用户名: 密码: 验证码:
压电桁架结构系统可靠性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于日益迫切的振动控制和形状控制需要,智能结构特别引起了航空航天界的极大关注。目前,由传感器、致动器和处理中枢组成的智能结构已经应用到在许多领域中。智能结构是一种含有压电材料、电/磁致伸缩材料或形状记忆合金等主动材料的结构形式,因为压电材料与其它主动材料相比有很多优势,它已越来越多地应用到各种智能结构中。作为一种电介质材料和脆性材料,压电材料中不可避免的存在力失效和电失效的问题,而且由于结构系统本身及其所处环境的不确定因素,使得压电智能结构的可靠性分析变得复杂,随着其应用的广泛,智能结构的可靠性已成为一个热点问题,因此开展对压电智能结构的随机分析并评价其可靠性是非常必要的。
     本文研究了同时考虑力/电失效的智能结构可靠性问题,主要有以下几个方面:
     1、讨论和研究了压电晶体的力学、电学性能,从压电效应出发,对压电致动器的驱动技术进行了介绍。基于热力学原理推导了压电广义本构关系,阐述了压电材料各参数间的相互关系,给出了按IEEE标准记法的表达式,讨论了机械、电、热三种能量形态之间的相似性及耦合关系
     2、介绍了电介质材料的雪崩击穿机理,阐述了因电击穿机理的复杂性难以建立其解析表达式。本文基于诱发微短路的服从麦克斯韦—玻尔兹曼(Maxwell-Boltzmann)分布的假设,建立了压电材料电击穿统计公式,并与弱点击穿理论公式做了比较,指出了弱点击穿理论公式的局限性。
     3、给出了考虑预压力的压电致动器的机电耦合方程,理论分析了致动器的最大输出位移/力。并算例分析了压电堆与预压弹簧的刚度比的可行最佳取值范围。
     4、运用最小势能原理,给出了压电堆的有限元求解方程。并在此基础上,分析了主动杆的热力学控制方程,给出了主动杆(一般由压电段和普通段组成)的有限元机电耦合方程。
     5、结合压电桁架结构的力学特点,给出了可靠性分析的安全余量表达形式,采用改进的一次二阶矩法(Advanced First Order Second Moment, AFOSM)和Taylor展开随机有限元法(Taylor Stochastic Finite Element Method, TSFEM)给出了安全余量可靠性指标的计算方法;运用可靠性的基本理论,进行压电桁架结构系统的可靠性分析,采用概率网络估算技术(Probabilistic Network Evaluation Technique, PNET)求出压电桁架结构系统的可靠性指标。最后用数值算例说明方法的详细步骤和有效性。
For a strong and increasing demand for vibration and shape control, intelligent structures receive a considerable interest in the field of aerospace, specially. Applications of intelligent structures consisting of large numbers of distributed sensors, actuators, and processors are found in a very broad range of industries. Intelligent structures are structural systems which include active materials, such as piezoelectrics, electrostrictives, magnetostrictives, or shape memory alloys etc. Because piezoelectric materials offer many advantages compared to other active materials, piezoelectric materials are increasingly used in various intelligent structures. As a storage dielectric or a brittle material for the applications, it is ineluctable that there are the problems of electrical failures and mechanical failures in it. Otherwise, because of the uncertainty factors of structure system or its work environment, the reliability analysis is becoming more difficult for piezoelectric intelligent structures. Along with the extension of their use, the reliability of intelligent structures has been an important issue. it is necessary to make stochastic analysis of piezoelectric structure and evaluate its reliability.
     The thesis has made some progress in reliability analysis of intelligent structure with the electrical/mechanical failure have been taken into account. The main areas covered by the thesis are:
     1. The performance of mechanics and electricity about piezoelectric crystal was discussed and studied. The drive techniques of piezoelectric actuators were introduced basing on the study of piezoelectric effect. Based on the thermodynamic principle, the generalized constitutive relations of piezoelectric materials were obtained. The interrelation of the each piezoelectric parameters were expatiated, also according to the IEEE Standard, the comparability and the bilateral coupling relationships between mechanical energy, electrical energy and thermal energy were discussed.
     2. The avalanche mechanism of dielectric materials was introduced, and the complexities of the process of electrical breakdown were explained, so the statistics methods act as a more and more important role in this field. Assuming a Maxwell-Boltzmann distribution of defect energies that can produce micro-shorts, the statistical formula of electrical breakdown of piezoelectric materials was presented. Moreover, the comparative analysis with the weak point theory was given, and the limitation of the weak point theory was also pointed out.
