用户名: 密码: 验证码:
高速磁浮交通迭合式轨道梁变形及力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着磁浮交通建设的进一步发展,中长距离磁浮线路建设将遇到诸多复杂的地形地质状况,不可避免地需要跨越长距离障碍。目前适合于磁浮列车运行的大跨度轨道梁结构在国内外尚无先例,磁浮迭合梁结构因此被提出来。该结构将带有高精度功能面的轨道梁架设在常规桥梁结构上,以跨越障碍。相关研究至今未见公开报道。磁浮迭合梁结构作为磁浮交通线路不可或缺的一部分,很有必要对其进行深入和系统地研究。
     本文从静力学及动力学的角度,对磁浮迭合梁结构进行了深入研究。以磁浮规范为依据,参照磁浮轨道结构和铁路桥梁等方面的现有成果,对磁浮迭合梁结构的研究方法、变形控制指标及限值、变形影响因素及影响规律、结构主要设计参数以及磁浮迭合梁动力设计要求等问题逐一展开研究,研究成果将为磁浮迭合梁结构的方案选择和参数选取提供理论基础和应用参考价值。本文主要研究内容如下:
     (1)研究了针对磁浮迭合梁结构的变形控制指标及其限值公式。对磁浮迭合梁与常规轨道梁在结构型式及变形特征等方面进行了对比分析,参考磁浮轨道和铁路桥梁等方面的现有成果,对磁浮迭合梁结构变形分析的控制指标及相应限值公式进行了研究。
     (2)开展了磁浮迭合梁选型研究。通过对国内外桥梁规范关于桥梁(或轨道梁)竖向横向刚度限值规定的对比分析,结合磁浮迭合梁的结构特点和受力特点,对迭合梁的上层轨面结构型式、下层桥梁截面刚度以及上下层连接方式等进行了研究。在此基础上,进行了主跨80m的三跨连续迭合梁的方案设计,并建立了有限元分析计算模型。
     (3)开展了环境温度、磁浮列车等荷载作用下的迭合梁变形分析。对比国内外桥梁规范关于温度梯度模式的规定,探讨了磁浮迭合梁结构各组成部分的温度梯度模式。对环境温度和磁浮列车等荷载作用下的迭合梁变形特征和变形影响因素进行了研究,得到了迭合梁下层桥梁顶板宽度、边跨比和截面刚度等参数及上下层连接方式对迭合梁变形的影响规律,提出了磁浮迭合梁结构主要设计参数的合理取值范围,并对变形控制指标的限值公式加以修正。
     (4)开展了磁浮迭合梁结构动力特性研究。应用结构动力学、车辆动力学及电磁控制理论原理,采用模态综合技术,建立了考虑主动控制磁轨关系的磁浮列车-迭合梁动力分析模型,编制了计算程序。应用本文编制的程序,对磁浮列车通过迭合梁的全过程进行了计算分析,研究了列车运行速度、列车编组、迭合梁边跨比、下层桥梁截面刚度和结构阻尼等相关因素对磁浮列车-迭合梁系统动力响应的影响规律,分析了迭合梁-阶自振频率与动力响应的关系,提出了磁浮迭合梁结构的动力准则。
With the development of maglev transportation, we may confront numerous complex terrain and geology situations during the construction of middle-long-distance maglev lines. Accordingly, these lines are certain to run across many long-distance obstacles. Presently, there doesn't exist long-span guideway home and abroad suitable for the running of maglev train, so there appears the structural style for maglev composite guideway. In this style of structure, the guideways with highly precise function surfaces are erected over the normal bridge in order to stride across the obstacles mentioned above. However, some related findings in this respect have not been reported to the public. Therefore, as an indispensable part of maglev line, this kind of structure deserves our efforts to do deep and systematical research.
