用户名: 密码: 验证码:
月/星球车轮地作用地面力学模型及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NASA的Sojourner、Spirit和Opportunity火星探测车取得了巨大的成就,拓展了人类对于火星的认识水平,同时在世界上掀起了利用轮式移动机器人(漫游车)进行星球探测的热潮。未来的星球探测任务(如MSL、ExoMars、“嫦娥”和SELENE)要求星球车能够自主运行于更加富有挑战性的松软崎岖地形环境当中。
     轮地相互作用地面力学可以广泛应用于星球车结构设计、性能评价、星壤参数辨识、动力学仿真、移动与导航控制等许多方面,是星球车性能提高的一个瓶颈问题,因而成为一个新的研究热点。在星球车研究过程中,目前主要直接应用传统车辆的地面力学成果。由于星球车与普通地面车辆在运行环境、控制方式、运行状态、载荷、车辆构型/尺寸和车轮构型/尺寸等方面都存在很大差异,而传统模型主要面向车辆设计且精度不高,因此针对星球探测车进行地面力学的实验、理论和应用方法研究是极其必要的。
     试验是地面力学研究的重要手段。在分析轮地相互作用力学影响因素的基础上进行试验设计,进而采用模拟月壤,利用高性能的车轮—土壤相互作用测试平台和El-dorado II四轮车测试系统进行系列试验,研究车轮尺寸(半径、宽度),轮刺尺寸(高度、个数、倾斜角度),地形信息(爬坡角度和侧偏角度),法向载荷,运行状态信息(滑转率,转向角、运行速度,重复通过次数)等因素对于轮地相互作用力学的影响,为后续理论分析、模型推导等提供基础研究数据。
     在深入分析车轮轮刺效应、滑转沉陷机理的基础上,建立高保真度的车轮—土壤相互作用滑转前进模型,并对载荷效应提出修正方法,利用实验数据验证了模型的有效性,并与传统模型进行了对比。基于上述成果,进一步推导了车轮滑移前进模型、侧偏模型、转向模型和前进与转向耦合模型,将崎岖地形中的车轮运动分解为爬坡和沿斜坡行走两种基本运动并进行了受力分析。
     对星球车轮地相互作用前进模型进行简化,构建了两种封闭解析解耦模型,提出了三种模型参数辨识方法,可以对反映星壤承压特性、剪切特性和轮地作用接触角的8个参数进行辨识,并进行试验验证,实现了对星壤特性的全面表征。基于积分模型的辨识方法具有较高的保真度,基于封闭解析解耦模型的辨识方法适用于参数的实时辨识。进一步推导了反映载荷效应的简化模型,利用El-Dorado II探测车的试验数据进行了Toyoura沙土的参数辨识。
     对车轮驱动性能评价的绝对及相对性能指标进行总结,包括沉陷指标、牵引能力指标和驱动电机性能指标,并推导公式揭示性能指标之间的内在联系。基于实验数据,从宏观和微观角度分析车轮宽度、半径,轮刺高度、个数和倾斜角度等设计参数对于其性能的影响,进而提出了车轮尺寸与轮刺的设计准则和方法。结合中国“嫦娥”探月工程中的月球车设计要求,进行了车轮设计和性能分析。
     以车体空间位姿和各关节角度作为广义坐标,采用递归方法建立运动学模型,推导了计算轮地接触点速度和构件质心速度的雅可比矩阵。利用Lagrange动力学方程、Newton-Euler方程等建立了融合轮地相互作用力学的通用星球车动力学模型。解决了车轮土壤相互作用接触区域和接触坐标系的求解这一关键难题。基于Matlab和SpaceDyn进行仿真程序实现,并利用整车测试数据进行验证。
     对松软崎岖地形中星球车的路径跟踪策略进行研究,建立了非完整运动学模型,设计了基于滑移补偿的转向控制策略进行路径跟踪。提出了基于轮刺痕迹和地面力学的两种车轮滑转率在线估计方法。分析了车轮滑转率与能量消耗的关系,证实了“等滑转率”是能量最优控制可以采用的次优解,利用车体速度前馈和反馈控制策略补偿滑转带来的速度损失。将上述算法融合,提出了时间—能量最优的星球车路径跟踪控制策略。利用仿真验证了算法的有效性和鲁棒性。
     本文推导了高保真度星球车轮地相互作用积分模型及封闭解析解耦模型,并成功应用于星壤参数辨识、车轮设计、高保真度动力学仿真和高性能移动控制,为松软崎岖地形环境中基于力学的星球车等移动机器人研究提供了解决方案。
NASA’s Mars exploration rovers Sojourner, Sprit and Opportunity have achieved fruitful results and greatly widened the knowledge horizon of humankind, as a result of which an upsurge of exploring planets with wheeled mobile robots (rovers) was set up in the world. The future planet exploration missions, such as the MSL, ExoMars, Chang’e SELENE, require the rovers to traverse over more challenging deformable rough terrain than had ever encountered with limited supervision from the operator.
