, et al. LSM-YSZ cathode with infiltrated cobalt oxide and cerium oxide. Fuel cells,2009,9(3):215-221.
    [7]X.Y. Lou, Z. Liu, S.Z. Wang, et al. Controlling the morphology and uniformity of a catalyst-infiltrated cathode for solid oxide fuel cells by tuning wetting property. J. Power Sources,2010, 195:419-424.
    [8]X. Lou, S. Wang, Z. Liu. Improving La0.4Sr0.6Co0.2Fe0.8O3-δ cathode performance by infiltration of a Sm0.5Sr0.5CoO3-δ coating. Solid State Ionics,2009, doi:10.1016/j.ssi.2009.06.014.
    [9]S.M. Liu, X.L. Qian and J.Z. Xiao, Synthesis and characterization of La0.8Sr0.2Co0.5Fe0.5O3±δ nanopowders by microwave assisted sol-gel rout. J. Sol-Gel Sci Technol,2007,44:187-193.
    [10]H.Zhao, L. Huo, L. Sun, L. Yu, et al. Preparation, chemical stability and electrochemical properties of LSCF-CBO composite cathodes. Materials Chemistry and Physics,2004, 88:160-166.
    [11]S. Bebelis, N. Kotsionopoulos, A. Mai, et al. Electrochemical characterization of perovskite-based cathodes. Journal of Applied Electrochemistry,2007,37:15-20.
    [12]Subhash C. Singhal and Kevin Kendall. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Application, Elsevier Limited,2003,79-81.
    [13]F. Qiang, K. N. Sun, N. Q. Zhang, et al. Optimization on fabrication and performance of A-site-deficient La0.58Sr0.4Co0.2Fe0.8O3-δ cathode for SOFC. J. Solid State Electrochemical, 2009,13:455-467.
    [14]W.G. Wang, M. Mogensen. High-performance lanthanum-ferrite-based cathodes for SOFC. Solid State Ionics,2005,176:457-462.
    [15]E.P. Murray, M.J. Sever, S.A. Barnett. Electrochemical performance of (La,Sr)(Co,Fe)O3-(Ce,Gd)O3 composite cathodes. Solid State Ionics,2002 148:27-34.
    [16]F.Tietz, V.A.C. Haanappel, A. Mai, et al. Performance of LSCF cathodes in cell tests. J. Power Sources,2006,156:20-22.
    [17]S.P. Simmer, M. D. Anderson, M.H.Engelhard. Degradation Mechanisms of La-Sr-Co-Fe-O3 SOFC Cathodes. Electrochemical and Solid-State Letters,2006,9:A478-A481.
    [18]H. Yokakawa, H. Y. Tu, B. Iwanschitz and A. Mai. Fundamental mechanisms limiting solid oxide fuel cell durability. J. Power Sources,2008,182:400-412.
    [19]W.S. Wang, M.D. Gross, J.M. Vohs and R.J. Gorte. The Stability of LSF-YSZ Electrodes Prepared by Infiltration. J. Electrochem. Soc.,2007,154(5):B439-B445..
    [1]J.V. Herle, A.J. Mcevoy and K.R. Thamp. A study on the La1-xSrxMnO3 oxygen cathode. Electrochimica Acta,1996,41:1447-1454.
    [2]S.P. Jiang. Activation, microstructure, and polarization of solid oxide fuel cell cathodes. J. Solid State Electrochem,2007,11:93-102.
    [3]W. Wang and S.P. Jiang. A mechanistic study on the activation process of (La, Sr)MnO3 electrodes of solid oxide fuel cell. Solid State Ionics,2006,177:1361-1369.
    [4]S.P. Jiang. A comparison of O2 reduction reactions on porous (La, Sr)MnO3 and (La, Sr)(Co,Fe)O3 electrodes. Solid State Ionics,2002,146:1-22.
    [5]H. Yokokawa, H.Y. Tu. B. Iwanschitz and A. Mai. Fundamental mechanisms limiting solid oxide fuel cell durability. J. Power Sources,2008,182:400-412.
    [6]X.J. Chen, K.A.Khor and S.H. Chan. Electrochemical behavior of La(Sr)MnO3 electrode under cathodic and anodic polarization. Solid State Ionics,2004,167:379-387.
    [7]T. Horita, K. Yamaji, M. Ishikawa, N. Sakai, H. Yokokawa, T.Kawada, T. Kato. Active Sites Imaging for Oxygen Reduction at the La0.9Sr0.1MnO3-x/Yttria-Stabilized Zirconia Interface by Secondary-Ion Mass Spectrometry. J. Electrochem. Soc,1998,145:3196-3202.
    [8]B. Gharbage, T. Pagnier, A. Hammou. Oxygen Reduction at La0.5Sr0.5MnO3 Thin Film/Yttria-Stabilized Zirconia Interface Studied by Impedance Spectroscopy. J. Electrochem. Soc.,1994,141:2118-2124.
