用户名: 密码: 验证码:
用于酯化反应—渗透蒸发耦合过程的高性能脱水膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸乙酯作为一种极具开发价值和应用前景的绿色溶剂,其传统脱水生产工艺存在脱水温度高、能耗大、原料损耗大、费用高等缺点,有必要开发具有节能降耗减排特点的新工艺,使其既有较高的乳酸乙酯产率,又能实现低温度、低能耗和低成本生产。渗透蒸发-酯化反应耦合工艺以其绿色、高效、节能的突出特点而具有重要的研发价值,渗透蒸发技术应用于酯化反应脱水体系的关键技术是高性能渗透蒸发脱水膜的研制。
     本论文以壳聚糖(CS)为主体膜材料,制备了壳聚糖-无机杂化膜(包括CS/SiO_2和CS/TiO_2杂化膜)、改性壳聚糖交联膜(q-CS/GA交联膜)和改性壳聚糖-无机杂化膜(q-CS/TiO_2杂化膜)。并采用FTIR、SEM、XRD、DMA、TG、DSC和接触角测定等方法对制备的渗透蒸发脱水膜进行了表征。系统研究了膜的溶胀吸附、渗透蒸发脱水性能和其对乳酸和乙醇酯化耦合反应的影响。
     论文重点考察了有机-无机杂化、季铵化、交联等改性手段对壳聚糖膜的物理化学性质、形态结构和溶胀吸附性能的影响,进而研究了对壳聚糖膜渗透蒸发脱水性能的影响以及对酯化反应的影响。无机纳米粒子的引入、壳聚糖-NH2中取代基-(CH3)3Cl的引入以及戊二醛交联剂的加入破坏了壳聚糖高分子间的氢键作用,使得膜的亲水性增加,结晶度减小,渗透蒸发脱水性能得到一定提高,对乳酸和乙醇酯化反应生成乳酸乙酯的产率有明显促进作用。使用CS/SiO_2(02)、CS/TiO_2(06)杂化膜、q-CS/GA(1.5)交联膜和q-CS/TiO_2(06)杂化膜的酯化反应-渗透蒸发耦合过程的乳酸乙酯产率分别为79.9、78.2、80.7、78.8wt.%,而使用纯壳聚糖膜的耦合过程乳酸乙酯产率为65.5wt.%,没有与渗透蒸发过程耦合的酯化反应酯产率仅为60.8wt.%。
     采用分子动力学模拟方法建立了壳聚糖-SiO_2杂化膜的结构模型,研究了壳聚糖和SiO_2无机粒子间的相互作用、壳聚糖-SiO_2杂化膜的自由体积特性及无机粒子的加入对水和乙醇在膜中扩散过程的影响。结果表明杂化膜内能够容纳乙醇分子的自由体积分数降低程度远大于能够容纳水分子的自由体积空穴分数,使得杂化膜扩散选择性明显升高,且SiO_2粒子越小,扩散选择性增加越明显。
Ethyl lactate, as a green solvent, has great development value and application prospect, its traditional production method suffer from a lot of drawbacks including the high temperature of dehydration, high consumption of energy and raw material and high cost. It is important to develop new technologies which dominated with high yield of ethyl lactate, low temparature, low consumption of energy and low cost. Recently, it was found that pervaporation-assisted esterification process has important research value because of its outstanding features including green technology, high effiency and low consumption of energy.The key technique of this coupling prosess is to develop a pervaporation membrane with excellent dehydration performance.
     In this study, chitosan was used as the bulk membrane material and the chitosan organic-inorganic hybrid membranes (including CS/SiO_2 and CS/TiO_2 hybrid membranes), the cross-linking modified chitosan membranes (the cross-linking q-CS/GA membrane) and the modified chitosan organic-inorganic hybrid membranes (q-CS/TiO_2 hybrid membrane) were developed. The prepared membranes were characterized by FTIR, SEM, XRD, DMA, TG/DTG, DSC, the measurement of contact angel and some other methods. The swollen and adsorption performance of these membranes, the dehydration performance of pervaporation and its function in the esterification of lactic acid and ethanol coupled with pervaporation were investigated.