     3. The electro-mechanical coupling equations of spring-preloaded piezoelectric actuator were presented, the maximize displacement/force outputs were analyzed in theory. A numerical example was given to show the feasible range of stiffness ratio between the piezoelectric stack and the spring.
     4. With the principle of minimum potential energy for piezoelectric stack applied, solving formulae of the finite element method was established. On the basis of analysis above, the electro-mechanical coupling finite element formulation of piezoelectric active bar, which are commonly composed of a piezoelectric stack and two metallic bars, was particularly deduced.
     5. Combining the mechanical character of piezoelectric truss structure, the reliability analysis of piezoelectric truss structure was discussed, the safety margin functions for reliability analysis were established, adopting Advanced First Order Second Moment (AFOSM) and Taylor expansion Stochastic Finite Element Method (TSFEM), the method of reliability of piezoelectric truss structure was given, and using the theory of reliability, the reliability index of piezoelectric truss structure system was acquired by Probabilistic Network Evaluation Technique, (PNET). Finally, numerical example was presented to explain the detailed process and demonstrate the validity and effectiveness of the method.
引文
[1]Croft J. Reenergizing rotorcraft R and D. Aerospace America.2005,43(1): 22-24P
    [2]Lochocki J M. Smart skins a development roadmap. Proceedings of the SPIE-The International Society for Optical Engineering.1990,1170: 19-47P
    [3]Coombs S. Smart skins:Information processing by lateral line flow sensors. Autonomous Robots.2001,11(3):255-261P
    [4]蒋宇平,秦嵘,朱林崎.智能结构的发展和应用.宇航材料工艺.1998,28(4):15-17页
    [5]Aswani M, Wada B K, Garba J A. U. S. perspective on technology demonstration experiments for adaptive structures. Proceedings of the IEEE Conference on Decision and Control.1991,3:2563-2573P
    [6]Utku S, Wada B K. Adaptive structures in Japan. Journal of Intelligent Material Systems and Structures.1993,4(4):437-451P
    [7]Yoshida I, Kurose H, Fukui S, Iemura H. Parameter identification on active control of a structural model. Smart Materials and Structures.1995,4: A82-A90P
    [8]Breitbach E J. Research status on adaptive structures in Europe. Jt Japan/US Conference on Adaptive Structures.1992:32-48P
    [9]中华人民共和国国务院.国家中长期科学和技术发展规划纲要http:// www.gov.cn/jrzg/2006-02/09/content_183787.htm
    [10]高木俊宜.未来科学技术.北京:科学技术出版社,1990
    [11]陶宝祺,熊克.智能材料结构的定义及应用前景.中国科学基金.1995,9(2):40-46页
    [12]黄文虎,王心清,张景绘,郑钢铁.航天柔性结构振动控制的若干新进 展.力学进展.1997,27(1):5-18页
    [13]《卫星与网络》网络版.http://124.254.29.9/webroot/modules/news/ article.php?storyid=326
    [14]隋允康,龙连春.智能桁架结构最优控制方法与数值模拟.北京:科学出版社,2006
    [15]Cross L E. Polarization controlled ferroelectric high strain actuators. Journal of Intelligent Material Systems and Structures.1991,2(3):241-260P
    [16]Damjanovic D, Newnham R E. Electrostrictive and piezoelectric materials for actuator applications. Journal of Intelligent Material Systems and Structures.1992,3(2):190-208P
    [17]江冰,李兴丹,吴代华Smart结构及其应用.力学进展.1994,24(3):353-361页
    [18]靳洪允.压电材料的结构及其性能研究.陶瓷科学与艺术.2005,29(3):26-32页
    [19]谷南驹,吕玉申,马志红,彭会芬.智能材料的发展.金属热处理.1998,7:15-17页
    [20]肖纪美.智能材料的来龙去脉.世界科技研究与发展.1996,18(3):120-125页
    [21]Cady W B. Piezoelectricity. New York:Dover Publications,1964
    [22]Mason W P. Piezoelectricity, its history and applications. Journal of the Acoustical Society of America.1981,70(6):1561-1566P
    [23]田中哲郎等编.压电陶瓷材料.北京:科学出版社,1982
    [24]张福学,孙慷.压电学(下册).北京:国防工业出版社,1987
    [25]郭秀盈,肖谧,杜文娟.复合钙钛矿型介质陶瓷材料的研究进展.电子元件与材料.2006,25(1):1-4页
    [26]Haertling G H, Land C E. Recent improvements in the optical and electrooptic properties of PLZT ceramics. Ferroelectrics.1972,3:269-280P
    [21]Newnham R E, Xu Q C, Kumar S, Cross L E. Smart ceramics. Ferroelectrics.1990,102:259-266P
