用户名: 密码: 验证码:
海洋放线菌来源的化合物卡拉霉素(Kalamycin)的抗肿瘤作用和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋生态环境的特殊性决定了海洋中往往含有结构奇特、新颖的化学物质,海洋药物具有药理特异性、高活性和多样性,已成为药物研发热点领域,海洋抗肿瘤药物也是其中之一。卡拉霉素(kalamycin)来源于海洋放线菌M097的聚酮类化合物,我们实验室用体外增殖抑制试验发现了卡拉霉素(kalamycin)的抗肿瘤作用。有报道其类似物lactoquinomycin和frenolicin B是肿瘤靶点AKT抑制剂,并由此推断吡喃萘醌骨架在AKT抑制过程中发挥主要作用,我们发现虽然卡拉霉素(kalamycin)含有吡喃萘醌骨架,但是并不抑制AKT及其下游信号系统;继而对卡拉霉素(kalamycin)的体外抗肿瘤作用及其机理进行了系统的分析。
     采用磺酰罗丹明B(SRB)法检测卡拉霉素(kalamycin)对10株肿瘤细胞株的体外增殖抑制作用,结果表明,卡拉霉素(kalamycin)能明显抑制各种组织来源的肿瘤细胞生长,具有广泛的细胞增殖抑制作用,除对一株肺癌细胞A549抑制作用不明显外,对9株肿瘤细胞株的IC50平均值为2.5μM,并且对各个细胞株生长抑制曲线形态基本一致。采用流式细胞术证实,卡拉霉素(kalamycin)能剂量依赖地诱导结肠癌细胞HCT-116和肝癌细胞SMMC-7721发生G2/M期周期阻滞,可以诱导黑色素瘤A375细胞发生凋亡。
     基于前人的报道,我们用Western blot方法检测卡拉霉素(kalamycin)对AKT信号系统的影响,用量从1μM增加到16μM,AKT、mTOR和磷酸化AKT、mTOR、GSK3β的总量都没有变化;因此我们判断卡拉霉素(kalamycin)不是通过AKT系统发挥作用,而是有另外的机制。细胞凋亡和周期阻滞的很多过程是和P53相关的,我们用卡拉霉素(kalamycin)对P53野生和缺失的HCT-116细胞的增殖抑制和凋亡诱导来分析该抑制作用是否和P53相关,结果显示卡拉霉素(kalamycin)对两种细胞的生长抑制和诱导凋亡作用无明显差异,其作用和P53途径是不相关的。
     卡拉霉素(kalamycin)细胞增殖抑制作用的非选择性,表明该化合物是一个广谱的细胞增殖抑制剂。我们用体外酶反应实验分析了卡拉霉素(kalamycin)对拓扑酶的抑制作用,结果显示卡拉霉素(kalamycin)对Topo I没有抑制作用,在20μM时几乎完全抑制Topo II,呈现出显著的浓度依赖效应,抑制作用大约比VP16强十倍。用DNA伸展实验和Topo II介导的负超螺旋pBR322切割实验,证实卡拉霉素(kalamycin)不是DNA嵌入剂和Topo II毒剂,而是一个催化抑制剂。在体外模拟Topo II的催化反应步骤,把整个过程分解,发现卡拉霉素(kalamycin)可以抑制Topo II介导的DNA的切割,但是对再连接没有作用;卡拉霉素(kalamycin)能抑制ATP水解的作用,但是在较高剂量时抑制作用要比阳性对照弱得多。因此,卡拉霉素(kalamycin)可能主要通过抑制Topo II介导的DNA的切割发挥作用。
     肿瘤新血管生成是原发性肿瘤赖以发生、生长和转移的物质基础。我们用了多个新生血管生成模型对卡拉霉素(kalamycin)的抗新生血管生成作用进行了检测,发现卡拉霉素(kalamycin)对内皮细胞管腔形有抑制作用,其作用效果呈现明显的剂量依赖性。卡拉霉素(kalamycin)在对内皮细胞HMEC-1在12小时内的IC50是4.39μM ,在没有显著增殖抑制作用的剂量下,对HMEC-1管腔形成依然具有抑制作用,提示卡拉霉素(kalamycin)的抗新生血管生成作用并非完全来源于其增殖抑制作用。通过体外酶反应、western blot和双荧光素酶报告基因系统分析卡拉霉素(kalamycin)抑制肿瘤新血管生成的信号途径,结果发现这种抑制作用不是依赖于酪氨酸激酶和HIF-lα途径的。
     综上所述,卡拉霉素(kalamycin)不是一个AKT抑制剂,它通过专一性的抑制Topo II使肿瘤细胞发生周期阻滞和细胞凋亡,主要抑制Topo II介导的DNA的切割和ATP水解作用。同时卡拉霉素(kalamycin)可以抑制肿瘤血管管腔形成,抑制作用不依赖酪氨酸激酶和HIF-lα途径。
Especial environment of ocean determines usually novel various structure of the marinechemical substances, reaearch on marine drug has been a hotspot for their pharmacological specificity, excellent activity and diversity. Marine anti-cancer drugs is an important area of the reaearch. kalamycin, a poly ketone type compound, isolated from marine actinomycetes M097. It’s has been reported that lactoquinomycin and frenolicin B, analogues of kalamycin, can inhibit AKT for the pyran naphthoquinone skeleton they have. We found that although kalamycin has pyran naphthoquinone skeleton, but did not suppress AKT and its downstream signal system, then we make a sytematic analysis on the in vitro anti-tumor effect and mechanism of kalamycin.