     The author carries out a further study on maglev composite guideway in this thesis from the perspective of Statics and Dynamics. Based on the maglev codes, the author explores the following issues respectively by referring to the present findings with regard to maglev guideway and railway bridge, e.g. the research methods for maglev composite guideway, the indexes and limits for deformation-controlling, the factors influencing deformation, the influence way, the proper ranges of main structure parameters for structure-designing, the dynamic design requirements for maglev composite guideway and so on. The achievements of the present study in this thesis may provide theoretic foundation and reference for parameter choice and scheme selection of composite guideway. The main research is as follows:
     (1) Exploring a series of indexes and corresponding limits formula, which are used to control the deformation of maglev composite guideway. The author in this thesis conducts a comparative study of maglev composite guideway and normal guideway on structural style and deformation behavior etc. Furthermore, based on the previous achievements with regard to maglev guideway and railway bridge, the author carries out a detailed study on a series of indexes and corresponding limits formula, which are used to control the deformation of maglev composite guideway.
     (2) Conducting an alternative study on suitable structural style of maglev composite guideway. The author in this part surveys the composite guideway of upper track, stiffness of understructure, as well as the linked mode by analyzing and comparing the bridge criteria home and abroad on allowable values of vertical and lateral stiffness of bridge (or guideway), coupled with the structure and stress characteristics of maglev composite guideway. According to the study conducted above, the author tries to design the scheme for the three-span continuous composite guideway bridges with an 80-meter main span, and then establish the finite element analysis model.
     (3) Analyzing the deformation of composite guideway under the influence of such loads as ambient temperature and maglev train. Through a comparative study on the bridge norms home and abroad about temperature gradient mode, the author in the third part attempts to explore the temperature gradient modes of different parts in maglev composite guideway. Based on the study of composite guideway deformation features and the factors under the influence of ambient temperature and maglev train etc, the author gets the result of influential way exerted by roof width, span ratio, vertical stiffness, and linked mode between upper track and understructure on the deformation of composite guideway and puts forward the proper ranges of main structure parameters for maglev composite guideway and also improves the limits formula of deformation-controlling index.
     (4) Studying the dynamic characteristics of maglev composite guideway structure. Through the application of theories from Structure Dynamics, Vehicle Dynamics and Electromagnetic Control, as well as the techniques of modal analysis, the author sets up the model for the dynamic analysis on maglev train-composite guideway of magnetic force based on active control system, and then writes a program on train-composite guideway dynamic analysis. By means of the simulation program compiled in this dissertation, the author analyses and calculates the whole process of high-speed maglev train passing on the composite guideway and also studies the effects of different maglev train speed, marshalling, span ratio, vertical stiffness and damping on train and composite guideway responses. The relationship between primary frequency of composite guideway and its corresponding dynamic responses is also analyzed in this part. At last, the author puts forward the design requirements of maglev composite guideway. 115 figures, 47 tables, 139 references.
引文
[1]吴祥明.关于建立我国高速磁浮交通网络和磁浮工业体系的思考[J].土木工程学报,2003,(3),64-69.
    [2]吴祥明等.上海磁浮示范线轨道系统关键技术研究[Z].国家科技成果,2003.
    [3]R.Schach,EJehle,R.Naumann著,莫凡等译。高速磁浮与高速轮轨交通系统比较[M].北京:中国科学技术出版社,2008.
    [4]王延安,陈世元,苏战排.EMS式与EDS式磁悬浮列车系统的比较分析[J].铁道车辆,2001,39(10):17-20.
    [5]吴祥明.磁浮列车[M].上海:上海科学技术出版社,2003.
    [6]魏庆朝,孔永健.磁浮铁路系统与技术[M].北京:中国科学技术出版社,2003.
    [7]叶云岳.直线电机原理与应用[M].北京:机械工业出版社,2000.
    [8]王江潮,欧阳华,杜朝辉。德国磁悬浮列车的悬浮与驱动系统[J].国外铁道午辆,2004,4 1(3):1-5.
    [9]时瑾.高速常导磁浮车辆-线路动力响应研究[D].北京交通大学,2006.
    [10]刘华清,孙翔.德国磁悬浮列车Transrapid[M].成都:电子科技大学出版社,1995.
    [11]贾素红.高速磁悬浮铁路轨道梁的合理结构型式研究[D].西南交通大学,2003.
    [12]滕延锋.高速磁浮轨道梁在车辆荷载作用下的振动研究[D].上海交通大学,2008.