    [28]师昌绪.高技术新材料的现状与展望.机械工程材料.1994,18(1):3-6页
    [29]姚康德,许美萱.智能材料——21世纪的新材料.天津:天津大学出版社,1996
    [30]国家高技术新材料领域专家委员会.新材料研究发展预测及对策.材料导报.1999,13(1):1-5页
    [31]Wada B K. Adaptive structures:An overview. Journal of Spacecraft and Rockets.1990,27(3):330-337P
    [32]Wada B K, Fanson J I, Crawley E F. Adaptive structures. Mechanical Engineering.1990,112(11):41-46P
    [33]尹林,沈亚鹏.压电类智能结构的力学行为和工程应用.力学进展.1998,28(2):163-172页
    [34]Forward R L. Electronic damping of vibrations in optical structures. Applied Optics.1979,18(5):690-697P
    [35]Bailey T, Hubbard J E Jr. Distributed piezoelectric-polymer active vibration control of a cantilever beam. Journal of Guidance, Control and Dynamics. 1985,8(5):605-611P
    [36]Crawley E F, de Luis J. Use of piezoelectric actuators as elements of intelligent structures. AIAA Journal.1987,25(10):1373-1385P
    [37]刘安成,吴大方,高镇同,黄海.卫星太阳能帆板振动抑制研究.实验力学.2002,17(4):477-482页
    [38]Narayanan S, Somasundaram L. Active vibration control of beams and plates with piezoelectric materials. Proceedings of SPIE-The International Society for Optical Engineering.1996,3321:185-201P
    [39]Kawai H. The piezoelectricity of poly (vinylidene fluoride). Japanese Journal of Applied Physics.1969,8(7):975-976P
    [40]Mochida Y, Tamura M, Ohwada K. A micromachined vibrating rate gyroscope with independent beams for the drive and detection modes. Sensors and Actuators A (Physical).2000, A80(2):170-178P
    [41]Preumont A, Dufour J P, Malekian C. Active damping by a local force feedback with piezoelectric actuators. Journal of Guidance, Control and Dynamics.1992,15(2):390-395P
    [42]Won C C, Sulla J L, Sparks D W Jr, Belvin W K. Application of piezoelectric devices to vibration suppression. Journal of Guidance, Control and Dynamics.1994,17(6):1333-1338P
    [43]苏平.影响军事变革的关键科技:材料技术.http://item.chinamil. com.cn/ item/newar/zsjz/06.htm
    [44]Fuller C R, Jones J D. Experiments on reduction of propeller induced interior noise by active control of cylinder vibration. Journal of Sound and Vibration.1987,112(2):389-395P
    [45]Jones J D, Fuller C R. Active control of sound fields in elastic cylinders by multicontrol forces. AIAA Journal.1989,27(7):845-852P
    [46]Jones J D, Fuller C R. Active control of structurally-coupled sound fields in elastic cylinders by vibrational force inputs. International Journal of Analytical and Experimental Modal Analysis.1990,5(3):123-140P
    [47]Clark R L, Fuller C R. Control of sound radiation with adaptive structures. Journal of Intelligent Material Systems and Structures.1991,2(3):431-452P
    [48]Dimitriadis E K, Fuller C R. Active control of sound transmission through elastic plates using piezoelectric actuators. AIAA Journal.1991,29(11): 1771-1772P
    [49]Banks H T, Silcox R J, Smith R C. Modeling and control of acoustic structure interaction problems via piezoceramic actuators:2-D numerical examples. Journal of Vibration and Acoustics, Transactions of the ASME. 1994,116(3):386-396P
    [50]Sun J Q, Norris M A, Rossetti D J, Highfill J H. Distributed piezoelectric actuators for shell interior noise control. Journal of Vibration and Acoustics, Transactions of the ASME.1996,118(4):676-681P
    [51]Garcia E. Smart structures and actuators:Past, present, and future. Proceedings of SPIE-The International Society for Optical Engineering. 2002,4698:1-12P
    [52]刘明治,那柏.网状天线的反射面形状精度调整.宇航学报.2001,22(6):72-77页
    [53]Miura K, Furuya H, Suzuki K. Variable Geometry Truss and its Application to Deployable Truss and Space Crane Arm. Acta Astronaoutica.1985,12(4): 599-607P
    [54]Miura K, Furuya H. Adaptive structure concept for future space applications. AIAA Journal.1988,26(8):995-1002P
    [55]Hughes P C, Sincarsin W G, Carroll K A. Trussarm-a variable-geometry-truss manipulator. Journal of Intelligent Material Systems and Structures. 1991,2(2):148-160P