     Growth inhibition of kalamycin on 10 tumor cell lines was analyzed in vitro by SRB assay, the results showed that kalamycin could inhibit a variety of tissue-derived tumor cell growth except for pulmonary cancer cell line A549. The average IC50 against other nine tumor cell lines is 2.5μM. kalamycin had no significant selectivity against different tissue-derived cell lines, and growth inhibition curve against different cell lines are basically similar. In flow cytometry, kalamycin could dose-dependently induce colon cancer cells HCT-116 and hepatoma cells SMMC-7721 G2/M phase arrest, and induce apoptosis of melanoma A375 cells.
     Acording to previous reports, influence of kalamycin on AKT pathway was analyzed by Western blot, with dose increasing from 1μM to 16μM, kalamycin could not decrease AKT, mTOR and phosphorylated AKT, mTOR, GSK3β. So we don’t think kalamycin is a AKT inhibitor. Apoptosis and cycle arrest are usually related to P53 protein, so effect of kalamycin on P53 pathway was analyzed with wild type and P53 missing HCT-116 cell lines, no significant difference in growth inhibition and apoptosis inducement between the two cell lines was fonnd. We conclude that kalamycin can’t influence P53 signal pathway.
     Non selectivity of kalamycin indicated it is a cytotoxic drug. Effect of kalamycin on topoisomerae was analyzed by in vitro enzyme assay. The results showed that kalamycin could’t inhibit Topo I, but could dose-dependly inhibit Topo II. kalamycin supress Topo II evidently at concentration of 20μM, the inhibition activity is about ten times of VP16. By DNA stretching assay and Topo II–deraved suppercoiled pBR322 cleavage assay we found kalamycin is not DNA intercalator or Topo II poison but a catalytic inhibitor. Influence of kalamycin on different Topo II catalytical steps was detected, the result showed that kalamycin suppress Topo II–deraved DNA clavage and ATP hydrolysis but not relingation. From semiquantitative analysis, we found inhibition on pre-strand passage DNA cleavage is stronger than post-strand passage DNA cleavage.
     Angiogenesis support tumor for it’s generation, growth and metastasis. Anti-angiogenesis function of kalamycin was detected by several models, the result showed kalamycin inhibit tube formation dose-dependly. IC50 of kalamycin against HMEC-1 in 12 hours is 4.39μM, the tube formation suppression appear at low concentration than this, so we conclude cytoxity is not the only reason of it’s inhibition effect. By in vitro enzyme reaction assay, western blot and dual luciferase reporter gene system, we found kalamycin could’t suppress tyrosine kinase and HIF-lαpathway.
     To sum up, kalamycin is not an AKT inhibitor. It induced tumor cells cycle arrest and apoptosis by specific inhibiting Topo II. kalamycin mainly suppress Topo II-mediated DNA clevage and ATP hydrolysis. At the same time, kalamycin can inhibit tumor angiogenesis, while not through tyrosine kinase HIF-lαpathway.
引文
1. Proksch P, Edrada R A, Ebel R. Drugs from the seas-current status microbiological implications [J]. Appl Microb Biotechnol, 2002,59: 125-134.
    2. Fusetani N. Drugs from the sea[M]. Karger: Basel Freiburg Paris London New York, 2000. 1-5.
    3. Haefner B. Drugs from the deep: marine natural products as drug candidates[J]. DDT, 2003, 8:536-554.
    4.管华诗,耿美玉,王长云. 21世纪中国海洋药物[J].中国海洋药物,2000, 76:44.
    5. Marinlit. A marineμliterature database produced and main- tained by the department of chemistry[M]. New Zealand:University of Canterbury. 2003.
    6.王长云,耿美玉,管华诗.海洋药物研究进展与发展趋势[J].中国新药杂志,2005,14:278.
    7.邵顺波.近年来海洋药物化学成分及功效的研究概况[J].安徽医药,2005,11:861.
    8.李明泽,高世勇,邹翔等.海洋药物药理作用研究[J].药品评价,2005, 2:161.
    9.关美君,琳文翰,丁源.海洋药物—二十一世纪中国药学研究的新热点[J].中国海洋药物,2001,22:801.
    10.邹若飞,徐学君,徐德琴.我国海洋药物的研究与开发策略[J].医药导报,2005,24:1041.
    11.金伟华,王晓蕙,陈华.海洋药物的临床应用研究及进展[J].中国新药杂志,2004,13:1262.