     Furthermore, the effects of modification methods, such as organic-inorganic hybridization, quaternization and cross-linking, on the physicochemical properties, the configuration and structure and the swollen and adsorption performance of chitosan membrane were studied. Then, the dehydration performance of these modified chitosan membranes for pervaporation and esterification were investigated. It was found that, the hydrogen-bonding interaction between the chitosan moleculs was destroyed by introducing the inorganic nanparticles, the substituting group -(CH3)3Cl of -NH2 and the glutaric dialdehyde as the cross-linking agent. These factors resulted in the increasing hydrophilicity of membrane, the decrease of crystallinity and the increase of the membranes’pervaporating dehydration perfomance, consequently, the esterification of lactic acid of ethanol was enhanced. As a result, the yield of ethyl lactate in pervaporation-assisted esterifaction of lactic acid and ethanol could increased to 79.9, 78.2, 80.7 and 78.8wt% by using CS/SiO_2(02), CS/TiO_2(06) hybrid membrane, q-CS/GA(1.5) cross-linked membrane and q-CS/TiO_2(06) hybrid membrane, meanwhile, the yield of ethyl lactate by using chitosan membrane was 65.5wt%, which was only 60.8% without pervaporation.
     Using molecular dynamics simulation technique, the structure model of chitosan- SiO_2 hybrid membrane was constructed. The interaction between chitosan and SiO_2 particles was investigated. Next, the free volume properties of chitosan membrane and chitosan-SiO_2 membranes and the effect of introducing inorganic particles on the diffusion process of water and ethanol in chitosan hybrid membrane were studied. It suggested that the fractional free volume of hybrid membrane for ethanol molecule was decreased much more than that for the water molecule, accordingly, the diffusion selectivity of hybrid membrane increased more remarkably. Moreover, the smaller the SiO_2 particles, the more evidently the diffusion selectivity can increase.
引文
[1]徐克勋,精细有机化工原料及中间体手册,北京:化学工业出版社,1998,364~366
    [2]中国化工产品大全(第三版),下卷,北京:化学工业出版社,2005
    [3]陈开勋,新领域精细化工,北京:中国石化出版社,1999, 387~388
    [4]周学良,新编化工生产技术与产品手册,杭州:浙江科学技术出版社,1999,453~453
    [5]吕彦杰,可生物降解的工业溶剂乳酸乙酯,湖南化工,2000,(1) :150~151
    [6]鲁富贵,张深松,关于乳酸乙酯的合成的研究,河北师范大学学报,1997,11(1):106~108
    [7]李德吕,黄春林,改性氧化错催化合成乳酸乙酯,广西化工,1997,26(4):16~18
    [8]刘榕芳,肖秀峰,王清萍等,脱水法合成乳酸乙酯,精细化工,2000,17(12):714~716
    [9]王刚,沙钝等,哈尔滨师范大学自然科学学报,1997,13(6):63~66
    [10]高静,赵学明,黄志红,SO42-/ZrO2-TiO2催化合成乳酸乙酯的研究.四川大学学报(工程科学版),2002,34(5):36-38
    [11] Martio-Gauchi, Georges, Teissier. Continuous method for preparring ethyl lactate, WO, 052826 A2, 2005-06-24
    [12] Tretjak, Serge, Tessier. Continuous ethyl lactate preparation method, WO, 052825 A2, 2004-06-24
    [13] Walkup C., Rohrmann. Production of ester of lactic acid, ester of acrylic acid, lactic acid and acrylic acid, US Patent, 5071754, 1991-12-10
    [14] Wijmans J G, Smolders C. A., The solution-diffusion model: a review, J. Membr. Sci., 1995, 107: 1~21
    [15] Jonquières A., Clément R., Lonhon P., Néel J., Dresch M., Chrétien B., Industrial state-of-the-art of pervaporation and vapour permenation in the western countries, J. Membr. Sci, 2001, 206: 87~117
    [16] Zhang S., Drioli E., Review: Pervaporation membrane, Sep. Sci. Tech., 1995, 30(1): 1~31
    [17]陈镇,秦培勇,陈翠仙,渗透汽化和渗透汽化技术的研究、应用现状及发展,膜科学与技术,2003,23:103~10
    [18] Lipnizki P., Field R W., Ten P K., Pervaporation-based hybrid process: A review of process design, applications and economics, J. Membr. Sci., 1999,153: 183~210
    [19] Feng X., Huang R Y M., Liquid separation by membrane pervaporation: A review, Ind. Eng. Chem. Res., 1997, 36: 1048~1066
    [20]陈翠仙,余立新,祁喜旺,渗透汽化膜分离技术的进展及在石油化工中的应用,膜科学与技术,1997,17:14~18
    [21] Hoof V V., Abeele L V., Buekenhoudt A., Dotremont C., Leysen R., Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol, Sep. Purif. Tech, 2004, 37: 33~49