    [13]吴祥明,华毅杰,王步.变形精确控制梁温度场分析[J].建筑科学,2002(8):14-16.
    [14]朱莉鹏,张涛.磁浮轨道梁结构温度变形的发展与研究[J].山西建筑,2008,(7):17-18.
    [15]EKehlbeck,刘兴法等译.太阳辐射对桥梁结构的影响[M].北京:中国铁道出版社,1981.
    [16]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991.
    [17]刘兴法.箱形桥墩的日照温度应力及位移[J].铁路标准设计通讯,1978.2.
    [18]刘兴法.圆形空心墩曰照温度应力与位移分析[J].铁路标准设计通讯,1981.3.
    [19]刘兴法.预应力混凝土桥梁的早期裂纹与防止措施[J].铁道建筑,1983.9.
    [20]Pajuhesh,J.Design of concrete structures for thermal effects[J],ACIJ,(Mar.-Apr.1980),pp.74-77.
    [21]Duen Ho,Chi-Ho Liu.Extreme thermal loadings in highway bridges[J].Journal of Structural Engineering,1989,v 115,n 7:p 1681-1696.
    [22]Fritz Leonhardt,Reynolds,Joseph C.Emanuel,Jack H.Thermal stresses and movements in bridges[J].ASCE J Struct Div,1974,v 100,n ST1:63-78.
    [23]Imbsen,Roy A.Vandershaf,David E.Thermal effects in concrete bridge superstructures[R].Transportation Research Record,1984,v 2.
    [24]Rao,D.S.Prakash.Temperature distribution in concrete bridges for Indian summer conditions[J].Indian Concrete Journal,1987,v61,n9:p245-250.
    [25]Prakash Rao,D.S.Temperature stresses in concrete box-girder bridges[J].Indian Concrete Journal,1988,v 62,n4:p 187-191.
    [26]Mark,Fernando A.,Mendes,Pedro A.Thermal actions for concrete bridge design[J].Journal of Structural Engineering,1993,v119n8:p2313-2231.
    [27]Priestley,M.J.N.Temperature gradients in bridges-some design consideration[J].New zealand Engineering,1972,v27,PartT:pp.228-233.
    [28]Priestley,M.J.N.Design thermal gradients for concrete bridges[J].New Zealand Engineering,1976,v31,n9:p 213-219.
    [29]Priestley,M.J.N.Design of concrete bridges for temperature gradients[J].ACI journal,Proceedings V.75,NoS,May 1978,pp209-217.
    [30]刘兴法.柔性墩温度应力计算[J].铁路标准通讯设计,1976(6).
    [31]杨高中.桥梁非线性温度与收缩内力的一个解法[J].公路工程,1979(3).
    [32]刘兴法.预应力混凝土箱形梁曰照温度应力与位移计算[J].桥梁建设,1980(1).
    [33]谭之抗.桥梁结构的温度应力[J].中南公路工程,1981(2).
    [34]陆楸,郑明珠,曾宪武。非线性分布的温度应力[J].华东公路,1981(3).
    [35]范立础.预应力混凝土连续梁桥.人民交通出版社,1988.
    [36]潘正旺.磁浮轨道梁受温度作用的变形反应分析研究[D].同济大学,2003.
    [37]乔柏平,滕念管.磁浮轨道梁日照下的温度场及变形[J].低温建筑技术,2008(2):76-78.
    [38]赵晓梅,张涛.高精度变形控制轨道梁的温度场研究[J].公路交通科技,2007(9).
    [39]刘华波.异型截面预应力混凝土箱梁温度场及温度效应研究[D].上海:同济大学博士学位论文,2002.
    [40]赵晓梅,张涛,窦仲赟.轨道交通混凝土梁温度变形影响因素分析[J].城市轨道交通研究,2007.1 0(8):46-49.
    [41]Chiu W S,Smith R G,Wormley D N.Influence of vehicle and distributed guideway parameters on high speed vehicle-guideway dynamic interactions[J].Joumal of Dynamic System,Measurement and Control,Transaction of the ASME,1971,93(3):25-34.
