用户名: 密码: 验证码:
无单元法若干技术研究及其在电磁场计算中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无单元法是解决电磁场数值计算问题的一种新的有效方法,在处理小气隙、薄膜等问题上有着独特的优势,可以弥补有限元法处理这些问题的不足。本课题主要针对伽辽金型无单元法的电磁场计算问题展开深入研究。本文主要由以下几部分组成:
     第一部分针对无单元法求解效率不高的问题,将多重网格法应用在无单元法上,提出了无单元多重网格法。将多重网格的校正和迭代技术引入到有限单元法的框架中,可提高求解效率,有着广泛的应用,但多重网格法在无单元法上还没有应用。为提高计算效率,本文提出了基于无单元的多重网格法,这种方法在粗、细网格节点解的处理上和粗节点的构造方法及限制算子的确定都与传统的多重网格法不同。实例分析证明,针对同一个用无单元法离散化的分析模型,在达到同样的精度要求下,在不同的自由度下,多重网格法的CPU计算时间要小于ICCG法。这表明无单元多重网格法的计算效率要高于ICCG法。
     第二部分针对无单元节点的布置方法进行研究。在使用无单元法求解的过程中,无单元节点的布置适合与否会对解的精度产生很大的影响。本文提出一种新的不规则区域的无单元节点布置方法。该方法首先通过自组织特征映射法来确定背景网格,然后依据无单元节点的布置原则,通过计算点来确定无单元节点。此算法便于生成合理的节点分布,提高求解精度。
     第三部分对伽辽金型无单元数值积分问题进行了研究。采用圆形支撑域来构造积分区域,支撑域交叠的部分采用高斯数值积分方法进行积分,依据高斯积分公式,得出了高斯积分点及权重随节点距离变化的关系。该方法不需要背景网格来积分,是一种真正的无单元法。与规则背景网格相比,该方法提高了伽辽金型无单元法数值积分的精度。
     第四部分提出了一种建立在重叠型区域分解的基础之上的无单元伽辽金法和有限元耦合模型,来处理定子与转子相对运动问题的方法。该模型将求解区域分成两个子区域:有限元子域、无单元子域。然后依次对无单元子域和有限元子域进行迭代求解,最后得到整个区域的解。该方法的数值解较Belystchko提出的无单元与有限元耦合法更为准确,而且有效地克服了Belystchko提出的耦合法只适用规则交界面的缺点。本文将该方法应用在电机电磁场中,分析得到的结果克服了由于有限元法单元畸变产生的误差。
Element-free Galerkin (EFG) method is a novel effective method for solving electromagnetic computation, which is suitable for dealing with small air gap and membrane problems, which are difficult by finite element method (FEM), so it could make up the defection of FEM. The dissertation studied on the electromagnetic problems by EFG. The dissertation consists of four parts:
     Firstly, in order to increase the solving efficiency, the multigrid method was used in EFG, and a multigrid method of element-free Galerkin was presented in the paper. The multigrid iterative technique was extensively introduced to FEM frame, which could increase solving efficiency. In order to resolve low computational efficiency of element-free Galerkin method, the dissertation introduced the accelerated iterative multigrid method to the element-free Galerkin discrete field, proposed a multigrid method of element-free Galerkin (EFG-MG). The disposition on solutions of coarse grid nodes and fine grid nodes, in addition to the construction of coarse nodes and the restriction operator were different from the traditional MG. It was used for numerical computation of electromagnetic field problems, and the high efficiency of element-free Galerkin method was proved by examples. For the same element-free model, the CPU time of MG method is less than ICCG method for different freedom numbers. It indicates that the computational efficiency of MG is higher than ICCG.
     Secondly, the dissertation studied on the nodes distribution of EFG. The errors of the solutions are influenced greatly by the distribution of nodes of element-free method when using EFG. In order to reduce the errors of calculation, a new method on distribution of element-free nodes in irregular electromagnetic field domain was developed. In the method, firstly, the self-organizing feature map was used to generate background cells; secondly, the element-free nodes were determined by the evaluation points. The method is convenient for generating reasonable distribution of nodes with high solving accuracy.
     Thirdly, the dissertation studied on the numerical integration of EFG. The support domain of circular shape was used to construct integral domain, the Gauss numerical integration methods were used to overlapping area of the supporting domains. Based on the Gaussian integral formula, the curve equations rel ated with the positions of Gaussian integral points and weights to the node distance were derived. The method doesn’t need background cell integration, is a pure element-free method. It is very convenient for numerical integration, by which the solving accuracy is increased.