    12. Minuzzo M, Marchini S, Broggini M, et al., Interference of transcriptional activation by the antineoplastic drug ecteinascidin-743[J]. Proc Natl Acad Sci U S A, 2000; 97: 6780-4.
    13. van Kesteren C, de Vooght MM, Lopez-Lazaro L, et al., Yondelis (trabectedin, ET-743): the development of an anticancer agent of marine origin[J]. Anticancer Drugs, 2003; 14: 487-502.
    14. Kanzaki A, Takebayashi Y, Ren XQ, et al., Overcoming multidrug drug resistance in P-glycoprotein/MDR1-overexpressing cellμlines by ecteinascidin 743[J]. MolCancer Ther , 2002; 1: 1327-34.
    15. Carter NJ, Keam SJ, Trabectedin : a review of its use in the management of soft tissue sarcoma and ovarian cancer[J]. Drugs, 2007; 67: 2257-76.
    16. Gingras D, Renaud A, Mousseau N, et al., Matrix proteinase inhibition by AE-941, a multifunctional antiangiogenic compound[J]. Anticancer Res, 2001; 21: 145-55.
    17. Rabago G, Martin-Trenor A, Lopez-Coronado JL, et al., Bicaval anastomosis in a heart transplant recipient withμleft superior vena cava[J]. Ann Thorac Surg, 2002; 74: 1242-4.
    18. Berger F, Jourdes, P., and Benabid, AE-941 (Neovastat) shows a beneficial effect in experimental glioma and is associated with high angiostatin level in treated tumors[J]. Proc. Am. Assoc.Cancer Res. 2001, 42. 724-7.
    19. Escudier B, Choueiri TK, Oudard S, et al., Prognostic factors of metastatic renal cell carcinoma after failure of immunotherapy: new paradigm from aμlarge phase III trial with shark cartilage extract AE 941[J]. J Urol 2007; 178: 1901-5.
    20. Marshall KM, Matsumoto SS, Holden JA, et al., The anti-neoplastic and novel topoisomerase II-mediated cytotoxicity of neoamphimedine, a marine pyridoacridine[J]. Biochem Pharmacol ,2003; 66: 447-58.
    21. Ahn MY, Jung JH, Na YJ, et al., A natural histone deacetylase inhibitor, Psammaplin A, induces cell cycle arrest and apoptosis in human endometrial cancer cells[J]. Gynecol Oncol ,2008; 108: 27-33.
    22. Falardeau P, Champagne P, Poyet P, et. al.A naturally occurring multifunctional antiangiogenic drug, in phaseⅢclinical trials[J]. Sem in Oncol, 2001, 28: 620 - 625.
    23. Gingras D, Labelle D, Nyalendo C, et al. The antiangiogenic agent Neovasat (AE-941) stimulates tissue plasminogen activator activity[J]. Invest New Drug, 2004, 22 : 17 - 26.
    24. Lee SY, Chung SM. Neovastat(AE-941) inhibits the airway inflammation via VEGF and HIF-alpha suppression[J]. Vasc Pharm acol, 2007, 47 : 313 - 318.
    25. Loprinzi CL, Levitt RR, Barton DL, et al. Evaluation of shark cartilage in patients with advanced cancer: a North Central Treatment Group Trial Cancer[J]. Cancer, 2005, 104:176 - 182.
    26. Taraboletti G, Polim, Dossi R, et al. Antiangiogenic activity of apμlidine, a new agent of marine origin[J]. Br J Cancer, 2004, 90 : 2418 - 2424.
    27. Straight AM, Oakley K, Moores R, et al. Apμlidin reduces growth of anapμlastic thyroid cancer xenografts and the exp ression of several angiogenic genes[J]. CancerChem other Pharm acol, 2006, 57: 7 - 14.
    28. Matou S, Helley D, Chabut D, et al. Effect of fucoidan on fibroblast growth factor22 induced angiogenesis in vitro[J].Throm b Res, 2002, 106 : 213 - 221.
    29. Ye J, Li Y. Enzyme digested fucoidan extracts derived from sea weed Mozuku of Cladosiphon novae-caledoniae kylin inhibit invasion and angiogenesis of tumor cells[J]. Cytotechnology, 2005,47 : 117 - 126.
    30. Ahn KS, Sethi G, Chao TH, et al. Salinosporamide A (NPI-0052) potentiates apoptosis, suppresses osteoclastogenesis, and inhibits invasion through down-modulation of NF-kappaB regulated gene products. [J]. Blood, 2007, 110 : 2286 -2295.
    31. Wang JC, DNA topoisomerases[J]. Annu Rev Biochem, 1996; 65: 635-92.
    32. Froelich-Ammon SJ, Osheroff N, Topoisomerase poisons: harnessing the dark side of enzyme mechanism[J]. J Biol Chem , 1995; 270: 21429-32.
    33. Wang JC, DNA topoisomerases. New break for archaeal enzyme[J]. Nature , 1997; 386: 329, 31.
    34. Malonne H,Atassi G, DNA topoisomerase targeting drugs: mechanisms of action and perspectives[J]. Anticancer Drugs , 1997; 8: 811-22.