     Wheel-soil interaction terramechanics, which can be widely applied to planetary rover’s mechanical design, performance evaluation, soil parameter identification, dynamics simulation, mobility/navigation control, etc, is a bottle-neck problem for improving the performance of planetary rovers and becomes a hot research topic at the budding stage. During the research and development process of a planetary rover, the terramechanics knowledge for conventional terrestrial vehicles is usually used directly. However, there are many differences between the planetary rover and terrestrial vehicles from the aspects of running environment, control mode, running state, payload, chassis configuration/dimension and wheel type/dimension, etc. Moreover, the conventional models are oriented to vehicle design with relatively low precision. It is quite necessary to research on the terramechanics aiming at planetary rovers, including experiments, theory and application methods.
     Terramechanics is a subject that combines theoretical and experimental study closely. The factors that influence wheel-soil interaction terramechanics are analyzed in the beginning, according to which the experiments are designed. Then a wheel-soil interaction testbed and the El-Dorado II four-wheeled rover testbed are used for experimental study with lunar soil simulant. The influence on terramechanics caused by wheel dimensions (radius and width), lug parameters (height, number and inclination angle), terrain information (slope climbing angle and cross angle), normal load, running state information (slip ratio, steering angle, velocity, repetitive passing times) are tested, in order to provide basic data for further theoretical analysis and modeling.
     After analyzing the wheel lug effect and slip-sinkage principle, a high-fidelity driving model for a wheel moves forward with slip is derived, and a method for amending load effect is brought forward. The model is verified with experimental data. Based on it, the skid model for wheels moving forward, side slip model, steering model, and coupled model of moving forward and steering are deduced. The motion of a wheel moving on rough terrain is decomposed into two basic motions: climbing up/down and traversing across slopes and the mechanics is analyzed.
     The driving model of wheel-soil interaction terramechanics for a planetary rover’s wheel is simplified. Two kinds of closed-form analytical decoupled models are derived and three kinds of parameter identification methods are brought forward. Eight parameters that can reflect the bearing performance, shearing performance and contact angles could be identified to characterize the planetary soil comprehensively. They are verified with experimental data. The method that identifies soil parameters based on the integrated model has high fidelity. Methods that are developed based on closed-form analytical decoupled models, are suitable for real-time parameter identification. Simplified model considering load effect is deduced, based on which the parameters of Toyoura soil are identified with the experimental data obtained by El-Dorado II rover.
     Both the absolute and relative indices on evaluating a wheel’s driving performance are summarized, including sinkage indices, drawbar pull performance indices and motor performance indices, and equations are deduced to investigate the relationships among them. The influences of wheel radius/width and lug height/number/inclination angle on wheel performance are analyzed according to experimental data from micro and macro aspects, based on which the principles and methods for designing the dimensions and lugs of a wheel are brought forward. According to the mission requirements of China’s Chang’e lunar exploration project, lunar rover’s wheels are designed and the performances of them are analyzed.
     Kinematics equations are developed with recursive method, by using the position and orientation of rover’s body and the joint angles as generalized coordinates, and Jacobian matrices for calculating the velocities of wheel-soil interaction point and mass centers of all the components are deduced. Lagrange dynamics equation and Newton-Euler equation are then used to deduce generalized dynamics model combined with wheel-soil interaction mechanics. A key issue of calculating wheel-soil interaction area and coordinate is solved. The simulation is implemented with Matlab and SpaceDyn Toolbox, and verified with experimental data of El-Dorado II rover.
     Path following strategy is researched to control a rover moving in deformable rough terrain. Non-holonomic kinematics model is established and steering algorithm considering slip-compensation is designed. Two on-line slip ratio estimation methods are developed, based on lug traces and terramechanics, respectively. The relationship between energy consumption and slip ratio is analyzed. It is proved that“equal slip ratio”is a sub-optimal solution for energy optimal control. The velocity loss caused by wheel slip is compensated with feed-forward and feedback of rover body’s velocity. The control algorithms are combined and an energy-time optimal path following strategy for planetary rovers is brought forward. The control algorithms are verified by dynamics simulation using parameters of El-Dorado II rover and Toyoura sand.