     Finally, the dissertation presented a new coupling model for coupling element-free Galerkin method with finite element method (EFG-FEM). The coupling model was based on overlapping domain decomposition method (DDM), in which the domain was decomposed into FEM subdomain and EFG subdomain; then the FEM subdomain and EFG subdomain were solved in turn by iterative method, until the solutions of the domain were obtained. The solutions are more accurate than Belystchko’s coupling method, and can eliminate influence of irregular interface shape.
引文
[1] Lucy L B. A numerical approach to the testing of the fission hypothesis. The Astron. J. 1977, 8(12): 1013-1024.
    [2] Gingold R A, Moraghan J J. Smoothed particle hydrodynamics: theory and applications to non-spherical stars. Mon. Not. Roy. Astrou. Soc. 1977, 181(2): 375-389.
    [3] Monaghan J J. An introduction to SPH. Comput. Phys. Comm. 1988, 48(1): 89-96.
    [4] Monaghan J J. Why particle methods work. SIAM J. Sci. Stat. Comput. 1982, 3(4):422-433.
    [5]Swegle J W, Hicks D L, Attaway S W. Smoothed particle hydrodynamics stability analysis. J.Comput.Phys. 1995, 116: 123-134.
    [6]Dyka C T. Addressing tension instability in SPH methods. Technical Report NRL/MR/6384, NRL, 1994.
    [7] Johnson G R, Stryk R A, Beissel S R. SPH for high velocity impact computations, Comput. Methods Appl.Mech. Engrg. 1996, 139: 347-373.
    [8] Swegle J W, Attaway S W. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations. Comput Mech, 1995, 17:151-168.
    [9] Libersky L D, Petschek A G, Carney T C, et al. High strain lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response. J. Comput. Phys., 1993, 109: 67-75.
    [10] Johnson G R, Beissel S R. Normalized smoothing functions for SPH impact computations. Int. J. Numer. Methods Engrg. 1996, 39: 2725-2741.
    [11] Zhang G M, Batra R C. Modified smoothed particle hydrodynamics method and its application to transient problems, Comput. Mech. 2004 (34): 137-146.
    [12] Batra R.C, Zhang G M. Analysis of adiabatic shear bands in elasto-thermo-viscoplastic materials by modified smoothed-particle hydrodynamics (MSPH) method. J. Comput. Phys. 2004 (201): 172-190.
    [13]贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用.计算物理. 1997, 14(2):155-166.
    [14]张锁春.光滑质点流体动力学(SPH)方法(综述).计算物理,1996,13(4):385-397.
    [15] Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 1992, 10: 307-318.
    [16] Belytschko T, Lu Y Y, Gu L. Element free Galerkin methods. Int. J. Numer. Methods. Engrg. 1994, 37: 229-256.
    [17] Lu Y Y, Beltschko T, et al. A new implementation of the element free Galerkin method. Comput Methods Appl Mech Engrg. 1994,113:397-414.
    [18] Krongauz Y, Belytschko T. EFG approximation with discontinuous derivatives. International Journal for Numerical methods in Engineering. 1998, 41: 1215-1233.
    [19] Lu Y Y, Belytschko T, Tabbara M. Element-free Galerkin methods for wave propagation and dynamic fracture. Comput Methods Appl Mech Engrg. 1995,126: 131-153.
    [20]Belytschko T, Tabbara M. Dynamic fracture using element-free Galerkin methods. International Journal for Numerical Methods in Engineering. 1996, 39:923-938.
    [21] Belytschko T, Gu L and Lu Y Y. Fracture and crack growth by element free Galerkin methods, Model. Simul. Mater. Sci. Engrg. 1994, 115: 277-286.
    [22] Belytschko T, Organ D, Gerlach C, Element-free Galerkin methods for dynamic fracture in concrete, Computer Methods in Applied Mechanics and Engineering, 2000, 187: 385-399.
    [23] Fleming M., Belytschko T. Enriched element_free Galerkin methods for crack tip fields. Int. J. Numer. Methods Engrg., 1997, 40: 1483-1504.
    [24] Krysl P, Belytschko T. Analysis of thin shells by element-free Galerkin method. Comput. Mech., 1995, 17: 26-35.
    [25]Ponthot J P, Belytschko T. Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method. Comput Methods Appl Mech Engrg. 1998,152: 19-46.