    [42]Cherchas D B.Dynamics simulation for a high speed magnetically levitated guided ground vehicle[J].Journal of Dynamic Systems,Measurement and Control,Transactions of the ASME,1979,101(3):223-229.
    [43]Meisinger R.Simulation of maglev vehicles riding over single and double span guideways[J].Mathematics and Computers in Simulation,1979,21(2):197-206.
    [44]Chen S S,Rote D M,Coffey H T.Review of vehicle/guideway interaction in maglev systems[J].Fluid Structure Interaction,Transient Thermal-Hydraulics,and Structural Mechanics,1992,231(2):81-95.
    [45]Chiu W S,Smith R G,Wormley D N.Influence of vehicle and distributed guideway parameters on high speed vehicle-guideway dynamic interactions[J].Joumal of Dynamic System,Measurement and Control,Transaction of the ASME,1971,93(3):25-34.
    [46]Y.Cai,S.S.Chen,D.M.Rote,H.T.Coffey.Vehicle/guideway interaction for high-speed vehicle on a flexible guideway[J].Journal of Sound and Vibration,1994,175(5):625-646.
    [47]Y.Cai,S.S.Chen.D.M.Rote,H.T.Coffey.Vehicle/guideway dynamic interaction in maglev systems[J].J.Dyn.Sys.Meas.,& Control,Trans.ASME,1996,118(5):526-530.
    [48]Cai Y and Chen S S.Numerical analysis for dynamic interaction in maglev systems[J].Shock and Vibration,1995,2(4):339-349.
    [49]Cai Y,Chen S S.Dynamic characteristics of magnetically-levitated vehicle systems[J].Applied Mechanics Reviews,1997,50(11):647-670.
    [50]P.C.Muller.K.popp,W.Schiehlen.Covariance analysis of nonlinear stochastic guideway-vehicle systems[A].The Dynamics of Vehicles on Roads and on Tracks,Proc.6th IAVSD Symposium[C],Berlin,1979:337-351.
    [51]K.Popp,A.Kraus,T.Heiss.Dynamical analysis of simple vehicle on a periodic guideway[J].Vehicles System Dynamics,1982,11:107-120.
    [52]W.Kortum.Vehicle response on flexible track[A].Proceedings of Conference on Maglev Transport[C]:Now and for the Future,Solihull,England,IMechE,1984:47-58.
    [53]W.Kortum,A.Utzt.Control law design and dynamic evaluations for maglev vehicle with a combined lift and guidance suspension system[J].ASME Trans.J.Dyn.Sys.Meas.&Control,1984,106(1):286-292.
    [54]Sato,Y.,Matsuura,A.,and Satoh.Y.(1985),Development of Guideway for Maglev,Proc.Int.Conf.on Maglev Transport '85,pp.243-250.
    [55]M.Miyamoto.A dynamic response of magnetically levitated flexible vehicle to random track irregularities[R].Quarterly Report of RTRI,1980,21(1):44-48.
    [56]Huiguang Dai.Dynamic behavior of maglev vehicle/guideway system with control[D]:CASE WESTERN RESERVE UNIVERSITY,2005.
    [57]M.Nagai,M.Iguchi.Vibrational characteristics of electromagnetic levitation vehicles-guideway system[A].The dynamics of vehicles on roads and on railway tracks[C].Proc.6th IAVSD-IUTAM Symposium,Berlin,1979:352-366.
    [58]Matsuura.Dynamic interaction between vehicle and girders in high speed railway[R].Quarterly Reports,1974,15(3):133-136.
    [59]曾佑文,王少华,张昆仑.EMS磁浮列车轨道垂向耦合动力学研究[J].铁道学报,1999,4(2):21.26.
    [60]赵春发,翟婉明,蔡成标.磁浮车辆/高架桥垂向耦合动力学研究[J].铁道学报,2001,23(5):27-33.
    [61]Jin Shi,Qingchao Wei,Yang zhao.Analysis of Dynamic Response of the High-Speed EMS Maglev Vehicle/Guideway Coupling System with Random Irregularity[J].Vehicle System Dynamics,Vol.45,No.12,December 2007:1077-1095.