     Wheel-soil interaction terramechanics models and closed-form analytical decoupled models with high-fidelity for planetary rover’s wheels are deduced, which are then successfully used for soil parameter identification, wheel design, high-fidelity dynamics simulation and high-performance locomotion control. The results of this study could provide solutions for the mechanics-based research of mobile robot, especially planetary rovers moving in deformable rough terrain.
引文
1欧阳自远.月球探测的进展与我国的月球探测(上).自然杂志. 2005, 27 (4): 187-190
    2 http://www.ussr-airspace.com/index.php?main_page=product_info&products_id=748
    3 http://marsprogram.jpl.nasa.gov/MPF
    4 http://marsrovers.jpl.nasa.gov/home
    5 R. Siegwart and I. R. Nourbakhsh. Introduction to Autonomous Mobile Robots. Cambridge, MA: MIT Press, 2004
    6 G. J. McDermott and M. Tarokh. A General Approach to Kinematics Modeling of All-Terrain Rovers. Proceedings of IEEE Int. Conf. on Systems, Man and Cybernetics. Waikoloa, HI, USA, 2005: 2019-2024
    7 M. Tarokh and G. J. McDermott. Kinematics Modeling and Analyses of Articulated Rovers. IEEE Transactions on Robotics. 2005, 21 (4): 539-553
    8 T. Howard and A. Kelly. Optimal Rough Terrain Trajectory Generation for Wheeled Mobile Robots. Int. J. Robotics Research. 2007, 26 (2): 141-166
    9 J. Wright, F. Hartman, B. Cooper, et al. Driving on Mars with RSVP: Building Safe and Effective Command Sequences. IEEE Robotics & Automation Magazine. 2006 (6): 37-45
    10 Young K. Mars Rover Escapes from the“Bay of Lamentation”. http://space.newscientist.com/article/dn9286-mars-rover-escapes-from-the-bay-of-lamentation.html. 2006
    11 C. C. Chu, S. A. Hayati and S. Udomkesmalee. Mars Base Technology Program Overview. Proceedings of AIAA Space 2005 Conference and Exposition, Long Beach, California, USA, 2005: 1-14
    12 D. S. Apostolopoulos. Analytical Configuration of Wheeled Robotics Locomotion. The Robotics Institute of Carnegie Mellon University Technical Report CMU-RI- TR-01-08, 2001: 40-65
    13侯绪研,高海波,胡明等.基于越障性能的六轮摇臂式月球探测车悬架尺寸优化设计.宇航学报, 2008, 29 (2): 420-425
    14 N. Patel, A. Ellery, E. Allouis, et al. Rover Mobility Performance Evaluation Tool (RMPET): A Systematic Tool for Rover Chassis Evaluation via Application of Bekker Theory. Proceeding of the 8th ESA Workshop onAdvanced Space Technologies for Robotics and Automation. ESTEC, Noordwijk, The Netherlands, 2004: 251-258
    15袁勇,丁同才,胡震宇.月球车车轮驱动能力研究.中国宇航学会深空探测技术专业委员会第三届学术会议论文集.北京, 2006: 371-376
    16邹猛,李建桥,贾阳等.月面探测车辆牵引通过特性研究.测试技术学报, 2007, 21 (Sup): 14-19
    17 K. Iagnemma, S. Kang, H. Shibly, et al. Online Terrain Parameter Estimation for Wheeled Mobile Robots with Application to Planetary Rovers. IEEE Transactions on Robotics, 2004, 20 (5): 921-927
    18 S. Hutangkabodee, Y. H. Zweiri, L. D. Seneviratne, et al. Performance Prediction of a Wheeled Vehicle on Unknown Terrain Using Identified Soil Parameters. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 2006: 3356-3361
    19 R. Bauer, T. Barfoot, W. Leung et al. Dynamic Simulation Tool Development for Planetary Rovers. International Journal of Advanced Robotic Systems, 2008, 5 (3): 311-314
    20 G. Sohl. and A. Jain. Wheel-terrain Contact Modeling in the ROAMS Planetary Rover Simulation. IDETC’05 ASME International Design Engineering Technical Conference and Computers and Information in Engineering Conference, Long Beach, CA, USA, 2005: 1-9
    21 K. Yoshida, H. Asai and H. Hamano. Motion Dynamics of Exploration Rovers on Natural Terrain: Experiments and Simulation. Proceedings of the 3rd International Conference on Field and Service Robotics, Helsinki, Finland, 2001: 281-286
    22 G. Ishigami, A. Miwa, K. Nagatani, et al. Terramechanics-based Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil. Journal of Field Robotics, 2007, 24 (3): 233-250