    [26] Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method, Comput. Methods Appl. Mech. Engrg. 1996, 139: 49-74.
    [27] Belytschko T, Organ D, Krongauz Y. A coupled finite element-element free Galerkin method. Comput. Mech. 1995, 17: 186-195.
    [28] Krongauz Y, Belytschko T. Enforcement of essential boundary conditions in meshless approximations using finite element. Comput. Methods. Appl. Mech. Engrg. 1996, 131: 133-145.
    [29] Hegen D. Element-free Galerkin methods in combination with finite element approaches, Comput. Methods Appl. Mech. Engrg. 1996, 135: 143-166.
    [30]Organ D, Fleming M., Terry T. Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput. Mech. 1996, 18: 225-235.
    [31] Belytschko T, Krongauz Y, Organ D, et al. Smoothing and acclerated computations in the element free Galerkin method, J. of Compu. and Appl. Math., 1996, 74: 111-126.
    [32] Belytschko T, Krysl P, Krongnauz Y. A three-dimensional explicit element-free Galerkin method. Int. J. Numer. Meth. Fluids., 1997, 24: 1253-1270.
    [33] Cordes L W, Moran B. Treatment of material discontinuity in the element-free Galerkin method, Comput. Methods Appl. Mech. Engrg. 1996, 139: 75-89.
    [34] Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods. Int. J. Numer. Meth. Fluids. 1995; 20: 1081-1106.
    [35] Liu W K, Chen Y, Jun S, et al. Overview and applications of the reproducing kernel particle methods. Archives of Computational Methods in Engineering, State of the art review. 1996, 3(1): 3-80.
    [36] Liu W K, Uras R A, Chen Y. Enrichment of the finite element method with the reproducing kernel particle method. Current Topics in Computational Mechanics, 1995, 305:253-258.
    [37] Liu W K, Jun S, Li S F, et al. Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Methods Engrg., 1995, 38: 1655-1679.
    [38]Liu W K, Chen Y, et al. Generalized multiple scale reproducing kernel particle methods. Comput Methods Appl Mech Engrg. 1996, 139: 91-157.
    [39] Liu W K, Chen Y. Wavelet and multiple scale reproducing kernel method. International Journal for Numerical Methods in Fluids. 1995, 21: 901-931.
    [40] Liu W K, Chen Y. Chang C T. et al. Advances in multiple scale kernel particle methods. Computational Mechanics. 1996, 18: 73-111.
    [41] Liu W K, Jun S, et al. Multiresolution reproducing kernel particle method for computational fluid dynamics. Int. J. Numer. Methods Fluid, 1997, 24: 1391-1415.
    [42] Liu W K, Li S. Moving least-square reproducing kernel method. Comput. Methods Appl.Mech.Engrg. 1996, 139: 159-193.
    [43] Chen J S , Pan C, Wu C T, et al. Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput.Methods Appl.Mech.Engrg. 1996, 139: 195-227.
    [44] Liu W K, Uras RA, Chen Y. Enrichment of the finite element method with the reproducing kernel particle method. Int. J. of Appl. Mech., 1997, 64: 861-870.
    [45] Gunther F C, Liu W K. Implementation of boundary conditions for meshless methods. Comput Methods Appl Mech Engrg. 1998, 163: 205-230.
    [46]赵松年,熊小芸.子波变换与子波分析.北京:电子工业出版社,1996.
    [47]李世雄,刘家琦.小波变换和反演数学基础.北京:地质出版社,1994.
    [48] Duarte C A, Oden J T. Hp clouds:a meshless method to solve boundary-value problems, Technical Report 95-05. Texas Institute for Computational and Applied Mathematics. University of Texas at Austin. 1995.
    [49] Duarte C A, Oden J T. Hp clouds:an h-p meshless method. Numer. Methods for Partical Differential Equations, 1996, 12: 673-705.
    [50] Duarte C A, Oden J T. An h-p adaptive method using clouds. Comput Methods Appl Mech Engrg. 1996, 139: 237-262.
    [51] Oden J T, Duarte C A, Zienkiewicz O C. A new cloud-based hp finite element method. Int J Numer Methods Engrg. 1998,50: 160-170.
    [52] Liszka T J, Duarte C. Tworzydlo W W. Hp-meshless cloud method. Comput. Methods. Appl. Mech. Engrg. 1996, 139: 263-288.