    [62]时瑾,魏庆朝.随机不平顺激励下磁浮车辆轨道梁动力响应[J].力学学报,2006,38(6):850-857.
    [63]Teng Y F,Teng N G,Huang X C,et al.Vibration analysis of a simply supported beam traversed by uniform distributed moving mass[J].The Proceedings of the China Association for Science and Technology.Science Press USA Inc.2006,3(3):710-715.
    [64]Teng Y F,Teng N G,Kou X J.Vibration Analysis of Maglev Three-span Rigid Frame Bridge Considering Control System[J].Joumal of Southeast University.2007,23(4):571-576.
    [65]Teng Y F,Teng N G,Kou X J.Vibration Analysis of Maglev Three-span Continuous Guideway Considering Control System[J].Journal of Zhejiang University SCIENCE-A.2008,9(1):8-14.
    [66]Teng Y F,Teng N G,Kou X J.The Vibration Analysis of Continuous Maglev Guideway Considering the Magnetic Levitation System[J].Journal of Shanghai Jiaotong University.2008,13(2):211-215.
    [67]滕延锋,滕念管,寇新建.承受移动均布二系悬挂模型的磁浮三跨连续梁振动分析[J].振动与冲击,2008,27(3):120-123.
    [68]Teng N G,Teng Y F.Nonlinear seismic response of a subway station considering the interaction of soil and structure[C].//The fourth Shanghai-Seoul Forum,Shanghai.2002:61-64.
    [69]Teng N G,Teng Y F.Vibration analysis of continuous maglev guideway[C].//The fifth Seoul-Shanghai Forum,Seoul.2003:17-19.
    [70]Yang Y,Teng N G,Teng Y F,Vibration analysis of a simply supported beam traversed by uniform distributed load[J].Journal of Shanghai Jiaotong University,2004,38(z2):155-160.
    [71]MacLeod C,Goodall R M.Frequency-shaping LQ control of Maglev suspension systems for optimal performance with deterministic and stochastic inputs[J].IEEE Proceedings:Control Theory and Applications,1996,143(1):25-30.
    [72]江浩,连级三.单磁铁悬浮系统的动态模型与控制[J].西南交通大学学报,1992,27(1):59-67.
    [73]鲍佳,张昆仑.单磁铁电磁悬浮系统研究[J].计算机测量与控制,2003,11(11):863-865.
    [74]方明霞,屠涓,冯奇.弹性车行道上磁悬浮列车系统的动力学研究[J].噪声与振动控制,200 1,6:23-26.
    [75]舒光伟,陈伟宫,Reinhold M.磁悬浮系统模型的研究[J].电机与控制学报,2005,9(2):1 87-189.
    [76]Li Y G,Chang W S,Long Z Q.Guideway resonance vibration and levitation control system design of an EMS maglev vehicle[J].Journal of National University of Defense Technology,1999,21(2):93-96.
    [77]谢云德,常文森.电磁型(EMS)磁悬浮列车系统铅直方向德建模与仿真[J].铁道学报,1996,17(4):47-54.
    [78]谢云德.EMS型磁浮列车系统动力学建模与仿真的研究[D].长沙:国防科技大学,1998.
    [79]李云钢,常文森,龙志强.磁浮列车的轨道共振和悬浮控制系统设计[J].国防科技大学学报,1999,21(2):93-96.
    [80]赵春发.磁悬浮车辆系统动力学研究[D].成都:西南交通大学,2002.
    [81]赵春发,翟婉明.磁浮车辆/轨道系统动力学(Ⅱ)-建模与仿真[J].机械工程学报,2005,41(8):163-175.
    [82]叶学艳,赵春发,翟婉明.低速磁浮车辆动力学建模与导向机构仿真分析[J].交通运输工程学报,2007,7(3):6-10.
    [83]武建军.磁悬浮列车.轨道耦合控制系统的动力稳定性研究[D].兰州:兰州大学,1998.
    [84]武建军,郑晓静,周又和.弹性轨道上二自由度磁悬浮列车的动力特性研究[J].振动工程学报,1999,12(4):439-446.
    [85]周又和,武建军,郑晓静.磁浮列车的动力稳定性分析与Lyapunov指数[J].力学学报,2000,32(1):42-51.