    23 K. Iagnemma, H. Shibly, A. Rzepniewski, et al. Planning and Control Algorithms for Enhanced Rough-terrain Rover Mobility. The 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Quebec, Canada, 2001: 1-8
    24 G. Ishigami, K. Nagatani, and K. Yoshida. Path Following Control with Slip Compensation on Loose Soil for Exploration Rover. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 2006: 5552-5557
    25 G. Ishigami, K. Nagatani, and K. Yoshida. Path Planning for PlanetaryExploration Rovers and Its Evaluation Based on Wheel Slip Dynamics. IEEE International Conference on Robotics and Automation. Roma, Italy, 2007: 2361-2366
    26 M. G. Bekker. Introduction to Terrain-vehicle Systems. Ann Arbor, Michigan, USA: The University of Michigan Press, 1969
    27 M. G. Bekker. Off-Road Locomotion: Research and Development in Terramechanics. Ann Arbor, Michigan, USA: The University of Michigan Press, 1960
    28张克健.车辆地面力学.北京:国防工业出版社, 2002: 1-2
    29 R. Bernstein. Problems of the Experimental Mechanics of Motor Ploughs. Der Motorwagen, 1913 (16)
    30庄继德.计算汽车地面力学.北京:机械工业出版社, 2002: 2-12
    31 A. R. Reece and J. Y. Wong. Soil Failure Beneath Rigid Wheels. Proceedings of the Sencond International Conference of ISTVS, Quebec, Canada, 1966: 425-445
    32 O. Onafeko and A. R. Recce. Soil Stresses and Deformations Beneath Rigid Wheels. Journal of Terramechanics, 1967, 4 (1): 59-80
    33 J. Y. Wong, A. R. Reece. Prediction of Rigid Wheel Performance Based on Analysis of Soil-Wheel Stresses, Part I: Performance of Driven Rigid Wheels. Journal of Terramechanics, 1967, 4 (1): 81-98
    34 J. Y. Wong, A. R. Reece. Prediction of Rigid Wheel Performance Based on Analysis of Soil-Wheel Stresses, Part II: Performance of Towed Rigid Wheels. Journal of Terramechanics, 1967, 4 (2): 7-25
    35 E. W. E. Miclethwait. Soil Mechanics in Relation to Fighting Vehicles. Military Coll. of Science, Chobhan Lane, Chetsey, 1944
    36 Z. Janosi, B. Hanamoto. Analytical Determination of Drawbar Pull as a Function of Slip for Tracked Vehicle in Deformable Soils. Proceedings of the 1st International Conference of ISTVES, Torino, Italy, 1961, 707-726
    37 R. N. Yong, A. F. Youssef and E. A. Fattah. Vane-cone measurements for assessment of tractive performance in wheel-soil interaction. Procceedings of the 5th International Conference of the ISTVS: 769-788
    38陈秉聪.土壤-车辆系统力学.中国农业机械出版社, 1981: 62~102
    39 Q. Yu, G. Y. Yu. On the Modelling and Simulation of Tire-Soil Systems. Proc. of the 9th Int. Conf. of ISTVS, Barcelona, Spain, 1987
    40 K. P. Pandey and T. P. Ojha. Effect of Design Parameters on the Performance of Rigid Traction Wheels on Saturated Soils. Journal of Terramechanics. 1978,15 (3): 145-156
    41 J. V. Perumpral, J. B. Lilzedahl and W. H. Perloff. A Numerical Method for Predicting the Stress Distribution and Soil Deformation under a Tractor Wheel. Journal of Terramechanics. 1971, 8(1): 9~22
    42 M. G. Bekker. Theory of Land Locomotion-The Mechanics of Vehicle Mobility. Ann Arbor: The University of Michigan Press, 1956
    43 J. Y. Wong. Theory of Ground Vehicle, 4th Edition. New York: John Wiley & Sons, 2008
    44 J. Y. Wong. Terramechanics and Off-Road Vehicles. Amsterdam: Elsevier Press, 1989
    45陈秉聪.土壤-车辆系统力学.北京:中国农业机械出版社, 1981
    46刘聚德.车辆沙地行驶理论.北京:机械工业出版社, 1996
    47范成建,雄光明,周明飞.虚拟样机软件MSC.ADAMS应用与提高.北京:机械工业出版社, 2006:146~158
    48 CMLabs Simulations Inc. VxVehicle Developer Guide, 2005: 4-6
    49 AESCO. Matlab/Simulink Module AESCO Soft Soil Tyre Model (AS2TM) User’s Guide, 2003: 3-22
    50 K. Iagnemma. A Laboratory Single Wheel Testbed for Studying Planetary Rover Wheel-Terrain Interaction. Technical Report 01-05-05, MIT Field and Space Robotics Laboratory, 2005: 2-9
    51 H. Shibly, K. Iagnemma and S. Dubowsky. An Equivalent Soil Mechanics Formulation for Rigid Wheels in Deformable Terrain, with Application to Planetary Exploration Rovers. Journal of Terramechanics. 2005 (42): 1-13.