    [56]刘天雄,林益明,陈烈民.智能结构及其在空间飞行器中的应用.强度与环境.2004,31(2):20-27页
    [57]马洪波,陈建军,张建国,江涛.随机参数天线结构的概率优化设计.应用力学学报.2005,22(3):491-494页
    [58]Kiely E, Washington G, Bernhard J. Design and development of smart microstrip patch antennas. Smart Materials and Structures.1998,7(6): 792-800P
    [59]Yoon H S, Washington G, Theunissen W H. Analysis and design of doubly curved piezoelectric strip-actuated aperture antennas. IEEE Transactions on Antennas and Propagation.2000,48(5):755-763P
    [60]Learning from Nature. http://www.hearlihy.com/about/newsletter/item.aspx? ap=1&art=340&bhcp=1
    [61]Mani R, Lagoudas D C, Rediniotis O K. Active skin for turbulent drag reduction. Smart Materials and Structures.2008,17(3):1-18P
    [62]Barras C. Shape-shifting skin to reduce drag on planes and subs. http:// technology.newscientist.com/channel/tech/dn13693-shapeshifting-skin-to-re duce-drag-on-planes-and-subs.html
    [63]Liang C, Sun F P, Rogers C A. Impedance method for dynamic analysis of active material systems. Collection of Technical Papers-AIAA/ASME Structures, Structural Dynamics and Materials Conference.1993,6: 3587-3599P
    [64]Chaudhry Z, Sun F P, Rogers C A. Health monitoring of space structures using impedance measurements. Proceedings of 5th International Conference on Adaptive Structures.1994:312-318P
    [65]Winston H A, Sun F, Annigeri B S. Structural health monitoring with piezoelectric active sensors. Journal of Engineering for Gas Turbines and Power.2001,123(2):353-358P
    [66]Ghoshal A, Harrison J, Sundaresan M J, Hughes D, Schulz M J. Damage detection testing on a helicopter flexbeam. Journal of Intelligent Material Systems and Structures.2001,12(5):315-330P
    [67]Sun F P, Chaudhry Z, Liang C, Rogers C A. Truss structure integrity identification using PZT sensor-actuator. Journal of Intelligent Material Systems and Structures.1995,6(1):134-139P
    [68]Soh C K, Tseng K K H, Bhalla S, Gupta A. Performance of smart piezoceramic patches in health monitoring of a RC bridge. Smart Materials and Structures.2000,9(4):533-542P
    [69]Tseng K K. Health monitoring of concrete structures subjected to environmental attacks. Proceedings of the SPIE-The International Society for Optical Engineering.2002,4696:168-175P
    [70]Tseng K K, Wang L S. Smart piezoelectric transducers for in situ health monitoring of concrete. Smart Materials and Structures.2004,13(5): 1017-1024P
    [71]Dimitriadis E K, Fuller C R, Roger C A. Piezoelectric actuators for distributed noise and vibration excitation of thin plates. American Society of Mechanical Engineers, Design Engineering Division (Publication) DE.1989, 16:223-233P
    [72]Tzou H S. New distributed sensor and actuator theory for "intelligent" shells. Journal of Sound and Vibration.1992,153(2):335-349P
    [73]Ray M C, Bhattacharya R, Samanta B. Exact solutions for static analysis of intelligent structures. AIAA Journal.1993,31(9):1684-1691P
    [74]Tzou H S, Tseng C I. Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems:a piezoelectric finite element approach. Journal of Sound and Vibration.1990, 138(1):17-34P
    [75]聂润兔,邵成勋,邹振祝.智能桁架机电耦合动力分析与振动控制.振动工程学报.1997,10(2):119-124页
    [76]Lerch R. Simulation of piezoelectric devices by two-and three-dimensional finite elements. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.1990,37(3):233-247P
    [77]Gibbs G P, Fuller C R. Excitation of thin beams using asymmetric piezoelectric actuators. Journal of the Acoustical Society of America.1992, 92(6):3221-3227P
    [78]Ha S K, Keilers C, Chang F K. Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators. AIAA Journal.1992,30(3):772-780P
    [79]Chandra R, Chopra I. Structural modeling of composite beams with induced-strain actuators. AIAA Journal.1993,31(9):1692-1701P
    [80]Hwang W S, Park H C. Finite element modeling of piezoelectric sensors and actuators. AIAA Journal.1993,31(5):930-937P