    [53] Melenk J M, Babuska I. The partition of unity finite element methods:Basic theory and application. Comput Methods Appl Mech Engrg. 1996, 139: 263-288.
    [54] Babuska I, Melenk J M. The partition of unity methods. Int. J. Numer. Methods Engrg. 1997, 40:727-758.
    [55] Onate E, Idelsohn S, Zienkiewicz O C, et al. A finite point method in computational mechanics: Applications to convective transport and fluid flow, International Journal for Numerical Methods in Engineering, 1996, 39: 3839-3866.
    [56] Onate E, Idelsohn S, Zienkiewicz O C, et al. A stabilized finite point method for analysis of fluid mechanics problems, Comput. Methods Appl. Mech. Engrg., 1996, 139: 315-346.
    [57] Zhu T, Zhang J D, Atluri S N. A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach, Comput. Mech. 1998, 21:223-235.
    [58] Atluri S N, Sladek J, et al.. The Loacl boundary integral equation (LBIE) and it's meshless implementation for linear elasticity. Comput. Mech. 2000, 25:180-198.
    [59]Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 1998, 22:117-127.
    [60] Atluri S N, Zhu T. The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech. 2000, 25:169-179.
    [61] Atluri S N, Kim H G, et al. A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods. Comput. Mech. 1999, 24:348-372.
    [62] Zhu T, Atluri S N. Modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput. Mech. 1998, 21: 211-222.
    [63] Amaratunga K, Williams J R. Wavelet-Galerkin Solutions for one-dimensional partial differential equations. Int. J. Numer. Methods Engrg., 1994, 37: 2703-2716.
    [64]Kurdila A J, Sun T, Grama P. A fine fractal interpolation functions and wavelet-based finite elements.Comput. Mech. 1995, 17: 169-185.
    [65]Oleg V, Samuel P, Mihir S. A multilevel wavelet collocation method for solving partial differential equations in a finite domain. Journal of Computational Physics, 1995, 120: 33-47.
    [66] Oleg V, Samuel P. A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain, Journal of Computational Physics, 1996, 125: 498-512.
    [67] Juan M R., Gary K. Wavelet-Galerkin discretization of hyperbolic equations, Journal of Computational Physics, 1995, 122: 118-128.
    [68] Sonia M, Elsa C. Convergence estimates for the wavelet Galerkin method. SIAM J. Numer. Anal, 1996, 33(1): 149-161.
    [69]Ko J, Kurdila A J. On the conditioning of numerical boundary measures in wavelet Galerkin methods, Communications In Numerical Methods In Engineering, 1996, 12: 281-294.
    [70] Reginska. T, Eld′en L. Solving the sideways heat equation by a wavelet Galerkin method. Inverse Problems 13, 1997:1093-1106.
    [71] Buhmann M D. Multivariable interpolation using radial basis functions. Ph. D. Thesis, University of Cambridge 1989.
    [72]吴宗敏.函数的径向基表示.数学进展, 1988, 27(3):202-208.
    [73] Dubal M R. Construction of three-dimensional black-hole initial data via multiquadric. Phys. Rev. D 1992, 45: 1178-1187.
    [74]Sun X. Conditional positive define functions and their application to multivariate interpolations. Journal of Approximation Theory, 1993, 74: 159-180.
    [75] Wu Z., Schaback. R. Local error estimates for radial basis function interpolation of scattered data. IMA journal of Numerical Analysis, 1993, 13: 13-27.
    [76] Zhang X, Song K Z, Lu M W. Meshless methods based on collocation with radial basis function. Comput. Mech., 2000, 26: 333-343.
    [77] Wu Y L, Liu G R. A meshfree formulation of local radial point interpolation method (LRPIM) for incompressible flow simulation. Comput Mech , 2003 , 30 :355-365.
    [78] Liu G R, Gu Y T. A point interpolation method for two dimensional solids. Int. J. Numer. Methods Eng. 2001, 50: 937-951.
    [79]Maréchal Y. Some meshless methods for electromagnetic field computations. IEEE Trans. Mag. 1998, 34(5): 3351-3354.
    [80]Cingoski V, Miyamoto N, Yamashita H. Element-free Galerkin method for electromagnetic field Computations. IEEE Trans. Mag. 1998, 34(5):3236-3239.
    [81] Ho S L, Yang S, Machado J M, Wong H C. Applications of a meshless method in electromagnetics. IEEE Trans. Magn., 2001, 37: 3198-3202.