    52 C. A. Brooks, K. Iagnemma and S. Dubowsky. Visual Wheel Sinkage Measurement for Planetary Rover Mobility Characterization. Autonomous Robotics. 2006 (21): 55-64
    53 R. Bauer, W. Leung and T. Barfoot. Experimental and Simulation Results of Wheel-Soil Interaction for Planetary Rovers. IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Alberta, Canada, 2005: 586-591
    54 K. Iizuka, K. Sato, Y. Kuroda and T. Kubota. Experimental Study of Wheeled Forms for Lunar Rover on Slope Terrain. 9th IEEE International Workshop on Advanced Motion Control. Istanbul, Turkey, 2006: 266-271
    55 K. Jizuka, Y. Sato, Y. Kuroda, et al. Study on Wheel of exploration Robot on Sandy Terrain. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2006: 4272-4277
    56 K. Yoshida and T. Shiwa. Development of a Research Testbed for Exploration Rover at Tohoku University. Journal of Space Technology and Science. 1996, 12 (1): 9-16
    57 K. Yoshida, T. Watanabe, N. Mizuno, et al. Terramechanics-based Analysis and Traction Control of a Lunar/Planetary Rover. Proceedings of the 4th International Conference on Field and Service Robotics, Lake Yamanaka, Japan, 2003: 225-234
    58池田礼子.応力測定とスリップ測定をもとにした車輪型砂上移動ロボットの駆動力発生モデルの構築.日本:東北大学硕士学位论文. 2009: 44-48
    59山名克尚.応力分布測定ホイールを用いた土壌パラメータの推定.仙台,日本:東北大学硕士学位论文. 2007: 32-45
    60 K. Yoshida, N. Mizuno, G. Ishigami, et al. Terramechanics-based Analysis for Slope Climbing Capability of a Lunar/Planetary Rover. The 24th International Symposium on Space Technology and Science. 2004: 1-6
    61三輪章子.テラメカニクスに基づく月?惑星探査ローバーの走行力学解析.仙台,日本:東北大学硕士学位论文. 2005: 35-45
    62 K. Yoshida and G. Ishigami. Steering Characteristics of a Rigid wheel for Explaration on Loose Soil. Proc of the 2004 IEEE Int. Conf. on Intelligent Robots and Systems. Sendai, Japan, 2004: 3995-4000
    63石上玄也,月惑星探査ローバーのステアリング特性に基づく走行力学の解析.仙台,日本:東北大学硕士学位论文. 2005: 29-48
    64陈斌.履刺式刚性轮在沙土上的牵引特性研究.长春:吉林大学硕士学位论文, 2007: 27-36.