    [81]Rao S S, Sunar M. Analysis of distributed thermopiezoelectric sensors and actuators in advanced intelligent structures. AIAA Journal.1993,31(7): 1280-1286P
    [82]Lee S W R. On the sensing and actuation of clamped elliptic piezoelectric laminates. American Society of Mechanical Engineers, Aerospace Division (Publication) AD.1994,45:275-279P
    [83]尹林,王晓明,沈亚鹏.结构变形最优控制的数值分析.力学学报.1995,27(6):711-718页
    [84]余音,夏人伟.含压电致动器和传感器的复合材料层板静变形有限元分析和形状控制研究.复合材料学报,1997,14(2):114-119页
    [85]Chen S H, Yao G F, Huang C. New intelligent thin-shell element. Smart Materials and Structures.2000,9(1):10-18P
    [86]赵国忠,顾元宪.压电薄板屈曲有限元分析及DKQ单元.力学学报.2001,33(4):568-576页
    [87]Anderson E, Moore D, Fanson J, Ealey M. Development of an active member using piezoelectric and electrostrictive actuation for control of precision structures. Collection of Technical Papers-AIAA/ASME Structures, Structural Dynamics and Materials Conference.1990: 2221-2233P
    [88]Umland J W, Webster M, Johnson B. Active member design, modeling, and verification. American Society of Mechanical Engineers, Aerospace Division (Publication) AD.1993,35:217-227P
    [89]李俊宝,吕刚.智能桁架结构振动控制中压电主动构件的研究:(一)压电主动构件设计.压电与声光.1998,20(2):89-94页
    [90]阎绍泽,吴德隆,叶青,郑凯,温诗铸.用于自适应可展结构的压电式智能主动杆.清华大学学报:自然科学版.2002,42(6):762-765页
    [91]Rao S S, Pan T S, Venkayya V B. Optimal placement of actuators in actively controlled structures using genetic algorithms. AIAA Journal.1991,29(6): 942-943P
    [92]Chen G S, Bruno R J, Salama M. Optimal placement of active/passive members in truss structures using simulated annealing. AIAA Journal.1991, 29(8):1327-1334P
    [93]Lammering R, Jia J H, Rogers C A. Optimal placement of piezoelectric actuators in adaptive truss structures. Journal of Sound and Vibration.1994, 171(1):67-85P
    [94]高伟,陈建军,崔明涛,江涛.平稳随机激励下随机智能桁架结构振动主动控制中的优化.计算力学学报.2004,21(5):630-635页
    [95]Chung H T, Kim H G. Characteristics of domain in tetragonal phase PZT ceramics. Ferroelectrics.1987,76(3-4):327-333P
    [96]Chung H T, Shin B C, Kim H G. Grain-size dependence of electrically induced microcracking in ferroelectric ceramics. Journal of the American Ceramic Society.1989,72(2):327-329P
    [97]杨卫.力电失效学.北京:清华大学出版社,2001
    [98]Parton V Z. Fracture mechanics of piezoelectric materials. Acta Astronautica. 1976,3(9-10):671-683P
    [99]Pak Y E. Crack extension force in a piezoelectric material. Journal of Applied Mechanics, Transactions ASME.1990,57(3):647-653P
    [100]Pak Y E. Force on a piezoelectric screw dislocation. Transactions of the ASME, Journal of Applied Mechanics.1990,57(4):863-869P
    [101]Sosa H. On the fracture mechanics of piezoelectric solids. International Journal of Solids and Structures.1992,29(21):2613-2622P
    [102]Suo Z, Kuo C M, Barnett D M, Willis J R. Fracture mechanics for piezoelectric ceramics. Journal of the Mechanics and Physics of Solids. 1992,40(4):739-765P
    [103]Wang B. Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material. International Journal of Solids and Structures.1992, 29(3):293-308P
    [104]Wang B. Three-dimensional analysis of a flat elliptical crack in a piezoelectric material. International Journal of Engineering Science.1992, 30(6):781-791P
    [105]王旭,王子昆.压电材料反平面应变状态的椭圆夹杂及界面裂纹问题.上海力学,1993,14(4):26-34页
    [106]Dunn M L. Electroelastic Green's functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems. International Journal of Engineering Science. 1994,32(1):119-131P
    [107]Park S B, Sun C T. Effect of electric field on fracture of piezoelectric ceramics. International Journal of Fracture.1995,70(3):203-216P
    [108]刘金喜,王彪,杜善义.二维各向异性压电介质机电耦合场的基本解.应用力学和数学.1997,18(10):885-891页
    [109]Yu S W, Qin Q H. Damage analysis of thermopiezoelectric properties:Part I-crack tip singularities. Theoretical and Applied Fracture Mechanics.1996, 25(3):263-277P