    35. Wyckoff E,Hsieh TS, Functional expression of a Drosophila gene in yeast: genetic complementation of DNA topoisomerase II[J]. Proc Natl Acad Sci USA , 1988; 85: 6272-6.
    36. Goto T, Laipis P,Wang JC, The purification and characterization of DNA topoisomerases I and II of the yeast Saccharomyces cerevisiae[J]. J Biol Chem, 1984; 259: 10422-9.
    37. Champoux JJ, DNA topoisomerases: structure, function, and mechanism[J]. Annu Rev Biochem , 2001; 70: 369-413.
    38. Fortune JM,Osheroff N, Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice[J]. Prog Nucleic Acid Res Mol Biol , 2000; 64: 221-53.
    39. Carpenter AJ,Porter AC, Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase II alpha mutant human cellμline[J]. Mol Biol Cell , 2004; 15: 5700-11.
    40. Kimura K, Saijo M, Ui M, et al., Growth state- and cell cycle-dependent fluctuation in the expression of two forms of DNA topoisomerase II and possiblespecific modification of the higher molecular weight form in the M phase[J]. J Biol Chem , 1994; 269: 1173-6.
    41. Wilstermann AM,Osheroff N, Stabilization of eukaryotic topoisomerase II-DNA cleavage complexes[J]. Curr Top Med Chem, 2003; 3: 321-38.
    42. Hande KR, Clinical applications of anticancer drugs targeted to topoisomerase II[J]. Biochim Biophys Acta, 1998; 1400: 173-84.
    43. Li TK,Liu LF, Tumor cell death induced by topoisomerase-targeting drugs[J]. Annu Rev Pharmacol Toxicol, 2001; 41: 53-77.
    44. Lamartiniere CA, Protection against breast cancer with genistein: a component of soy[J]. Am J Clin Nutr, 2000; 71: 1705S-7S; discussion 08S-9S.
    45. Ross JA, Dietary flavonoids and the MLL gene: A pathway to infant leukemia? [J]. Proc Natl Acad Sci USA, 2000; 97: 4411-3.
    46. Strick R, Strissel PL, Borgers S, et al., Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia[J]. Proc Natl Acad Sci USA, 2000; 97: 4790-5.
    47. Felix CA, Leukemias related to treatment with DNA topoisomerase II inhibitors[J]. Med Pediatr Oncol, 2001; 36: 525-35.
    48. Rowley JD, The critical role of chromosome translocations in humanμleukemias[J]. Annu Rev Genet, 1998; 32: 495-519.
    49. Lovett BD, Strumberg D, Blair IA, et al., Etoposide metabolites enhance DNA topoisomerase II cleavage near leukemia-associated MLL translocation breakpoints[J]. Biochemistry, 2001; 40: 1159-70.
    50. Folkman J. Tumor angiogenesis: therapeutic impμlications[J]. N Engl J Med, 1971, 285 : 1182 - 1186.
    51. Folkman J. What is the evidence that tumours are angiogenesis dependent? [J]. J N atl Cancer Inst, 1990, 82 : 4 - 6.
    52. Risau W. Mechanisms of angiogenesis[J]. Nature, 1997, 386 : 671 - 674.
    53. Falkman J, Klagsbrun M. Angiogenic factors[J]. Science,1987, 235 : 442 - 447.
    54. Semenza GL. A new weapon for attacking tumor blood vessels[J]. N Engl J Med, 2008, 358 : 2066 - 2067.
    55. Harper J, Moses ma. Cancer: Cell Structures, Carcinogens and Genomic Instability[M]. Bignold L P. Birkh ser Verlag Switzerland. 2006: 238.
    56. Tong Y, Zhang X, Tian F, et al. Philinop side A, a novel marine2derivedcompound possessing dual anti2angiogenic and anti-tumor effects[ J ]. Int J Cancer, 2005, 114 : 843 - 853.
    57. Tian F, Zhang X, Tong Y, et al. Philinop side E, a new sulfated saponin from sea cucumber, blocks the interaction between kinase insert domain2containing recep tor ( KDR ) and alphavbeta3 integrin via binding to the extracellular domain of KDR[ J ]. Mol Pharmacol, 2007, 72 : 545 - 552.
    58. Zhao H, Liu H, Chen Y, et al. Oligomannurarate sulfate, a novel heparanase inhibitor simultaneously targeting basic fibroblast growth factor, combats tumor angiogenesis and metastasis[ J ]. Cancer Res, 2006, 66 : 8779 - 8787.
    59. Zhang C, Yang F, Zhang XW. Grateloupiaμlongifolia polysaccharide inhibits angiogenesis by downregulating tissue factor expression in HMEC-121 endothelial cells[ J ]. Br J Pharmacol, 2006, 148 : 741 - 751.
    60. Yan X, Lin Y, Yang DL, et al. A novel anti-CD146 monoclonal antibody, AA98, inhibits angiogenesis and tumor growth[ J ]. Blood, 2003, 102: 184 - 191.