    [86]Zheng X J,Wu J J,Zhou Y H.Numerical analyses on dynamic control offive-degree-of-freedom maglev vehicle moving on flexible guideways[J].Journal of Sound andVibration,2000,235(1):43-61.
    [87]Zheng X J,Wu J J,Zhou Y H.Effect of spring non-linearity on dynamic stability of a controlledmaglev vehicle and its guideway system[J].Journal of Sound and Vibration,2005,279(12):201-215.
    [88]武建军,杨文伟.EMS磁悬浮列车非线性弹性轨道系统的动力学特性[J].兰州大学学报(自然科学版),2006,42(1):120-126.
    [89]施晓红.常导高速磁浮列车车轨耦合非线性动力学问题研究[D].长沙:国防科技大学,2005.
    [90]洪华杰,李杰.磁浮系统模型中用弹簧阻尼器替代控制器的等效性分析[J].国防科技大学学报,2005,27(4):101-105.
    [91]洪华杰,李杰,张锰.磁浮车轨耦合系统稳定性分析[J].控制理论与应用,2006,23(3):421-424.
    [92]Project Guidelines[Z],Transrapid Shanghai Project Document.Basis for Dimensioning of Guideways.Doc.No.:11170,14.12.2000.
    [93]System Specification[Z],Transrapid Shanghai Project Document,Transrapid.Doc.No.:11252,14.12.2000.
    [94]周大海等.国外高速铁路标准及规范汇编[S].北京:铁道部标准计量研究所,1995.
    [95]Requirement Specification[Z],Transrapid Shanghai Project Document,Guideway.Doc.No.:11172,14.12.2000.
    [96]Project Guidelines[Z],Transrapid Shanghai Project Document,Basis for Realization of Guideway Geometry.Doc.No.:11157,14.12.2000.
    [97]易思蓉.铁路选线设计[M].成都:西南交通大学出版社,2005.
    [98]易思蓉.高速磁悬浮线路最小平曲线半径初步研究[J].铁道标准设计,2004,8:23-26.
    [99]刘万明.高速磁悬浮线路规划设计理论研究[J].学术动态(成都),2003,3:26-28.
    [100]胡叙洪.高速磁浮工程线路平面缓和曲线线型选择研究[J].铁道标准设计,2005,8:7-9.
    [101]时瑾,魏庆朝.高速磁浮交通平竖曲线主要技术参数研究[A].全国交通运输学科博士生学术论坛论文集[C],中国铁道出版社,2005.
    [102]姚金斌,刘万明.中低速磁浮交通线路参数研究[J].世界轨道交通,2007(3):45-47.
    [103]招阳,魏庆朝等.高速磁浮线路圆曲线参数取值研究[J].北京交通大学学报,2007.31(4):101-105.
    [104]邓亚士,魏庆朝等.基于工程技术条件要求的高速磁浮线路设计参数研究[J].中国铁道科学,2007,28(3):27-33.
    [105]米隆,招阳,魏庆朝.磁浮交通系统线路缓和曲线参数取值方法研究[J].北京交通大学学报,2007,31(4):92-95.
    [106]曹仲明,周华,边晓春.上海磁浮示范运营线的直线拟合技术[J].城市轨道交通研究,2007(4):26-29.
    [107]袁亦竑,曾国锋等.高速磁浮轨道“以直拟曲”技术的进一步分析[J].城市轨道交通研究,2008.11(1).-25-27.
    [108]邓亚士,魏庆朝.高速磁浮TR系统轨道梁拟合技术研究[J].北京交通大学学报,2007.31(4):96-100.
    [109]Deng Ya-shi,Wei Qing-chao,et al.Application of Curve Fitting Techniques in Guideway Design of High-Speed Maglev TR System[A].International Conference on Transportation Engineering 2007[C].America:ASCE,2007.290-295.
    [110]中华人民共和国铁道部.新建时速300-350公里客运专线铁路设计暂行规定(上、下)[S].北京:中国铁道出版社,2007.
    [111]贾素红.高速磁浮铁路轨道梁的合理结构型式研究[D].西南交通大学,2003.