    [110]Yu S W, Qin Q H. Damage analysis of thermopiezoelectric properties:Part Ⅱ. Effective crack model. Theoretical and Applied Fracture Mechanics. 1996,25(3):279-288P
    [111]Sih G C, Song Z F. Damage analysis of tetragonal perovskite structure ceramics implicated by asymptotic field solutions and boundary conditions. Theoretical and Applied Fracture Mechanics.2002,38(1):15-36P
    [112]Kogan L, Hui C Y, Molkov V. Stress and induction field of a spheroidal inclusion or a penny-shaped crack in a transversely isotropic piezoelectric material. International Journal of Solids and Structures.1996,33(19): 2719-2737P
    [113]杨新华,董靓,王乘,陈传尧,胡元太.四点弯曲压电梁导电裂纹尖端附近的横观各向同性损伤.应用数学和力学.2005,26(4):394-402页
    [114]Wang B S, An W G, Yang D H. The reliability analysis for piezoelectric truss structure in consideration of electroelastic damage. Key Engineering Materials.2006,324-325 Ⅱ:687-690P
    [115]Dawber M, Rabe K M, Scott J F. Physics of thin-film ferroelectric oxides. Reviews of Modern Physics.2005,77(4):1083-1130P
    [116]Li C Z, Zhang H Y, Chang Y C, Zhang W P, Liu Y H. Dielectric breakdown of PZT ferroelectric ceramics. Proceedings of Second International Conference on Properties and Applications of Dielectric Materials.1988: 198-201P
    [117]Duiker H M, Beale P D, Scott J F, Dearaujo C A P, Melnick B M, Cuchiaro J D, McMillan L D. Fatigue And Switching In Ferroelectric Memories-Theory And Experiment. Journal of Applied Physics.1990,68: 5783-5791P
    [118]Suo Z. Models for breakdown-resistant dielectric and ferroelectric ceramics. Journal of the Mechanics and Physics of Solids.1993,41(7):1155-1176P
    [119]温殿英,林其文.冲击加载下PZT95/5铁电陶瓷的电击穿研究.爆轰波与冲击波.1997,1:23-31页
    [120]Scott J F. High-dielectric constant thin films for dynamic random access memories(DRAM). Annual Review of Materials Science.1998,28:79-100P
    [121]Lou X J, Hu X B, Zhang M, Redfern S A T, Scott J F. Mechanisms of nano-shorts in the electrical breakdown of ferroelectric thin films. Integrated Ferroelectrics.2005,73:93-98P
    [122]Yoo I K, Desu S B. Breakdown in lead zirconate titanate (PZT) thin film capacitors. IEEE International Symposium on Applications of Ferroelectrics. 1994:531-534P
    [123]Din M B H, Gould R D. Dielectric breakdown and electroforming phenomenon in the cadmium arsenide thin films devices. IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE.1998: 179-183P
    [124]白花珍,张之圣,胡明.强介陶瓷耐压的研究.宇航材料工艺.1999,29(4):54-57页
    [125]贺元吉,张亚洲,李传胪.PZT95/5铁电陶瓷击穿的统计分析.高电压技术.2001,27(2):24-25页
    [126]Wang B S, An W G. Reliability analysis of electric breakdown for piezoelectric ceramic. Proceedings of the SPIE-The International Society for Optical Engineering.2007,6423:642343-1-8
    [127]Freudenthal A M. The safety of structures. Transaction of ASCE.1947,112: 125-159P
    [128]Cornell C A. Structural safety specification based on second-moment reliability analysis. International Association for Bridges and Structural Engineering. Zurich,1969:235-246P
    [129]Lind N C. Consistent partial safety factors. ASCE Journal of the Structural Division.1971,97(ST6):1651-1670P
    [130]Hasofer A M, Lind N C. Exact and invariant second-moment code format. ASCE Journal of the Engineering Mechanics Division.1974,100(EMl): 111-121P
    [131]Rackwitz R, Fiessler B. Structural reliability under combined random load sequences. Computers and Structures.1978,9(5):489-494P
    [132]Ang A H-S, Tang W H. Probability concepts in engineering planning and design:Vol Ⅰ-Basic Principles. New York:John Wiley & Sons Inc,1975
    [133]Ditlevsen O. Narrow reliability bounds for structural systems. Journal of Structural Mechanics.1979,7(4):453-472P
    [134]Thoft-christensen P, Sorensen J D. Reliability of structural systems with correlated elements. Applied Mathematical Modeling.1982,6(3):171-178P
    [135]Thoft-christensen P, Murotsu Y. Application of structural systems reliability theory. New York:Springer-Verlag Inc,1986