    61. Bu P, Gao L, Zhang J, et al. Anti-CD146 monoclonal antibody AA98 inhibits angiogenesis via suppression of nuclear factor kappaB activation[ J ]. Mol Cancer Ther, 2006, 5: 2872 -2878.
    62. GranvilleCA, Memmott RM, Gills JJ, et al. Handicapping the race to develop inhibitors of the phosphoinositide3-kinase/Akt/mammalian target of rapamyein pathway[ J ]. Clin Cancer Res, 2006, 12:679-89
    63. Vivaneo I, Sawyers CL.The phosphatidylinositol3-kinase Akt pathway in Human cancer[ J ]. Nat Rev Cancer. 2002, 2:489-501
    64. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer[ J ]. Cancer Cell, 2007, 12:9-22
    65. Brunn GJ, Hudson CC, SekulieA. et al. Phosphorylation of the translational repressor PHAS-1 by the mammalian target of ramycin[ J ]. Seience, 1997, 277:99-101
    66. Fox SB,Gatter KC,Harris AL. Tumotrr angiogenesis [J]. J pathol, 1996, 179: 232-237
    67. Vries C, Escobedo JA, Ueno H. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor[ J ]. Science, 1992, 255:989-991
    68. Terman BI, Dougher-Vermanzen M, Carrion ME. Identification of the KDR tyrosine as a receptor for vascular endothelial cell growrh factor[ J ]. BiochemBiophys Res Commun, 1992,187:1579-1586
    69. Shalaby F, Failure of blood-island formation and vasculogenesis in FLK-1-deficient mice[ J ]. Nature,1995,376:62-66
    70. Thomad KA. Vascular endothelial growrh factor, a pontent and selective angiogenic agent[ J ]. J Biol Chem, 1996,271:603-606
    71. Betsholtz C, Lindblom P, Bjarnegard M, et al. Role of platelet-derived growth factor in mesangium development and vasculopathies: lessons from platelet-derived growth factor and platelet-derived growth factor receptor mutations in mice[ J ]. Curr Opin Nephrol Hypertens, 2004, 13: 45~52
    72. Lu L, Heinrich MC, Wang LS, et al. Retroviral-mediated gene transduction of c-kit into single hematopoitic progenitor cells from cord blood enhances erythroid colony formation and decrease sensitivity to inhibition by tumor necrosis factor-αand transforming growth factor-β1[ J ]. Blood, 1999; 94:2319-2332
    73. Demirkesen C, Buyukpinarbasili N, Ramazanoglu R, et al. The correlation of angiogenesis with metastasis in primary cutaneousmelanoma: a comparative analysis ofmicrovessel density, expression of vascular endothelial growth factor and basic fibroblastic growth factor[J]. Pathology, 2006, 38: 132-137
    74. Lin CR, Chen WS, Kruiger W, et al.Expression cloning of human EGF receptor complimentary DNA:Gene amplification and three related messenger RNA products in A431 cells[ J ]. Science, 1984, 224:843–848.
    75. Carpenter G. EGF receptor transactivation mediated by the proteolytic production of EGF-like agonists. Sci STKE, 2000,15: 1.
    76. Vihanto MM, Plock J, Erni D, et al. Hypoxia up-regulates expression of Eph receptors and ephrins in mouse skin[J]. FASEB, 2005, 19:1689
    77. Bergy, Malcolm E. Coats, John H. Hanka, Ladislav J. et al. kalamycin and method for preparation[P].1967, United States Patent 3300382.
    78. Hoeksema, Herman. kalamycinc acid and derivatives and their production[P].1970, United States Patent 3524868.
    79. Hoeksema, Herman.kalamycin alkylates and acylates[P]. 1970, United States Patent 3524865.
    80. Lourdes Toral-Barza, Wei-Guo Zhang, Xinyi Huang, et al. Discovery of lactoquinomycin and related pyranonaphthoquinones as potent and allosteric inhibitors of AKT/PKB: mechanistic involvement of AKT catalytic activationμloop cysteines[ J ]. Molecular Cancer Therapeutics, 2007, 6:3028-3038,
    81. Leroy E. Johnson and Alma Dietz.Kalafungin, a New Antibiotic Produced by Streptomyces tanashiensis Strain Kala[ J ]. Applied microbiology, 1968,.16, 1815-1821.
    82. Bergy ME. Kalafungin, a new broad spectrum antibiotic. Isolation and characterization[ J ]. J Antibiot (Tokyo), 1968,21:454-7.
    83. Shay JW,Roninson IB, Hallmarks of senescence in carcinogenesis and cancer therapy[ J ]. Oncogene, 2004; 23: 2919-33.
    84. Salvioli S, Capri M, Tieri P, et al., Different types of cell death in organismal aging and mlongevity: state of the art and possible systems biology approach[ J ]. Curr Pharm Des, 2008; 14: 226-36.