    65邹猛,李建桥.月面车轮试验方法.中国农业机械学会2006年学术年会论文集.镇江, 2006: 694-698
    66邹猛,张金换,任露泉等.月球车驱动轮牵引性能研究.宇航学报. 2009, 30 (1): 98-103
    67邹猛,李建桥,李因武等.刚性轮一月壤相互作用预测模型及试验研究.农业工程学报. 2007, 23 (12): 119-123
    68孙刚,高峰,李雯.地面力学及其在星星探测研究中的应用.力学进展. 2007, 37 (3): 453-464
    69王林.月球车车轮与土壤作用的力学特性分析与测试系统设计.哈尔滨:哈尔滨工业大学硕士学位论文. 2006: 27-44
    70全齐全.月球车车轮与土壤作用的力学特性测试系统的研制与实验.哈尔滨:哈尔滨工业大学硕士学位论文. 2007: 18-49
    71 Jicheng Liu, Haibo Gao, Zongquan Deng. Effect of Straight GrousersParameters on Motion Performance of Small Rigid Wheel on Loose Sand. Information Technology Journal. 2008, 7(8):1125~1132
    72陶建国,王林,吴凤久等.月球车车轮与土壤相互作用的力学特性分析.机械设计与制造. 2006, 12: 56-57
    73陶建国,全齐全,邓宗全等.月球车不等径车轮在土壤上滚动的力学分析与实验.哈尔滨工程大学学报. 2007, 28 (10): 1144-1149
    74 H. Nakashima, H. Fujii, A. Oida, et al. Parametric Analysis of Lugged Wheel Performance for a Lunar Microrover by Means of DEM. Journal of Terramechanics, 2007 (44): 153-162
    75张锐,李建桥,李因武.离散单元法在土壤机械特性动态仿真中的应用进展.农业工程学报. 2003, 19 (1): 16-19
    76孙鹏,高峰,贾阳等.月球车车轮与月壤交互作用的离散元仿真.机械设计与制造. 2008, (10): 75-77
    77 W. D. Carrier, G. R. Olhoeft and W. Mendell. Physical Properties of the Lunar Surface In: Heiken G H, Vaniman D T, French B M. eds, Lunar Source book Cambridge Univ. Press, New York. 1991: 475-594
    78 V. Gromov. Physical and Mechanical Properties of Lunar and Planetary Soils. Earth Moon and Planets. 1999 (80): 51-72
    79 J. K. Mitchell. Apollo 16 Mission: Soil Mechanics Investigation. http://www.lpi.usra.edu/lunar/missions/apollo/apollo_16/experiments/smi/
    80 H. J. Moore, G. D. Clow, and R. E. Hutton. A Summary of Viking Sample Trench Analyses for Angles of Internal Friction and Cohesion. Journal of Geophysical Research. 1982, (87): 10043-10050
    81 H. J. Moore, G. D. Clow, R. E. Hutton and C. R. Spitzer. Physical properties of the surface materials at the Viking landing sites on Mars. U.S. Geological Survey Professional Paper. 1987: 1389-1396
    82 W. Hong. Modeling, Estimation, and Control of Robot-Soil Interactions. Cambridge, Massachusetts, USA: Doctoral Dissertation of Massachusetts Institute of Technology. 2001: 108-149
    83 The Rover Team. Characterization of the Martian Surface Deposits by the Mars Pathfinder Rover, Sojourner. Science, 1997, 278 (5344): 1765-1768
    84 R. E. Arvidson, R. C. Anderson, A. F. C. Haldemann, et al. Physical Properties and Localization Investigations Associated with the 2003 Mars Exploration rovers, J. Geophys. Res. 2003, 108(E12): 8070
    85 R.E. Arvidson , R.C. Anderson, P. Bartlett, et al. Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater. Science. 2004,305 (5685): 821-824
    86 R.E. Arvidson , R.C. Anderson, P. Bartlett, et al. Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum. Science. 2004, 306 (5702): 1730-1733
    87 B. M. Willman, W. W. Boles, D. S. McKay, et al. Properties of lunar soil stimulant JSC-1. Journal of Aerospace Engineering. 1995, 8 (2): 77-87
    88日本清水建設.模擬月土壌の諸性質. 2003
    89 A. Howard, P.E. Perko, D. N. John, et al. Mars Soil Mechanical Properties and Suitability of Mars Soil Simulants. ASCE Journal of Aerospace Engineering. 2006, 19 (3): 160-176
    90郑永春.模拟月壤研制与月壤的微波辐射特性研究.中国科学院研究生院博士学位论文.贵阳:中国科学院地球化学研究所, 2005: 44-76
    91马文哲,李建桥,邹猛等.粒径分布对实验用土壤机械性能的影响.中国农业机械学会2006年学术年会论文集.镇江, 2006: 749-752
    92樊世超,贾阳,向树红等.月面地形地貌环境模拟初步研究.航天器环境工程. 2007, 24 (1): 15-20