    [82]Verardi S L L, Machado J M, Cardoso J R. The element-free Galerkin method applied to the study of fully developed magnetohydrodynamic duct flows. IEEE Trans. on Mag., 38(2), 2002, 941-944.
    [83]Kim H K, Park K Y, Kim D W, Kim Y S, Park S K, Lee B H. Electromagnetic field analysis using the point collocation method based on the FMLSRK approximation. Electrical Machines and Systems, ICEMS 2003. Sixth International Conference on Volume 2, 2003: 751-753.
    [84]茅昕光,林鹤云.电磁场数值分析的无单元Galerkin方法.东南大学学报(自然科学版),2003,33(1):30-33.
    [85]刘振华.无单元方法在电磁场分析中的应用研究.华北电力大学硕士学位论文(河北),2003.
    [86]Liang Xuan, Zhiwei Zeng, Balasubramaniam Shanker, Lalita Udpa. Element-free galerkin method for static and quasi-static electromagnetic field computation. IEEE Trans. on Mag., 2004, 40(1):12-20.
    [87] Marechal Y, Coulomb J L, Mcunier G, Touzot G. Use of the diffuse element method for electromagnetic field computation. IEEE Transactions on Magnetics.1993, 29(2):1475-1493.
    [88]Aluru N R. A point collocation method for meshless analysis of microelectronic and micro-electromechanical devices. International Workshop on Computational Electronics. 1998:54-57.
    [89]Viana S A, Mesquita R C. Moving least square reproducing kernel method for electromagnetic field computation. IEEE Trans. Mag. 1999, 35(3):1372-1375.
    [90]Herault C, Maréchal Y. Boundary and interface conditions meshless methods [J]. IEEE Trans.Mag. 1999, 35(3):1450-1453.
    [91]刘素贞,杨庆新.二维电场的无单元数值解法.河北工业大学学报,1999,28(2):10-15.
    [92]杨庆新,刘素贞,陈海燕.电磁场无单元Galerkin方法中几个关键问题的研究.河北工业大学学报,2004,33 (2): 28-33.
    [93]Mitchell M J, Qiao R, Aluru N R. Meshless analysis of steady-state Electro-Osmotic transport. Journal of Microelectro-mechanical Systems. 2000, 9(4):435-449.
    [94]石陆魁,沈雪勤,颜威利.小波插值Galerkin法解二维静态电磁场中的边值问题.中国电机工程学报,2000,20(9):13-16.
    [95] Li G, Aluru N R. A boundary cloud method with a cloud-by-cloud polynomial basis. Engineering Analysis with Boundary Elements, 2003, 27(1):57-71.
    [96] Li G, Paulino G H, Aluru N R. Coupling of the meshfree finite cloud method with the boundary element method: A collocation approach. Computer Methods in Applied Mechanics and Engineering, 2003, 192(20-21):2355-2375.
    [97]Lu Huifen, Jiang Hao. Application of meshless local Petrov-Galerkin methods in electromagnetics. Electrical Machines and Systems, ICEMS 2003. Sixth International Conference on Volume 2, 2003: 798-801.
    [98] Viana S A, Rodger D, Lai H C. Meshless local Petrov-Galerkin method with radial basis functions applied to electromagnetics, IEE Proc.-Sci.Meas.Tcchnol.November 2004, 151(6):449-451.
    [99]张勇.计算电磁学的无单元方法研究.华中科技大学博士学位论文.2006.
    [100]Ho S L, Yang S Y, Wong H C, Ni G. A meshless collocation method based on radial basis functions and wavelets, IEEE Trans. Magn., 2004,40(2):1021–1024.
    [101]Viana S A, Rodger D, Lai H C. Application of the local radial point interpolation method to solve eddy-current problems, IEEE Trans. Magn., 2006, 42(4):591–594.
    [102]Ala G, Francomano E, Tortaorici A, Toscano E, Viola F. A smoothed particle interpolation scheme for transient electromagnetic simulation, IEEE Trans. Magn., 2006, 42(4):647-650.
    [103] Johnson G R. Linking Lagrangian particle methods to standard finite element methods forhigh velocity impact computations. Nucl. Fngrg Des, 1994 (150):256-274.
    [104]Attaway S, Heinstein M., Swegle J. Coupling of smooth particle hydrodynamics with the finite element method. Nucl Eng Des, 1994, 150:199-205.