    [22] Mulder M., Franken T., Smolders C A., Perferential sorption versus prefertial permeability in pervaporation, J. Membr. Sci, 1985, 22: 155~173
    [23]邹健,孙本惠,陈翠仙,聚电解质渗透汽化膜,高分子通报,2001,10:44~52
    [24]孙冀平,壳聚糖及其应用,中国食品添加剂,2005,5:83~86
    [25] Masaru M., Reikichi I., Seiich M., et al, Chitosan membranes for separation of water-ethanol by pervaporation, Kobunshi Ronbunshu, 1985, 42: 139
    [26] Uragami T., Takigawa K., Permeation and separation characteristics of ethanol-water mixtures through chitosan derivative membranes by pervaporation and evapomeation, Polymer, 1990,31: 668~672
    [27] Lee Y.M., Shin E.M., Pervaporation separation of water-ethanol through modified chitosan membranes. IV. Phosphorylated chitosan membranes, J. Membr. Sci., 1991, 64: 145~152
    [28] Lee Y.M., Modified chitosan membranes for pervaporation, Desalination, 1993, 90: 277~290
    [29] Uragami T., Matsuda T., Okuno H., et al, Structure of chemically modified chitosan membranes and their characteristics of permeation and separation of aqueous ethanol solutions, J. Membr. Sci., 1994, 88: 243~251
    [30] Guo Q., Ohya H., Negishi Y., Investigation of the permselectivity of chitosan membrane used in pervaporation separation II. Influences of temperature and membrane thickness, J. Membr. Sci., 1995, 98: 223~232
    [31] Lee Y.M., Nam S.Y., Woo D.J., Pervaporation of ionically surface crosslinked chitosan composite membranes for water-alcohol mixtures, J. Membr. Sci., 1997, 133: 103~110
    [32] Ge J., Cui Y., Yan Y., et al, The effect of structure on pervaporation of chitosan membrane, J. Membr. Sci., 2000, 165: 75~81
    [33] Wang X., Feng Y., Shen Z., Pervaporation Properties of a Three-Layer Structure Composite Membrane, J. Appl. Polym. Sci., 2000, 75: 740~745
    [34] Zhang W., Li G., Fang Y., et al, Maleic anhydride surface-modification of crosslinked chitosan membrane and its pervaporation performance, J. Membr. Sci., 2007, 295: 130~138
    [35] Wu L.G., Zhu C.L., Liu M., Study of a new pervaporation membrane Part I. Preparation and characteristics of the new membrane, J. Membr. Sci., 1994, 90: 199~205
    [36] Shieh J., Huang R.Y.M., Chitosan/N-methylol nylon 6 blend membranes for the pervaporation separation of ethanol–water mixtures, J. Membr. Sci., 1998, 148: 243~255
    [37] Yeom C. K., Lee K.H., Characterization of sodium alginate and poly(vinyl alcohol) blend membranes in pervaporation separation, J. Appl. Polym. Sci., 1998, 67: 949~959
    [38] Chen X., Li W., Shao Z., et al, Separation of alcohol-water mixture by pervaporation through a novel natural polymer blend membrane-chitosan/silk fibroin blend membrane, J. Appl. Polym. Sci., 1999, 73: 975~980
    [39] Wang X., Shen Z., Zhang F., et al, Preferential separation of ethanol from aqueous solution through hydrophilic polymer membranes, J. Appl. Polym. Sci., 1999, 73: 1145~1151
    [40] Chanachai A., Jiraratananon R., Uttapap D., et al, Pervaporation with chitosan/hydroxyethylcellulose (CS/HEC) blended membranes, J. Membr. Sci., 2000, 166: 271~280
    [41] Jiraratananon R., Chanachai A., Huang R.Y.M., et al, Pervaporation dehydration of ethanol–water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes: I. Effect of operating conditions, J. Membr. Sci., 2002, 195: 143~151
    [42] Jiraratananon R., Chanachai A., Huang R.Y.M., Pervaporation dehydration of ethanol–water mixtures with chitosan/hydroxyethylcellulose(CS/HEC) composite membranes: II. Analysis of mass transport, J. Membr. Sci., 2002, 199: 211~222
    [43] Dubey V., Pandey L.K., Saxena C., Pervaporative separation of ethanol/water azeotrope using a novel chitosan-impregnated bacterial cellulose membrane and chitosan–poly(vinyl alcohol) blends, J. Membr. Sci., 2005, 251: 131~136