    93 S. Michaud, L. Richter, T. Thuer, A. Gibesch, et al. Rover Chassis Evaluation and Design Optimisation using the RCET. Proc. Of 9th ESA ASTRA, European Space Agency. ESTEC, Noordwijk, The Netherlands, 2006: 1-8
    94 S. Michaud, L. Richter, N. Patel, et al. RCET: Rover Chassis Evaluation Tools. Proceeding of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation. ESTEC, Noordwijk, The Netherlands, 2004
    95 R. Bauer, W. Leung and T. Barfoot. Development of a Dynamic Simulation Tool for the Exomars Rover. Proceedings of the 8th International Symposium on Artifical Intelligence, Robotics and Automation in Space-iSAIRAS, Munich, Germany, 2005
    96陈泽宇,一种适用于月球车的可伸缩叶片复式步行轮的研究,长春:吉林大学, 2007: 42-59
    97李雯,高峰,孙鹏.复合材料深空探测车车轮的设计.吉林大学学报(工学版), 2006, 36 (4): 502-505
    98 Zhang Peng, Deng Zongquan, Hu Ming, Gao Haibo. Configuration Synthesis and Performance Evaluation Metrics of Lunar Rover Locomotion Systems. Transactions of Tianjin University, 2009 (6): 193-200
    99 Zhang Peng, Deng Zongquan, Hu Ming, Gao Haibo. Mobility Performance Analysis of Lunar Rover Based on Terramechanics. Proceeding of 2008 IEEE & ASME International Conference on Advanced Intelligent Mechanism. Xi’an,China, 2008: 120-125
    100张朋,邓宗全,胡明,高海波.基于地面力学的变质心月球车移动性能分析.吉林大学学报, 2009
    101刘吉成,邓宗全,高海波.行星探测车车轮构型研究综述与思考.机械设计与制造. 2007, 11: 209~211
    102刘吉成.月球车车轮驱动性能及其综合评价的研究.哈尔滨:哈尔滨工业大学博士学位论文, 2009: 53-60
    103 K. Iagnemma, H. Shibly, S. Dubowsky. On-line Terrain Parameter Estimation for Planetary Rovers. Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Washington, DC, USA, 2002: 3142-4147
    104 K. Iagnemma, S. Kang, C. Brooks, S. Dubowsk. Multi-Sensor Terrain Estimation for Planetary Rovers. Proceedings of the 7th international symposium on Artificial Intelligence, Robotics and Automation in Space, 2003
    105 C Brooks, K. Iagnemma, S. Dubowsky. Vibration-based terrain analysis for mobile robots. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, 3415-3420
    106崔平远,刘冰,居鹤华.月壤力学参数在线估计算法研究.计算机测量与控制. 2008. 16(2) 245-247
    107 J. Yen, A. Jain and J. (Bob) Balaram. ROAMS: Rover Analysis Modeling and Simulation Software. Int. Symp. on Artifcial Intelligence, Robotics and Automation in Space. Noordwijk, the Netherlands, 1999: 255-262
    108 P. Lamon and R. Siegwart. Wheel Torque Control in Rough Terrain-Modeling and Simulation. Proceedings of IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005: 867-872
    109 R. A. Lindemann, D. B. Bickler, B. D. Harrington, et al. Mars Exploration Rover Mobility Development-Mechanical Mobility Hardware Design, Development and Testing. IEEE Robotics & Automation Magazine. 2006 (6): 19-26
    110矫庆丰,左正兴,廖日东等.六轮月球漫游车越障平顺性仿真分析.计算机仿真. 2005, 22 (6): 108-111
    111尚建忠,罗自荣,张新访.两种轮式月球车悬架方案及其虚拟样机仿真.中国机械工程. 2006, 17 (1): 49-51
    112陈百超.月球车悬架研究及动力学仿真.长春:吉林大学硕士学位论文. 2006: 35-48
    113仝光.基于ADAMS月球车仿真平台的研究.长春:吉林大学硕士学位论文. 2007: 7-37
    114胡明,邓宗全,高海波等.基于ADAMS的六轮月球车动力学建模与仿真.哈尔滨工业大学学报, 2007, 39 (1): 28-31
    115 Jianguo Tao, Zongquan Deng, Ming Hu, et al. A Small Wheeled Robotic Rover for Planetary Exploration. Proceedings of the 1st International Symposium on Systems and Control in Aerospace and Astronautics. Harbin, 2006: 413-417
    116王梦宇.基于崎岖地形的月球车仿真研究.哈尔滨:哈尔滨工业大学硕士学位论文. 2008: 19-44
    117焦震.基于地面力学的月球车动力学建模及仿真研究.哈尔滨:哈尔滨工业大学硕士学位论文. 2009: 44-75
    118 K. Iagnemma and S. Dubowsky. Mobile Robot Rough-Terrain Control (RTC) for Planetary Exploration. Proc. 2000 ASME IDETC/CIE: 26th Biennial Mechanisms and Robotics Conference. Baltimore, Maryland, 2000: 1-8