    [9]E. Siebert, A. Hammouche, M. Kleitz. Impedance spectroscopy analysis of La1-xSrxMnO3-yttria-stabilized zirconia electrode kinetics Electrochim. Acta,1995,40:1741-1748.
    [10]H.Y. Lee, W.S. Cho and S.M. Oh. Active Reaction Sites for Oxygen Reduction in La0.9Sr0.1MnO3/YSZ Electrodes. J. Electrochem. Soc.,1995,142:2659-2664.
    [11]S.P. Jiang and S.H. Chan. A review of anode materials development in solid oxide fuel cells. J. Mater. Sci.,2005,39(14):4405-4439.
    [1]J.-Y. Kim, V. L. Sprenkle, N. L. Canfield, K. D. Meinhardt, and L. A. Chick. J.Electrochem. Soc.,2006,153:A880.
    [2]A. Mai, M. Becker, W. Assenmacher. Time-dependent performance of mixed-conducting SOFC cathodes. Solid State Ionics,2006,177:1965-1968.
    [3]A. Ringuede and J. Fouletier. Oxygen reaction on strontium doped lanthanum cobaltite dense electrodes at intermediate temperatures, Solid State Ionics,2001,139:167-171.
    [4]V. Brichzin, j. Fleig, H.U. Habermeier and J. Maier. Geometry Dependence of Cathode Polarization in Solid Oxide Fuel Cells Investigated by Defined Sr-Doped LaMnO3 Microelectrodes. Electrochem. Sol. St. Lett.,2000,3:403-406.
    [5]J. Fleig, F.S. Baumann, V. Brichzin, et al. Thin Film Microelectrodes in SOFC Electrode Resarch. Fuel Cells,2006,6:284-292.
    [6]Jae-Wung Lee, Z. Liu, L. Yang, et al. Preparation of Dense and Uniform La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) films for SOFC cathodes. J. Power Sources,2009,190:307-310.
    [7]S.P. Simmer, M. D. Anderson, M.H.Engelhard. Degradation Mechanisms of La-Sr-Co-Fe-O3 SOFC Cathodes. Electrochemical and Solid-State Letters,2006,9:A478-A481.
    [8]J.Maier. On the correlation of macroscopic and microscopic rate constants in solid state chemistry. Solid State Ionics,1998, (112):197-228.
    [9]Esquirol, A., et al. Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate-temperature SOFCs. J. Electrochem. Soc.,2006,151:A1847-A1855.
    [10]D.S. Mebane and M. Liu. Classical, phenomenological analysis of the kinetics of reactions at the gas-exposed surface of mixed ionic electronic conductors. Journal of Solid State Electrochemistry,2006,10:575-580.
    [11]D.S. Mebane and M. Liu. Classical, phenomenological analysis of the kinetics of reaction at the gas-exposed surface of mixed ionic electronic conductors:Erratum. Journal of Solid State Electrochemistry,2007,11:448-452.
    [12]D.S. Mebane, Y. Liu and M. Liu. A two-dimensional model and numerical treatment for mixed conducting thin films:the effect of sheet resistance. J. Electrochem. Soc.2007, 154(5):A421-A426.
    [13]M.E. Lynch et al. Triple phase boundary and surface transport in mixed conducting patterned electrodes. J. Electrochem. Soc.2008,155(6):B635-B643.
    [14]De Souza, R.A. and J.A. Kilner. Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites-Part Ⅰ Oxygen tracer diffusion. Solid State Ionics,1998,106(3-4):175-187.
    [15]De Souza, R.A. and J.A. Kilner. Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites Part Ⅱ Oxygen surface exchange. Solid State Ionics,1999,126(1-2):153-161.
    [16]S.J. Benson, R.J. Chater and J.A. Kilner. Oxygen diffusion and surface exchange in the mixed conducting perovskite La0.6Sr0.4Fe0.8Co0.2O3-±δ. J. Electrochem. Soc.,1998,97:596-609.
    [17]Mebane, D.S., Y. Liu, and M. Liu, Refinement of the bulk defect model for LaxSr1-xMnO3±δ. Solid State Ionics,2008,178(39-40):1950-1957.
    [18]L.W. Tai, et al., Structure and electrical properties of La1-xSrxCo1-yFeyO3 Part 2 The system La1-xSrxCo0.2Fe0.8O3. Solid State Ionics,1995,76(3-4):273-283.
    [19]Siebert, E., A. Hammouche, and M. Kleitz. Impedance Spectroscopy Analysis Of La-1-Xsrxmno3-Yttria-Stabilized Zirconia Electrode-Kinetics. Electrochimica Acta,1995, 40(11):1741-1753.
    [20]Malde, N., et al., Influence of oxygen stoichiometry on Raman phonon spectroscopy, lattice parameters and physical properties of La0.7Ca0.3MnO3 thin films. Solid State Communications,1998,105:643-648.
    [21]Copeland, W.D. and R.A. Swalin. Studies On Defect Structure Of Strontium Oxide. Journal of Physics and Chemistry of Solids,1968,29:313-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700