    [44] Li B., Xu Z., Qusay F.A., et al, Chitosan-poly (vinyl alcohol)/poly (acrylonitrile) (CS–PVA/PAN) composite pervaporation membranes for the separation of ethanol–water solutions, Desalination, 2006, 193: 171~181
    [45] Shieh J., Huang R.Y.M., Pervaporation with chitosan membranes II. Blend membranes of chitosan and polyacrylic acid and comparison of homogeneous and composite membrane based on polyelectrolyte complexes of chitosan and polyacrylic acid for the separation of ethanol-water mixtures, J. Membr. Sci., 1997, 127: 185~202
    [46] Nam S.Y., Lee Y. M., Pervaporation and properties of chitosan-poly(acrylic acid) complex membranes, J. Membr. Sci., 1997, 135: 161~171
    [47] Iwatsubo T., Kusumocahyo S.P., Shinbo T., Water/ethanol pervaporation performance of asymmetric polyelectrolyte complex membrane constructed by the diffusion of poly(acrylic acid) in chitosan membrane, J. Appl. Polym. Sci., 2002, 86: 265~271
    [48]曾希,施艳养,陈观文,壳聚糖/聚丙烯酸聚电解质复合物膜对水/有机液体系的渗透汽化性能,功能高分子学报,1998,11(3):385~391
    [49]卢灿辉,许晨,丁马太,壳聚糖/聚丙烯酸钠聚离子复合膜的醇一水渗透汽化分离性能,水处理技术,1996,22(2):75~79
    [50]张富饶,张一烽,沈之荃,改性壳聚糖膜用于醇水混合液分离的研究(Ⅱ)壳聚糖-羧甲基纤维素共混膜,高等学校化学学报,1994,15(7):1081~1084
    [51]曾希,施艳养,陈观文,藻朊酸钠/壳聚糖聚电解质复合物膜Ⅰ.对水有机液体系的渗透汽化特性,功能高分子学报,1998,11(3):321~326
    [52] Kanti P., Srigowri K., Madhuri J., et al, Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation, Sep. Purif. Technol., 2004, 40: 259~266
    [53] Wang X., Shen Z., Studies on the effects of copper salts on the separation performance of chitosan membranes, Polymer International, 2000, 49: 1426~1433
    [54] Haack J.M., Lenk W., Lehmann D., et al, Pervaporation separation of water/alcohol mixtures using composite membranes based on polyelectrolyte multilayer assemblies, J. Membr. Sci., 2001, 184: 233~243
    [55] Toutianoush A., Tieke B., Pervaporation separation of alcohol/water mixtures using self-assembled polyelectrolyte multilayer membranes of high charge density, Mater. Sci. Eng., 2002, 22: 459~463
    [56] Lenk W., Haack J.M., Polyelectrolyte multilayer membranes for pervaporation separation of aqueous-organic mixtures, Desalination, 2002, 148: 1l~16
    [57] Naidu B.V.K., Rao K.S.V., Aminabhavi T.M., Pervaporation separation of water + 1,4-dioxane and water + tetrahydrofuran mixtures using sodium alginate and its blend membranes with hydroxyethylcellulose—A comparative study, J. Membr. Sci., 2005, 260: 131~141
    [58] Naidu B.V.K., Aminabhavi T.M., Pervaporation Separation of Water/2-Propanol Mixtures by Use of the Blend Membranes of Sodium Alginate and (Hydroxyethyl)cellulose: Roles of Permeate-Membrane Interactions, Zeolite Filling, and Membrane Swelling, Ind. Eng. Chem. Res, 2005, 44: 7481~7489
    [59] Breck D. W., Zeolite Molecular Sieves: Structure, Chemistry and Use, Wiley, NewYork, 1974: 83~90
    [60] Jafar J J., Budd P M., Separation of alcohol/water mixtures by pervaporation through zeolite A membranes, Microporous. Mater., 1997, 12 : 305~311
    [61] Kondo M., Komori M., Kita H., Okamoto K., Tubular-type pervaporation module with zeolite NaA membrane, J. Membr. Sci. 1997, 133: 133~141
    [62] Okamoto K., Kita H., Korii K., Tanaka K., Zeolite NaA membrane: preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures, Ind. Eng. Chem. Res., 2001, 40: 163~175
    [63] Richter H., Voight I., Fischer P., Puhlfur B P., Preparation of zeolite membranes on the inner surface of ceramic tubes and capillaries, Sep. Purif. Tech., 2003, 32: 133~138
    [64] Shah D., Kissick K., Ghorpade A., Hannah R., Bhattacharyya D., Pervaporation of alcohol-water and dimethylformamide-water mixtures using hydrophilic zeolite NaA membranes: mechanisms and experimental results, J. Membr. Sci. 2000, 179: 185~205
    [65] Ahn H., Lee H., Lee S-B., Lee Y.,Pervaporation of an aqueous ethanol solution through hydrophilic zeolite membranes, Desalination, 2006, 193: 244~251