    85. Kahlem P, Dorken B, Schmitt CA, Cellular senescence in cancer treatment: friend or foe? [ J ]. J Clin Invest, 2004; 113: 169-74.
    86.贾晓,p53与抗肿瘤免疫,细胞与分子免疫学杂志,2008,24(12):1214-1215,1218。
    87. Royds JA, Iacopetta B. p53 and disease: when the guardian angel fails[J]. Cell Death Differ, 2006, 13: 1017-1026.
    88. Shen T, LiangH, Tong X,et al. Amino acid mutations of an infectious clone of Chinese EIAV attenuated vaccine resulted in reversion of virulence[J].Vacine, 2006, 24: 738-749.
    89. Tu YB, Zhou T, Yuan XF,et al. Long terminal repeats are not the sole determinants of virulence for equine infectious anemia virus[J]. Arch Virol, 2007, 152: 209-218.
    90. Garner E, prtective mechanisim of P53-P21-pRB protein against DNA damage-induced cell death[J].Cell Cycle, 2008; 7: 277-281
    91. Kimy, Zhao M, Aberrant Cell cycle regulation in cervical carciinoma[J]. Yonsei M J,2005, 46:597-613
    92. Meng QL, Li SW, Liu LX, etal. Characterization of cytoplasmic tail truncated envelop proteins of Equine infectious anemia virusin vitro[J].Virus Research, 2008, 133: 201-210.
    93. Liang H, He X, Shen T, et al. Combined amino acid mutations occurring in the envelope closely correlate with pathogenicity of EIAV[J]. Arch virol, 2006, 151: 1387-1403
    94. Sarbassov, D. D., Guertin, D. A., Ali, S. M., et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex[ J ]. Science, 2005, 307: 1098-1101.
    95. Wang JC, Cellular roles of DNA topoisomerases: a molecular perspective[ J ]. Nat Rev Mol Cell Biol, 2002; 3: 430-40.
    96. Dal Ben D, Palumbo M, Zagotto G, et al., DNA topoisomerase II structures and anthracycline activity: insights into ternary complex formation[ J ]. Curr Pharm Des, 2007; 13: 2766-80.
    97. Pommier Y, Topoisomerase I inhibitors: camptothecins and beyond[ J ]. Nat Rev Cancer, 2006; 6: 789-802.
    98. Giles GI,Sharma RP, Topoisomerase enzymes as therapeutic targets for cancer chemotherapy[ J ]. Med Chem, 2005; 1: 383-94.
    99. Azarova AM, Lyu YL, Lin CP, et al., Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies[ J ]. Proc Natl Acad Sci USA, 2007; 104: 11014-9.
    100.Osheroff N, Shelton ER,Brutlag DL, DNA topoisomerase II from Drosophila melanogaster, Relaxation of supercoiled DNA[ J ]. J Biol Chem, 1983; 258: 9536-43.
    101.Tanabe K, Ikegami Y, Ishida R, et al., Inhibition of topoisomerase II by antitumor agents bis(2,6-dioxopiperazine) derivatives[ J ]. Cancer Res, 1991; 51: 4903-8
    102.Meng LH, Zhang JS,Ding J, Salvicine, a novel DNA topoisomerase II inhibitor, exerting its effects by trapping enzyme-DNA cleavage complexes[ J ]. Biochem Pharmacol, 2001; 62: 733-41.
    103.Yamashita Y, Fujii N, Murakata C, et al., Induction of mammalian DNA topoisomerase I mediated DNA cleavage by antitumor indolocarbazole derivatives[ J ]. Biochemistry, 1992; 31: 12069-75.
    104.Fortune JM,Osheroff N, Merbarone inhibits the catalytic activity of human topoisomerase IIalpha by blocking DNA cleavage[ J ]. J Biol Chem, 1998; 273: 17643-50.
    105.Gantchev TG,Hunting DJ, The ortho-quinone metabolite of the anticancer drug etoposide (VP-16) is a potent inhibitor of the topoisomerase II/DNA cleavable complex[ J ]. Mol Pharmacol, 1998; 53: 422-8.
    106.Marx G, Zhou H, Graves DE, et al., Covalent attachment of ethidium to DNA results in enhanced topoisomerase II-mediated DNA cleavage[ J ]. Biochemistry,1997; 36: 15884-91.
    107.Osheroff N, Effect of antineoplastic agents on the DNA cleavage/religation reaction of eukaryotic topoisomerase II: inhibition of DNA religation by etoposide[ J ]. Biochemistry, 1989; 28: 6157-60.
    108.Lindsley JE, Use of a real-time, coupled assay to measure the ATPase activity of DNA topoisomerase II[ J ]. Methods Mol Biol, 2001; 95: 57-64.
    109.Vibe H. Oestergaard, Laura Giangiacomo,et al, Hindering the Strand Passage Reaction of Human Topoisomerase II without Disturbing DNA Cleavage, ATP Hydrolysis, or the Operation of the N-terminal Clamp[ J ]. J Biol. Chem. 2004; 279. 28093–28099
    110.Montecucco A, Pedrali-Noy G, Spadari S,et al, DNA unwinding and inhibition of T4 DNAμligase by anthracyclines[ J ]. Nucleic Acids Res, 1988; 16:3907-18.