    119 K. Iagnemma and S. Dubowsky. Traction Control of Wheeled Robotic Vehicles in Rough Terrain with Application to Planetary Rovers. The Iternational Journal of Robotics Research. 2004, 23 (10-11): 1029-1040
    120 K. Iagnemma. Rough-Terrain Mobile Robot: Planning and Control with Application to Planetary Exploration. Cambridge, MA, USA: Ph.D. Thesis of Massachusetts Institute of Technology. 2001: 96-115
    121 K. Iagnemma, A. Rzepniewski, S. Dubowsky, et al. Control of Robotic Vehicles with Actively Articulated Suspensions. Autonomous Robots. 2003 (14): 5-16
    122 P. Lamon, A. Krebs, M. Lauria, et al. Wheel Torque Control for a Rough Terrain Rover. Proceedings of IEEE International Conference on Robotics and Automation. New Orleans, USA, 2004: 4682- 4687
    123 P. Lamon. 3D Position Tracking For All-Terrain Robots. Swiss: Doctoral Dissertation of Swiss Institute of Federal. 2005: 45-50
    124 K. Yoshida, T. Watanabe, N. Mizuno, et al. Terramechanics-based Analysis and Traction Control of a Lunar/Planetary Rover. Proc. 4th Int. Conf. on Field and Service Robotics. Lake Yamanaka, Japan, 2003, 225-234
    125 K.Yoshida, T.Watanabe, N.Mizuno, et al. Slip, Traction Control, and Navigation of a Lunar Rover. The 6th Int. Symposium on Artificial Intelligence, Robotics and Automation in Space. Nara, Japan, 2003: 1-6
    126 K. Yoshida and H. Hamano. Motion Dynamics of a Rover with Slip-Based Traction Model. Proceedingsof the IEEE International Conferenceon on Robotics& Automation. Washington, DC, USA, 2002: 3155-3160
    127 G. Ishigami, A. Miwa and K. Yoshida. Steering Trajectory Analysis ofPlanetary Exploration Rovers Based on All-Wheel Dynamics Model. Proceedings of the 8th Int. Symp. on Artificial Intelligence, Robotics and Automation in Space. Munich, Germany, 2005: 3345-3350
    128 G. Ishigami. Terramechanics-based Analysis and Control for Lunar/Planetary Exploration Robots. Sendai, Japan: Doctoral Thesis of Tohoku University. 2008: 104-154
    129王佐伟,吴宏鑫.月球探测车转向系统动力学建模与分析.中国空间科学技术. 2004, 6 (3): 14-20
    130王佐伟,梁宏鑫,梁斌.月球探测车动力学建模与协调驱动控制.宜昌:第二十二届中国控制会议论文集. 2003: 554-558
    131王巍.六轮月球漫游车运动系统动力学、控制与仿真研究.哈尔滨:哈尔滨工业大学博士学位论文. 2002: 86-97
    132禹鑫燚.八轮被动关节式月球车及其轨迹规划与运动控制研究.哈尔滨:哈尔滨工业大学博士学位论文. 2009: 107-110
    133叶培建,肖福根.月球探测工程中的月球环境问题.航天器环境工程. 2006, 23 (1): 1-11
    134郑永春,欧阳自远,王世杰,邹永廖.月壤的物理和机械性质.矿物岩石. 2004, 24 (4): 14-19
    135欧阳自远.月球科学概论.北京:宇航出版社, 2005
    136付宜利,徐贺,王树国等.沙地环境移动机器人驱动轮的发展概况综述.机器人技术与应用. 2004 (4): 22-29
    137洪嘉振.计算多体系统动力学.北京:高等教育出版社, 1999: 98-107
    138 K. Yoshida. The SpaceDyn: a Matlab Toolbox for space and mobile robots. Journal of Robotics and Mechatronics. 2000, 12 (4): 411-416
    139 R. Craig, Implementation of the Pure Pursuit Path Tracking Algorithm, Tech. Report CMU-RI-TR-92-01, Carnegie Mellon University, 1992: 4-9
    140 G. Ishigami, K. Nagatani, and K. Yoshida. Slope Traversal Experiments with Slip Compensation Control for Lunar/Planetary Exploration Rover. 2008 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 19-23, 2008: 2295-2300
    141 G. Reina, G. Ishigami, K. Nagatani, and K. Yoshida. Vision-Based Estimation of Slip Angle for Mobile Robots and Planetary Rovers. 2008 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 19-23, 2008: 486-491

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700