    [66] Noack M., K¨olsch P., Caro J., Schneider M., Toussaint P., Sieber I., MFI membranes of different Si/Al ratios for pervaporation and steam permeation, Microporous Mesoporous Mater., 2000, 253: 35~36
    [67] Lin X, Kikuchi E, Matsukata M, Preparation of mordenite membranes onα-alumina tubular supports for pervaporation of water isopropyl alcohol mixtures, Chem. Commun., 2000, 957~958
    [68] Verkerk A. W., Male P. V., Vorstman M. A. G., Keurentjes J T F., Description of dehydration performance of amorphous silica pervaporatin membranes, J. Membr. Sci., 2001, 193: 227~238
    [69] Renate M., Verweij H., Improved performance of silica membranes for gas separation, J. Membr. Sci., 1998, 143: 37~51
    [70] Van Veen H. M., Delft Y. C., Engelen C. W. R., Pex P. P. A. C., Dewartering of organics by pervaporation with silica membranes, Sep. Purif. Tech, 2001, (22~23): 361~366
    [71] Verkerk A. W., Male P. V., Vorstman M. A. G., Keurentjes J. T. F., Properties of high flux ceramic pervaporatin membranes for dehydration of alcohol/water mixtures, Sep. Purif. Tech., 2001, (22-23): 689~695
    [72] Guizard C., Bac A., Barboiu M., et al, Hybrid organic-inorganic membranes with specific transport properties: Applications in separation and sensors technologies, Sep. Purif. Technol., 2001, 25: 167~180
    [73]王铀,沈静姝,制备聚合物纳米复合材料展望,化工新型材料,1998,26 (1):8~12
    [74] Landry J. T. C., Coltrain B. K., Jeffrey A. W., Zumbulyadis N., Lippert J L., In situ polymerization of tetraethoxysilane in polymers: chemical nature of the interactions, Polymer, 1992, 33: 1496~1506
    [75] Ruckenstein E, Hong L, Oxide-Carbon Composites and Porous Metal Oxides Prepared via Water-Swellable Polymer Networks, Chem Mater., 1996, 8: 546~553
    [76] Corriu R. J. P., Moreau J. J. E., Thepot P., Wong Chi Man M., Hybrid Silica Gels Containing 1,3-Butadiyne Bridging Units. Thermal and Chemical Reactivity of the Organic Fragment, 1996, 8: 100~106
    [77]郭卫红,唐颂超,周达飞,徐种德,纳米SiO2在MMA单体中在位分散聚合的研究,材料导报,2000,10:71~72
    [78] Gao Z., Yue Y., Li W., Application of zeolite-filled pervaporation membrane, Zeolites, 1996, 16: 70~74
    [79] Huang Z., Guan H. M., Tan W. L., Qiao X. Y.,Kulprathipanja S.,Pervaporation study of aqueous ethanol solution through zeolite-incorporated multilayer poly(vinyl alcohol) membranes: Effect of zeolites, J. Membr. Sci., 2006, 276: 260~271
    [80] Kariduraganavar M. Y., Kittur A A., Kulkarni S S., Ramesh K., Development of novel pervaporation membranes for the separation of water-isopropanol mixtures using sodium alginate and NaY zeolite, J. Membr. Sci., 2004, 238: 165~175
    [81] Yeh J.M., Yu M.Y., Liou S.J., Dehydratin of water-alcohol mixtures by vapor permeation through PVA/Clay nanocomposite membrane, J. Appl. Poly. Sci., 2003, 89: 3632~3638
    [82] Wang Z.H., Fan S.C., Lee K.R., et al., Polyamide/SDS-clay hybrid nanocomposite membrane application to water-ethanol mixture pervaporation separation, J. Membr. Sci., 2004, 239:219~226
    [83] Bhat S.D., Naidu B.V.K., Shanbhag G.V., Halligudi S.B., Sairam M., Aminabhavi T M., Mesoporous molecular sieve (MCM-41)-filled sodium alginate hybrid nanocomposite membranes for pervaporation separation of water-isopropanol mixtures, Sep. Purif. Tech., 2006, 49: 56~63
    [84] Uragami T., Okazaki K., Matsugi H., Miyata T., Structure and permeation characteristics of an aqueous ethanol solution organic-inorganic hybrid membranes composed of poly(vinyl alcohol) and tetraethoxysilane, Macromolecules, 2002, 35: 9156~9163
    [85] Kulkarni S.S., Kittur A.A., Aralaguppi M.I., Kariduraganavar M Y., Synthesis and characterization of hybrid membranes using poly(vinyl alcohol) and tetraethylorthosilicate for the pervaporation separation of water-isoproanol mixtures, J. Appl. Polym. Sci., 2004, 94: 1304~1315