    [136]Feng Y S. Method for computing structural system reliability with high accuracy. Computers and Structures.1989,33(1):1-5P
    [137]冯元生,董聪.枚举结构主要失效模式的一种方法.航空学报.1991,12(9):A537-A541页
    [138]安伟光,蔡荫林.余度结构故障概率计算的一种方法.兵工学报.1992,2:92-96页
    [139]蔡荫林,周健生.结构系统失效概率的近似公式.航空学报.1992,13(3):A219-A222页
    [140]Song B F. Numerical integration method in affine space and a method with high accuracy for computing structural system reliability. Computers and Structures.1992,42(2):255-262P
    [141]Winzer S R, Shankar N, Ritter A P. Designing cofired multilayer electrostrictive actuators for reliability. Journal of the American Ceramic Society.1989,72(12):2246-2257P
    [142]Uchino K. Recent topics in ceramic actuators-to improve reliability and durability. Proceedings of the 7th IEEE International Symposium on Applications of Ferroelectrics.1991:153-158P
    [143]Uchino K. Reliability of ceramic actuators. Proceedings of the 10th IEEE International Symposium on Applications of Ferroelectrics.1996,2: 763-766P
    [144]Polcawich P G, Moses P J, Trolier-McKinstry S. AC and DC electrical stress reliability of piezoelectric lead zirconate titanate (PZT) thin films. Proceedings of the SPIE-The International Society for Optical Engineering. 1999,3906:227-232P
    [145]Polcawich R G, Trolier-McKinstry S. Piezoelectric and dielectric reliability of lead zirconate titanate thin films. Journal of Materials Research.2000, 15(11):2505-2513P
    [146]Koh J H, Jeong S J, Ha M S, Song J S. Lifetime and reliability in Pb(Mg,Nb)O3-Pb(Zr,Ti)O3 multilayer ceramic actuators. Japanese Journal of Applied Physics, Part 1:Regular Papers and Short Notes and Review Papers.2004,43(9):6212-6216P
    [147]Koh J H, Kim T G. Reliability of Pb(Mg,Nb)O3-Pb(Zr,Ti)O3 multilayer ceramic piezoelectric actuators by Weibull method. Microelectronics Reliability.2006,46(1):183-188P
    [148]Pertsch P, Richter S, Kopsch D, Kramer N, Pogodzik J, Hennig E. Reliability of piezoelectric multilayer actuators. Contribution to the ACTUATOR 2006 conference.2006:1-3P
    [149]Hooker S A. Characterizing reliability of multilayer PZT actuators. Proceedings of the SPIE-The International Society for Optical Engineering. 2006,6170:61700F-1-6
    [150]王滨生,安伟光,张丹.PZT电击穿机理研究及可靠性分析.哈尔滨工程大学学报.2008,29(4):337-341页
    [151]苗晗.压电桁架结构的可靠性分析.哈尔滨工程大学硕士论文,2005
    [152]安伟光,苗晗,孙克淋.随机参数压电桁架结构的稳定可靠性分析.哈尔滨工程大学学报.2006,27(4):519-522页
    [153]杨多和,安伟光,王滨生,苗晗.具有多随机参数的压电桁架结构可靠性的初探.兵工学报.2006,27(2):320-324页
    [154]孙法国.压电结构的可靠性分析.哈尔滨工程大学硕士论文,2006
    [155]杨多和,安伟光,苗晗.压电桁架结构在电荷载和机械荷载联合作用下的可靠性分析.哈尔滨工程大学学报.2007,28(4):388-391页
    [156]An H, An W G, Zhang D. Stable reliability analysis of truss structure affixed piezoelectric patches on the surface. Proceedings of the SPIE-The International Society for Optical Engineering.2007,6423:64233G-1-8P
    [157]董聪.现代结构系统可靠性理论及其应用.北京:科学出版社,2001
    [158]Handa K, Anderson K. Application of finite element methods in the statistical analysis of structures. Proceedings of ICOSSAR'81, the 3rd International Conference.1981,409-417P
    [159]Hisada T, Nakagiri S. Stochastic finite element method developed for structural safety and reliability. Proceedings of ICOSSAR'81, the 3rd International Conference.1981,395-408P
    [160]Hisada T, Nakagiri S. Role of the stochastic finite element method in structural safety and reliability. Proceedings of ICOSSAR'85, the 4th International Conference.1985,385-394P
    [161]Vanmarcke E, Grigoriu M. Stochastic finite element analysis of simple beams. Journal of Engineering Mechanics.1983,109(5):1203-1214P
    [162]Der Kiureghian A, Ke J B. Stochastic finite element method in structural reliability. Probabilistic Engineering Mechanics.1988,3(2):83-91P
    [163]安伟光,蔡荫林,陈卫东.随机结构系统可靠性分析与优化设计.哈尔滨:哈尔滨工程大学出版社,2005
    [164]Dendrou B A, Houstis E N. An inference-finite element model for field problems. Applied Mathematical Modeling.1978,2(2):109-114P