    [105] De Vuyst T, Vignjevic R, Campbell J C. Coupling between meshless and finite element methods. lnt.J. of Imp Engineering. 2005, 31, 1054-1064.
    [106]刘天样,刘更.二维接触问题的无网格伽辽金-有限元耦合方法.西北工业大学学报,2003,21(4):499-503.
    [107]刘天样,刘更,徐花.二维无网格伽辽金-有限元耦合方法的研究.机械强度,2002, 24(4):602-607.
    [108]Xiao Q Z, Dhanasekar M.. Coupling of FE and EFG using collocation approach. Advances in Engineering Software, 2002, 33: 507-515.
    [109]Vlatko Cingoski, Naoki Miyamoto, Hideo Yamashita. Hybrid element-free Galerkin—finite element method for electromagnetic field computations. IEEE Transactions on Magnetics, 2000, 36(4):1543-1547.
    [110]Huajie Yin, Longfeng Lin. A new EFG-FEM algorithm for electromagnetic computation. Asia-Pacific conference on environmental electromagnetics'2003. Nov.4-7, 2003.
    [111]王志华.有限元与无单元耦合法在电磁场数值计算中的应用研究.河北工业大学硕士论文,2006.
    [112]贾亮,黄其青,殷之平.无网格-有限元直接耦合法.西北工业大学学报,2002, 25(3):337-341.
    [113]Yang SY, Ni G Z,Cardoso J R.,A combined wavelet-element free Galerkin method for numerical calculations of electromagnetic fields, IEEE Trans. Mag. 2003, 39:1413-1416.
    [114]张琰,王建国,张丙印.径向基点插值无网格法与有限元耦合法.清华大学学报.2008(6): 951-954.
    [115]Arieh lserles著,刘晓艳,刘学深译.微分方程数值分析基础教程.北京:清华大学出版社,2005.
    [116]Hackbusch.W.Convergence of multi-grid iterations applied to difference equation, Math. Comp., 1980, 34:425-440.
    [117]Hackbusch.W. On the convergence of multi-grid iterations. Beitrage Nuimer.Muth., 1981, 9: 213-239.
    [118] Hackbusch.W, Trottenberg U(eds.). Multigrid methods. Lecture Notes in Mathematics 960, Springer, Berlin, 1986.
    [119] Hackbusch.W.Multi-Grid Methods and Applications. Springer-Verlag, New York, 1985.
    [120]Hackbusch.W, Trottenberg U (eds.). Multigrid methods II, Lecture Notes in Mathematics 1228, Springer, Berlin, 1982.
    [121]Hackbusch.W (ed.). Robust multigrid methods, Friedr. Vieweg , Braunschweig, 1988:96-104.
    [122]Hackbusch.W, Trottenberg U (eds.). Multigrid methods III. Proc. 3rd Int. Conf. on Multigrid methods. Int. Series of Num. Math.98, Birkhauser, Basel 1991.
    [123] Hackbusch.W, Wittum G (eds.). Multigrid methods V, Proc. 5 rd European Multigrid Conf. in Stuttgart Germany, Lecture Notes in Computational Science and Engineering 3,Springer, Berlin, 1998.
    [124]Feigh S, Clemens M., Weiland T. Geometric multigrid method for electro- and magnetostatic field simulation using the conformal finite integration technique. 2003 Copper Mountain Conference on Multigrid Methods, Copper Mountain, Colorado, 2003.
    [125]P?plau G, van Rienen U. Multigrid solvers for Poisson’s equation in computational electromagnetics. In: Scientific Computing in Electrical Engineering, Lecture Notes in Computational Science and Engineering, Springer, Berlin, 2001 (18):169-176.
    [126]周浩,倪光正.多重网格法及其在静态电磁场数值分析中的应用.中国电机工程学报, 1990,10(5):20-26.
    [127]Lahaye D, Vandewalle S, Hameyer K. An algebraic multilevel preconditioner for field-circuit coupled problems.IEEE Transactions on Magnetics, 2002, 38(2): 413-416.
    [128]Ronny Mertens, Herbert De Gersem, Ronnie Belmans, Kay Hameyer. An algebraic multigrid method for solving very large electromagnetic systems. IEEE Transactions on Magnetics, 1998, 34(5):1327-1330.
    [129] Mifune T, Iwashita T, Shimasaki M. New algebraic multigrid preconditioning for iterative solvers in electromagnetic finite edge-element analyses. Transactions on Magnetics, 2003, 39(3):1677-1680.