    [86] Kariduraganavar M.Y., Kulkarni S.S., Kittur A.A., Pervaporation separation of water-acetic mixtures through poly(vinyl alcohol)-silicone based hybrid membranes, J. Membr. Sci., 2005, 246: 83~93
    [87] Zhang Q.G., Liu Q.L., Jiang Z.Y., ChenY., Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes, J. Membr. Sci., 2007, 287: 237~245
    [88] Liu Y.L., Su Y.H., Lee K.R., Lai J.Y., Crosslinked organic-inorganic hybrid chistoan membranes for pervaporation dehydration of isopropanol-water mixtures with a long-term stability, J. Membr. Sci., 2005, 251: 233~238
    [89] Lim S.Y., Byunggi P., Hunga F., Sahimia M., Tsotsisa T.T., Design issues of pervaporation membrane reactors for esterification. Chem. Eng. Sci., 2002, 57: 4933~4946
    [90] Nemec D., Gemert R., Performing, Esterification Reactions by Combining Heterogeneous Catalysis and Pervaporation in a Batch Process, Ind. Eng.Chem. Res., 2005, 44: 9718~9726
    [91] Feng X., Huang R.Y.M., Studies of a membrane reactor: esterification facilitated by pervaporation, Chem. Eng. Sci., 1996, 51: 4673~4679
    [92] Fayyaz B., Harale A., Park B.G., Liu P.K.T., Sahimi M., Tsotsis T.T., Design Aspects of Hybrid Adsorbent-Membrane Reactors for Hydrogen Production, Ind. Eng.Chem. Res., 2005, 44: 9398~9408
    [93] Li X., Wang L., Kinetic model for an esterification process coupled by pervaporation, J. Membr. Sci. 2001, 186: 19~24
    [94] Benedict D.J., Parulekar S.J., Tsai S.P., Esterification of Lactic Acid and Ethanol with/without Pervaporation, Ind. Eng.Chem. Res., 2003, 42: 2282~2291
    [95] Benedict D.J., Parulekar SJ., Tsai S.P., Esterification of Lactic Acid and Ethanol with/without Pervaporation, Ind. Eng. Chem. Res., 2003, 42: 2282~2291
    [96] Krupiczka R., Koszorz Z., Activity-based model of the hybrid process of an esterification reaction coupled with pervaporation, Sep. Purif. Tech., 1999,16 : 55~59
    [97] Lauterbach S., Kreis P., Experimental and theoretical investigation of a pervaporation membrane reactor for a heterogeneously catalysed esterification, Desalination, 2006, 1994: 18~420
    [98] Benedict D.J., Parulekar S.J., Tsai S.P., Pervaporation-assisted esterification of lactic and succinic acids with downstream ester recovery. J. Membr. Sci., 2006, 281: 435~445
    [99] Castanheiro J.E., Ramos A.M., Fonseca I.M., Vital J., Esterification of acetic acid by isoamylic alcohol over catalytic membranes of poly(vinyl alcohol) containing sulfonic acid groups, Appl. Catal. A: General, 2006, 311: 17~23
    [100] Sanz M.T., Gmehling J., Esterification of acetic acid with isopropanol coupled with pervaporation Part I: Kinetics and pervaporation studies, Chem. Eng. J., 2006, 123: 1~8
    [101] Sanz M.T, Gmehling J., Esterification of acetic acid with isopropanol coupled with pervaporation Part II. Study of a pervaporation reactor, Chem. Eng. J., 2006, 123: 9~14
    [102] I?aka P., Mateusa N.M.M., Afonsoa C.A.M., Crespo J.G., Enhanced esterification conversion in a room temperature ionic liquid by integrated water removal with pervaporation, Sep. Puri. Tech., 2005, 41: 141~145
    [103] Figueiredo K.C.S., Salim V.M.M., Borges C.P., Synthesis and characterization of a catalytic membrane for pervaporation-assisted esterification reactors, Catalysis Today, 2008, 133~135: 809~814
    [104] Tanaka K., Yoshikawa R., Ying C., Kita H, Okamoto K, Application of zeolite membranes to esterification reactions, Catalysis Today, 2001, 67: 121~125
    [105] Jafar J. J., Budda P. M., Ron H., Enhancement of esterification reaction yield using zeolite A vapour permeation membrane, J. Membr. Sci. 2002, 199: 117~123
    [106] Iglesiaó., Irusta S., Mallada R., Menéndez M., Coronas J., Santamaría J., Preparation and characterization of two-layered mordenite-ZSM-5 bi-functional membranes, Microporous Mesoporous Mater., 2006, 93: 318~324
    [107] Iglesiaó., Mallada R., Menéndez M., Coronas J., Continuous zeolite membrane reactor for esterification of ethanol and acetic acid, Chem. Eng. J.,2007, 131: 35~39