    [165]安伟光.结构系统可靠性和基于可靠性的优化设计.北京:国防工业出版社,1997
    [166]Melchers R E, Tang L K. Dominant Failure Models in Stochastic Systems. Structural Safety.1984,2(2):127-143P
    [167]ANSI/IEEE Std 176-1978. Standard on Piezoelectricity
    [168]张福学,孙慷.压电学(上册).北京:国防工业出版社,1987
    [169]Duran P, Fdez L J F, Capel F, Moure C. Large electromechanical anisotropic modified lead titanate ceramics. Journal of Materials Science.1988,23(12): 4463-4469P
    [170]钟维烈.铁电体物理学.北京:科学出版社,1996
    [171]王保林.压电材料及其结构的断裂力学.北京:国防工业出版社,2003
    [172]Nye J E. Physical properties of Crystals. New York:Oxford University Press Inc,1985
    [173]Berlincourt D A, Curran D R, Jaffe H. Piezoelectric and piezomagnetic materials and their function as transducers. Physical Acoustics(Mason W P Ed.). New York:Academic Press.1964,1A:169-270P
    [174]Urvish J, Yury K, Craig S. Smart Materials for Diesel Fuel Injector. FY 2003 Progress Report,2003. http://www.eere.energy.gov/vehiclesandfuels/ pdfs/hv_propulsion/2_materials_for_fuel_systems.pdf
    [175]陈季丹,刘子玉.电介质物理学.北京:机械工业出版社,1986
    [176]方俊鑫,殷之文.电介质物理学.北京:科技出版社,1989
    [177]科埃略R,阿拉德尼兹B.电介质材料及其介电性能.北京:科学出版社,2000
    [178]雷清泉.工程电介质的最新进展.北京:科学出版社,1999
    [179]Gerson R, Marshall T C. Dielectric Breakdown of Porous Ceramic. Journal of Applied Physics.1959,30(11):1650-1654P
    [180]黄振平,萨迪伊,王春霞,马军建.关于适线法中经验频率计算公式的对比研究.水利水电科技进展.2002,22(5):5-7页
    [181]Forlani F, Minnaja N. Electrical breakdown in thin dielectric films. Journal of Vacuum Science and Technology.1969,6(4):518-526P
    [182]Piezo Ceramic Actuators and Custom Subassemblies. http://www. physikinstrumente.com/en/solutions/index_E_PDF_catalog.php
    [183]Piezomechanics:An introduction. http://www.piezomechanik.com/en/home/ products/index.html
    [184]Basic Designs of Piezoelectric Positioning Drives/Systems. http://www. physikinstrumente.com/en/products/piezo_tutorial.php
    [185]Li J F, Wang S N, Wakabayashi K, Esashi M, Watanabe R. Properties of modified lead zirconate titanate ceramics prepared at low temperature (800 ℃) by hot isostatic pressing. Journal of the American Ceramic Society. 2000,83(4):955-957P
    [186]Amin Z, Dalgarno K W, Comyn T P, Tavernor A W. Metal-electroceramic bonding in PZT through the selective application of laser energy. Journal of Materials Science.2006,41(10):2831-2838P
    [187]Narayanan M, Schwartz R W, Zhou D Y. Stress-biased cymbals using shape memory alloys. Journal of the American Ceramic Society.2007,90(4): 1122-1129P
    [188]Sirohi J, Chopra I. Fundamental behavior of piezoceramic sheet actuators. Journal of Intelligent Material Systems and Structures.2000,11(1):47-61P
    [189]Allik H, Hughes T J R. Finite element method for piezoelectric vibration. International Journal for Numerical Methods in Engineering.1970,2(2): 151-157P
    [190]Allik H, Webman K M, Hunt J T. Vibrational response of sonar transducers using piezoelectric finite elements. Journal of the Acoustical Society of America.1974,5(6):1782-1791P
    [191]Robbins D H, Reddy J N. Analysis of piezoelectrically actuated beams using a layer-wise displacement theory. Computers and Structures.1991,41(2): 265-279P
    [192]Hwang W S, Park H C. Finite element modeling of piezoelectric sensors and actuators. AIAA Journal.1993,31(5):930-937P
    [193]Baz A, Ro J. Performance characteristics of active constrained layer damping. Proceedings of the SPIE-The International Society for Optical Engineering.1994,2193:98-114P
    [194]Sung K H, Charles K, Chang F K. Finite element analysis of composite structures containing distributed piezoceramic sensors and actuator. AIAA Journal.1992,30:772-780P
    [195]李俊宝,葛建明,杨庆佛.智能桁架结构机电耦合有限元分析与实验研究.太原理工大学学报.1998,29(6):577-584页
    [196]Ikeda T. Fundamentals of Piezoelectricity. New York:Oxford University Press Inc,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700