    111.Robinson MJ, Corbett AH, Osheroff N. Effects of topoisomerase II-targeted drugs on enzyme-mediated DNA cleavage and ATP hydrolysis: evidence for distinct drug interaction domains on topoisomerase II[ J ]. Biochemistry, 1993; 32:3638-43.
    112.Baguley BC, Falkenhaug EM, The interaction of ethidium with synthetic double-stranded polynucleotides at low ionic strength[ J ]. Nucleic Acids Res, 1978; 5: 161-71.
    113.Hastie CJ, Cohen PT. Purification of protein phosphatase 4 catalytic subunit: inhibition by the antitumour drug fostriecin and other tumour suppressors and promoters[ J ]. FEBS Lett, 1998; 431:357-61.
    114.Stros M, Bacikova A, Polanska E, et al., HMGB1 interacts with human topoisomerase IIalpha and stimulates its catalytic activity[ J ]. Nucleic Acids Res, 2007; 35: 5001-13.
    115.Larsen AK, Escargueil AE, Skladanowski A, Catalytic topoisomerase II inhibitors in cancer therapy[ J ]. Pharmacol Ther, 2003; 99: 167-81.
    116.Qin Y, Meng L, Hu C, et al., Gambogic acid inhibits the catalytic activity of human topoisomerase II alpha by binding to its ATPase domain[ J ]. Mol Cancer Ther, 2007; 6: 2429-40.
    117.Zhu H, Huang M, Yang F, et al., R16, a novel amonafide analogue, induces apoptosis and G2-M arrest via poisoning topoisomerase II[ J ]. Mol Cancer Ther, 2007; 6: 484-95.
    118.Hu T, Sage H,Hsieh TS, ATPase domain of eukaryotic DNA topoisomerase II,Inhibition of ATPase activity by the anti-cancer drug bisdioxopiperazine and ATP/ADP-induced dimerization[ J ]. J Biol Chem, 2002; 277: 5944-51.
    119.Roberge M, Tudan C, Hung SM, et al, Antitumor drug fostriecin inhibits the mitotic entry checkpoint and protein phosphatases 1 and 2A[ J ]. Cancer Res, 1994; 54:6115-21.
    120.Berger JM, Gamblin SJ, Harrison SC, et al., Structure and mechanism of DNA topoisomerase II[ J ]. Nature, 1996; 379: 225-32.
    121.Baird CL, Harkins TT, Morris SK, et al., Topoisomerase II drives DNA transport by hydrolyzing one ATP[ J ]. Proc Natl Acad Sci USA, 1999; 96: 13685-90.
    122.Brino L, Urzhumtsev A, Mousli M, et al., Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center[ J ]. J Biol Chem, 2000; 275: 9468-75.
    123.Huang KC, Gao H, Yamasaki EF, et al., Topoisomerase II poisoning by ICRF-193[ J ]. J Biol Chem, 2001; 276: 44488-94。
    124.Sehested M,Jensen PB, Mapping of DNA topoisomerase II poisons (etoposide, clerocidin) and catalytic inhibitors (aclarubicin, ICRF-187) to four distinct steps in the topoisomerase II catalytic cycle[ J ]. Biochem Pharmacol, 1996; 51: 879-86.
    125.Capranico G,Binaschi M, DNA sequence selectivity of topoisomerases and topoisomerase poisons[ J ]. Biochim Biophys Acta, 1998; 1400: 185-94.
    126.Kingma PS, Burden DA,Osheroff N, Binding of etoposide to topoisomerase II in the absence of DNA: decreased affinity as a mechanism of drug resistance[ J ]. Biochemistry, 1999; 38: 3457-61.
    127.Froelich-Ammon SJ, Patchan MW, Osheroff N, et al., Topoisomerase II binds to ellipticine in the absence or presence of DNA. Characterization of enzyme-drug interactions by fluorescence spectroscopy[ J ]. J Biol Chem, 1995; 270: 14998-5004.
    128.Folkman J. Angiogenesis: an organizing principle for drug discovery? [ J ]. Nat Rev Drug Discov, 2007; 6:273-286.
    129.Nilesh M. Pandya, Naranjan S. Dhalla,et al, Angiogenesis-a new target for future therapy[ J ]. Vascular Pharmacology, 2006; 44: 265-74.
    130.Kerbel R, Folkman J.Clinical translation of angiogenesis inhibitors[ J ]. Nat Rev Cancer, 2002; 2:727-39.
    131.Verheul HM, Pinedo HM., Vascular endothelial growth factor and its inhibitors[ J ]. Drugs Today (Barc.), 2003; 39: 81-93.
    132.Eskens FA., Angiogenesis inhibitors in clinical development; where are we now and where are we going? [ J ]. Br J Cancer, 2004; 90:1-7.