    [108] Liu Q., Chen H., Modeling of esterification of acetic acid with n-butanol in the presence of Zr(SO4)2·4H2O coupled pervaporation, J. Membr. Sci. 2002,196: 171~178
    [109] Liu Q., Zhang Z., Chen H., Study on the coupling of esterification with pervaporation, J. Membr. Sci. 2001,182: 173~181
    [110] Park B.G., Tsotsis T.T., Models and experiments with pervaporation membrane reactors integrated with an adsorbent system, Chem. Eng. Process., 2004, 43: 1171~1180
    [111] Zhu Y., Minet R.G., Tsotsis T.T., A continuous pervaporation membrane reactor for the studt of esterification reactor using a composite polymeric/ceramic membrane, Chem. Eng. Sci., 1996, 51(17) : 4103~ 4113
    [112] Zhu Y., Chen H., Pervaporation separation and pervaporation-esterification coupling using crosslinked PVA composite catalytic membranes on porous ceramic plate. J. Membr. Sci., 1998, 138: 123~134
    [113] Gao Z., Yue Y., Li W., Application of zeolite-filled pervaporation membrane, Zeolites, 1996, 16 : 70~74
    [114] Budd P.M., Nágila M.P.S., Jafar R.J.J., Stephenson B., Hughes R., Zeolite/Polyelectrolyte Multilayer Pervaporation Membranes for Enhanced Reaction Yield, Ind. Eng. Chem. Res., 2004, 43: 1863~1867
    [115] Liu Q., Jia P., Chen H., Study on catalytic membranes of H3PW12O40 entrapped in PVA, J. Membr. Sci., 1999, 159 : 233~241
    [116] Peters T.A., J. van der T.C. Houssin, M.A.G., et al., Preparation of zeolite-coated pervaporation membranes for the integration of reaction and separation, Catalysis Today, 2005, 104: 288~295
    [117] Peters T.A., Benes N.E., Keurentjes J.T.F., Zeolite-Coated Ceramic Pervaporation Membranes; Pervaporation-Esterification Coupling and Reactor Evaluation, Ind. Eng. Chem. Res., 2005, 44: 9490~9496
    [118] Peters T.A., Benes N.E., Keurentjes J.T.F., Preparation of Amberlyst-coated pervaporation membranes and their application in the esterification of acetic acid and butanol. Appl. Catal. A: General, 2007, 317: 113~119
    [119]杨小震,分子模拟与高分子材料,北京:科学出版社,2002
    [120] Ronova I.A., Rozhkov E.M., Alentiev A.Y., Yampolskii Y.P., Occupied and Accessible Volumes in Glassy Polymers and Their Relationship with Gas Permeation Parameters, Macromol. Theory. Simul., 2003, 12: 425~439
    [121] Hofmann D., Fritz L., Ulbrich J., Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials, Macromol. Theory. Simul., 2000, 9: 293~327
    [122] Hofmann D., Fritz L., Paul D., Molecular modeling of pervaporation separation of binary mixtures with polymeric membranes, J. Membr. Sci., 1998, 144: 145~159
    [123] Hofmann D., Fritz L., Ulbrich J., Detailed-atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials, Macromol. Theory. Simul., 2000, 9: 293~327
    [124] Tamai Y., Tanaka H., Nakanishi K., Molecular simulation of permeation of small penetrants through membrane1.diffusion coefiicient, Macromolecules, 1994, 27: 4498~4508
    [125] Tamai Y., Tanaka H., Nakanishi K., Molecular simulation of permeation of small penetrants through membranesolubilities, Macromolecules, 1995, 28: 2544~2554
    [126] Tamai Y., Tanaka H., Nakanishi K., Molecular design of polymer membranes using molecular simulation technique, Fluid Phase Equilib., 1995, 104: 363~374
    [127] Fritz L., Hofmann D., Molecular dynamics simulations of the transport of water-ethanol mixtures through polydimethylsiloxane membranes, Polymer, 1997, 38(5): 1035~1045
    [128] Desai T., Keblinski P., Kumar S.K., Molecular dynamics simulation of polymer transport in nanocomposites, J. Chem. Phys., 2005, 122: 134910-1~8
    [129] Gee R.H., Maxwell R.S., Balazs B., Molecular dynamics studies on the effects of water speciation on interfacial structure and dynamics in silica-filled PDMS composites, polymer, 2004, 45: 3885~3891