    [112]R.Schach,p.Jehle,R.Naumann著,莫凡等译.高速磁浮与高速轮轨交通系统比较[M].北京:中国科学技术出版社.2008.
    [113]项海帆,吴定俊.我国铁路桥梁的现状和展望[J].铁道建筑技术,2001(2):1-5.
    [114]秦承明.高速铁路60+80+60m预应力混凝土连续梁桥设计[D].北京交通大学,2004.
    [115]中华人民共和国铁道部.铁路桥涵设计基本规范(TB 10002.1-2005)[S].北京:中国铁道出版社,2005.
    [116]中华人民共和国铁道部.铁路桥涵地基和基础设计规范(7810002.5-2005)[S].北京:中国铁道出版社,2007.
    [117]王其昌.高速铁路土木工程[M].成都:西南交通大学出版社,2000.
    [118]吴祥明,华毅杰,王步.变形精确控制梁温度场分析[J].建筑科学,2002(8):14-16.
    [119]刘兴法.预应力箱梁温度应力计算方法[J].土木工程学报,1986.1.
    [120]李廉锟.结构力学[M].北京:高等教育出版社,2004.
    [121]包世华.结构力学[M].武汉:武汉工业大学出版社,2000.
    [122]沈锐利.高速铁路桥梁与车辆耦合振动研究[D].西南交通大学博士学位论文,1998.
    [123]李小珍.高速铁路列车.桥梁系统耦合振动理论及应用研究[D].成都:西南交通大学,2000.
    [124]夏禾.车辆与结构动力相互作用[M].北京:科学出版社,2002.
    [125]Clough R W,Penzien J.Dynamics of Structures[M].McGraw.Hill Inc,1993.
    [126]时瑾,魏庆朝,招阳.基于移动控制力模型的轨道梁动力特性初步研究[J].土木工程学报,2007.40(5):90-95.
    [127]单德山,李乔.车桥耦合振动分析的数值方法[J].重庆交通学院学报,1999,18(3):14-20.
    [128]李小珍,马文彬,强士中.车桥耦合振动分析的数值解法[J].振动与冲击,2002,21(3):21-25.
    [129]Henchi K,Fafard M,Dhatt C,et al.Dynamic behaviour of multi-span guideways under moving loads[J].Journal of Sound and Vibration,1997,199(1):33-50.
    [130]Henchi K,Fafard M,Talbot M,et al.An efficient algorithm for dynamic analysis of bridges under moving vehicles using a coupled modal and physical components approach[J].Journal of Sound and Vibration,1998,212(4):663-683.
    [131]Xia H,Xu Y L.Dynamic interaction of long suspension bridges with running trains[J].Joumal of Sound and Vibration,2000,237(2):263-280.
    [132]Xia H,Zhang N,Roeck G.Dynamic analysis of high speed railway bridge under articulated trains[J].Computers and Structures,2003,81(2):2467-2478.
    [133]Yang Y B,Wu Y S.A versatile element for analyzing vehicle-bridge interaction response[J].Engineering Structures,2001,23(5):452-469.
    [134]Song M K,Noh H C,Choi C K.A new three-dimension finite element analysis model of high-speed train-bridge interactions[J].Engineering tructures,2003,25(13):1611-1626.
    [135]Hou K,Kalousek J,Dong R.A dynamic model for an asymmetrical vehicle/track system[J].Joumal of Sound and Vibration,2003,267(3):591-604.
    [136]Baeza L,Roda A,Nielsen J C O.Railway vehicle/track interaction analysis using a modal substructuring approach[J].Journal of Sound and Vibration,2006,293(1-2):112-124.
    [137]凌知民,曹雪琴,项海帆.铁路高墩连续梁桥车桥耦合动力响应分析[J].铁道学报,2002,24(5):98-102.
    [138]蔡成标,翟婉明,王其昌.高速列车与高架桥上无渣轨道梁相互作用研究[J].铁道工程学 报,2003,67(3):29-32.
    [139]张楠.高速铁路铰接式列车车桥动力耦合问题的理论分析与实验研究[D].北京交通大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700