    133.Marwick, C. Natural compounds show antiangiogenic activity[ J ]. J Natl.Cancer Inst, 2001; 93:1685.
    134.Tosetti F, Ferrari N, De Flora S, et al, Angioprevention: angiogenesis is a common and key target for cancer chemopreventive agents[ J ]. FASEB J, 2002;16:2-14.
    135.Tan WF, Lin LP, Li MH, et al, Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential[ J ]. Eur J Pharmacol, 2003; 459: 255-62.
    136.Deplanque G, Harris AL, Anti-angiogenic agents: clinical trial design and therapies in development[ J ]. Eur J Cancer, 2000; 36: 1713-24
    137.Koyama S, Takagi H, Otani A, et al., Tranilast inhibits protein kinase C-dependent signalling pathwayμlinked to angiogenic activities and gene expression of retinal microcapillary endothelial cells[ J ]. Br J Pharmacol, 1999; 127: 537-45.
    138.Ashton AW, Yokota R, John G, et al., Inhibition of endothelial cell migration, intercellular communication, and vascular tube formation by thromboxane A(2) [ J ]. J Biol Chem, 1999; 274: 35562-70.
    139.Soeda S, Kozako T, Iwata K, et al, Oversulfated fucoidan inhibits the basic fibroblast growth factor-induced tube formation by human umbilical vein endothelial cells: its possible mechanism of action. Biochim.[ J ]. Biophys. Acta, 2000;1497:127-34.
    140.Nicosia RF, Ottinetti A, Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro[ J ]. Lab Invest, 1990; 63: 115-22.
    141.Nicosia RF, Ottinetti A, Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot[ J ]. In Vitro Cell Dev Biol. 1990;26:119-28.
    142.Baillie CT ,Winslet MC ,Bradled NJ, Turmor Vasculatur--a potential therapeutic target[ J ]. Br J Cancer,1995,27:257
    143.Holash J, Maisonpierre PC, Compton D, et a1, Vessel cooption, regression, and
    144.Vajkoczy P, Farhadi M, Gaumann A, et al. Microtumor growth initiates angiogenic sprouting with simultaneous expression of vEGF,vEGF receptor-2, and angiopoetin-2[J]. J Clin Invest, 2002, 109: 777-785.
    145.Feige JJ, Bailly S, Molecular bases of angiogenesis[J]. BuU Acad Nad Med, 2000, 184: 537-545.
    146.Fiedhr U, Krissl T, Koidl S, et.al. Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-2 receptor involving the first Ig-like loop and the epidermal growth factor-like Repeats[J]. J Biol Chem, 2003, 278: 1721-1727.
    147.Vaupel P, Ka]linowski F, Okunieff P, Blood flow, oxygen and nutrient supply and metablic of human tunlors[J]. Cancer Re. 1989, 49:6449—6465
    148.Kunz M, Ibrahim SM, Molecular respones to hypoxia in tumor cells [J]. Mol Cancer. 2003,2:23.
    149.Duffy JP, Eibl G, Reber HA, et al. Influence of hypoxia and neoangiogenesis on the growth of pancreatic cancer[J]. Mol Cancer, 2003, 2;12.
    150.Jain RK, Duda DG, Clark JW, et a1. Lessons from phase III clinical trials on anti-VEGF therapy for cancer[J]. Nat Clin Pract Oncol, 2006, 3:24-40
    151.Nognera-Troise I, Daly C, Papadopoulos NJ, et a1. Blockade of Dll4 inhibits tumor growth by promoting non-productive angingenesis[J]. Nature, 2006, 444:1032-1037
    152.Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels as targets incancer[J]. Curr Opin Genet Dev, 2005, 15: 102-111
    153.Wamer AJ, LoPez-Dee J, Knight El. et al, The Shc-related adaptor Protein, Sck, forms a complex with the vascular-endothelia-growth-factor receptor KDR in transfected ce11s[ J ]. Biochem J, 2000; 347: 501-509
    154.garashi K, Shigeta K, Isohara T. et al. Sck interacts with KDR and Flt-1 via its SH2 domain[ J ]. Biochem Biophys Res Commun, 1998; 251:77-82
    155.Rousseau S, Houle F, Kotanides H, et al, Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase[ J ]. J Biol Chem, 2000;275:10661-72
    156.丁玲,八株海洋微生物次级代谢产物的研究[D].中国科学院海洋研究所,博士学位论文,2008
    157.李明,海参三萜皂苷类化合物CU306的抗肿瘤作用和机制研究[D].中国科学院上海药物研究所,博士学位论文,2008
    158.秦玉新,藤黄酸结合于人拓扑异构酶IIα的ATPase结构域并抑制其催化活性[D].中国科学院上海药物研究所,博士学位论文,2007
    159.任宣,C9抑制新血管生成、破坏既成血管作用及其机制的研究,中国科学院上海药物研究所[D].博士学位论文,2007
    160.张超,PI3K-Akt-mTOR信号通路和微管双重抑制剂S9抗肿瘤作用及其机制研究[D].中国科学院上海药物研究所,博士学位论文,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700