    [130] Wei C.Y., Srivastava D., Cho K., Thermal expansion and diffusion coefficient of carbon nanotube-polymer composites, Nano letters, 2002, 2: 647~650
    [131] Innocenzi P., Martucci A., Armelao L., et al, Sol-gel synthesis ofβ-Al2TiO5 thin films at low temperature, Chem. Mater., 2000, 12: 517~524
    [132] Tao Y.G., Pan J., Yan S.L., et al, Tensile strength optimization and characterization of chitosan/TiO2 hybrid film, Mater. Sci. Eng., B, 2007, 138: 84~89
    [133] Hu Q., Marand E., In situ formation of nanosized TiO2 domains within poly(amide-imide) by a sol–gel process, Polymer, 1999, 40: 4833~4843
    [134] Urbanczyk G. W., Lipp-Symonowicz B., The influence of processing terms of chitosan membranes made of differently deacetylated chitin on the crystalline structure of membranes, J Appl. Polym. Sci, 1994, 51: 2191~2194
    [135] Nguyen J.Q., Modelling of infuence of downstream pressure for highly pervaporation. J. Membr. Sci., 1987, 34: 165~172
    [136] Muzzarelli R.A.A.,Tanfani E.,The N-permethylation of chitosan and the preparation of N-trimethyl chitosan iodide, Carbohydr Polym, l985, 5: 297-307
    [137] Spinelli V.A., Laranjeira M.C.M., Favere V., Preparation and characterization of quaternary chitosan salt : adsorption equilibrium of chromium(V1) ion, React. Funct. Polym, 2004, 61: 347~352
    [138] Huang R., Chen G., Sun M., Hu Y., Gao C., Studies on nanofiltration membrane formed by diisocyanate cross-linking of quaternized chitosan on poly(acrylonitrile) (PAN) support, J. Membr. Sci., 2006, 286: 237~244
    [139] Huang R., Chen G., Sun M., Hu Y., Gao C., Preparation and characteristics of quaternized, Carbohydr. Polym. , 2007, 40:318~323
    [140] Uragami T., Takuno M., Miyata T., Evapomeation Characteristics of Cross-Linked Quaternized Chitosan Membranes for the Separation of an Ethanol/Water Azeotrope, Macromol. Chem. Phys. 2002, 203: 1162–1170
    [141] Uragami T., Yamamoto S., Miyata T., Dehydration from Alcohols by Polyion Complex Cross-Linked Chitosan Composite Membranes during Evapomeation, Biomacromolecules 2003, 4: 137~144
    [142] Vachoud L.,Chen T., Payne G. F, et a1.Peroxidase catalyzed grafting of gallate esters onto the polysaccharide chitosan, Enzyme Microb. Technol., 2001, 29: 380~385
    [143] Saxena A., Kumar A., Shahi V. K., Preparation and characterization of N-methylene phosphonic and quaternized chitosan composite membranes for electrolyte separations, J. Colloid Interface Sci. 2006, 303: 484~493
    [144]张灿,丁娅,平其能,新型两亲性N-烷基-N-季铵化壳聚糖衍生物的制备与表征,高分子材料科学与工程,2006, 22:200~203
    [145] Avadi M.R., Sadeghi A.M.M., Tahzibi A., Bayati K., Pouladzadeh M., Diethylmethyl chitosan as an antimicrobial agent: Synthesis, characterization and antibacterial effects, Euro. Polym. J., 2004, 40: 1355~1361
    [146] Uragami T., Matsuda T., Okuno H., Miyata T., Structure of chemically modified chitosan membranes and their characteristics of permeation and separation of aqueous ethanol solutions, J. Membr.e Sci., 1994,88: 243~251
    [147] Mochizuki A., Sato Y., Ogawara H., Yamashita S., Pervaporation separation of water/ethanol mixtures through polysaccharide membranes. I. The effects of salts on the permselectivity of cellulose membrane in pervaporation, J. Appl. Polym. Sci., 1989, 37: 3357~3374
    [148] Robeson L.M., Polymer membranes for gas separation, Current Opinion in Solid State and Materials Sci., 1999 (4): 549~552
    [149] Freeman B.D., Basis of Permeability/Selectivity Trade-off Relations in Polymeric Gas Separation membrane, Macromolecules, 1999, 32: 375~380
    [150] Jawalkar S.S., Raju K.V.S.N., Halligudi S.B, Sairam M., Aminabhavi T. M., Molecular Modeling Simulations to Predict Compatibility of Poly(vinyl alcohol) and Chitosan Blends: A Comparison with Experiments, J. Phys. Chem. B 2007, 111: 2431~2439

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700