    [130]石钟慈,袁亚湘.奇效的计算:大规模科学与工程计算的理论和方法.长沙:湖南科学技术出版社,1998.
    [131]Brandt A, McCormic S F, Rudge J W. Algebraic multigrid(AMG)for automatic multigrid algorithm design and problem solution. A Preliminary Report.Report, Inst. for Computational Studies, Colorado State University, Ft. Collins, Colorado, 1982.
    [132]Brandt A, McCormic S F, Rudge J W. Algebraic multigrid(AMG) for automatic multigrid solution with application to geodetic computation .Report, Inst. for Computational Studies, Colorado State University, Ft. Collins, Colorado, 1982.10.
    [133]舒适.几类基于几何和分析信息的代数多重网格法及其应用.湘潭大学博士学位论文.2004.
    [134] Vanek P, Mandel J, Brezina M. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing, 1996, 56(3):179-196.
    [135] Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods. Math Comput, 1981, 37 (155): 141–158.
    [136]赵启林,卓家涛,陈斌.有限元网格自组织神经网络的自动生成.计算力学学报,2001,18(4):501-504.
    [137]焦李成.神经网络系统理论.西安:西安电子科技大学出版社,1990.
    [138]Manevitz Larry, Yousef Malik. Finite-Element Mesh Generation Using Self-Organizing Neural Networks; 1997, Computer-Aided Civil & Infrastructure Engineering, 12 (4): 233.
    [139]王家礼,朱满座,路宏敏等.电磁场与电磁波学习指导.西安:西安电子科技大学出版社,2002.
    [140]Dolbow J, Belytschko T. Numerical integration of Galerkin weak form in mesh-free methods. Computational Mechanics, 1999, 23(3):219-230.
    [141]Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 49-74.
    [142]Duflot M, Nguyen-Dang H. A truly meshless Galerkin method based on a moving least squares quadrature. Comm.Numer.Methods Engrg., 2002, 18:441-449.
    [143]孙玉田,杨明,李北芳.电机动态有限元中的运动问题.大电机技术,1997,(6):35-39.
    [144]胡岩.考虑饱和运动的电机瞬态电磁场有限元计算.沈阳工业大学学报,1996,18(2):38-44.
    [145]王群京,孙明施,李国丽等.面磁钢无刷直流电动机的电感计算和数字仿真研究.电工技术学报,2001,16(1):21-25.
    [146]韩敬东,严登俊,刘瑞芳,胡敏强.处理电磁场有限元运动问题的新方法.中国电机工程学报,2003,23(8):163-167.
    [147]Abdel-Razek.A, Coulomb J, Feliachi.M, Sabonnadiere, J. Conception of an air-gap element for the dynamic analysis of the electromagnetic field in electric machines, IEEE Transactions on Magnetics, 1982, 18(2):655-659.
    [148]苑津莎,张金堂.电机暂态过程电磁场数值计算的一种新方法.华北电力学院学报,1993 (4):1-8.
    [149]Bi Chao Chen, S X., Liu Z J, Low T S. Electro-magnetic field analysis in rotational electric machines using finite element-analytical hybrid method. IEEE Transactions on Magnetics, 1994, 30(6):4314-4316.
    [150]Lee K, DeBortoli M J, Lee M J, Salon.S J.Coupling finite elements and analytical solution in the airgap of electric machines. IEEE Transactions on Magnetics. 1991, 27(5):3955-3957.
    [151]章跃进.旋转电机磁场计算数值解析结合法研究.上海大学博士学位论文.2005.
    [152]Schwarz.H A. Gesammelete Mathematic Abhandlungen, Volume 2, Springer, Berlin, 1890. First publish in Vierteljahrsschrift der Naturforschenden Gesellschaft, 1870 (15):272-286.
    [153]Beatson R K, Light W A, Billings S. Fast solution of the radial basis function interpolation equations: Domain decomposition methods, SIAM J. Sci. Comput., 2000 (22): 1717–1740.
    [154]Duan Y, Lai S J, Huang T Z. Coupling projection domain decomposition method and meshless collocation method using radial basis functions in electro-magnetics, PIERL. 2008 (5):1-12.
    [155]Illoul L A, Menach Y Le, Clenet S. A mixed finite element/meshless natural element method for simulating rotative electromagnetic machines. Eur. Phys. J. Appl. Phys. 2008 (43): 197-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700