用户名: 密码: 验证码:
高低温环境下光纤传感的传感特性及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤的出现以及光纤通信技术的不断进步,光纤传感器技术也日趋成熟并逐渐实现了技术的普及以及产业化的形成。光纤传感器技术是将光纤作为传感介质,光作为载体从而完成对被测量物的力、变形、位移、温度等不同参数的测量传感。作为光学传感器,光纤传感器技术在原理、方法、信号处理等方面不同于传统的电学传感器,其以独特的优势,包括抗电磁干扰、本质安全、体积小、质量轻及易于嵌入材料内部等,在传感领域得到了极大地关注与深入地研究。光纤传感器技术符合现代传感器技术的需求,其在航空发动机、冶金、核聚变反应堆、大型低温超导磁体等领域都具有极大的研究价值与应用前景,因此得到不断地推动并且迅速发展。但是,高温及低温的恶劣环境会对光纤传感器性能带来极大的影响,限制了其进一步的应用与发展。因此,研究高低温环境中应用的光纤传感技术,解决其在高低温恶劣环境应用中存在的相关理论与技术问题具有十分重要的意义。
     本文针对光纤光栅在高温环境中的衰退现象,结合光纤光栅的微观机制理论研究分析普通载氢光纤光栅以及金属锡掺杂光纤刻写的光纤光栅的高温衰退特性与规律,同时研究光纤光栅在液氮环境中的啁啾现象并分析其产生的原因。通过研究揭示了光纤光栅的高低温特性,为光纤光栅在高温及低温等恶劣环境中的应用提供理论及实验依据。
     为了将光纤光栅温度传感器应用于高温作业的行业领域中,针对光纤光栅在高温环境中产生衰退的特性,研究了耐高温光纤光栅温度传感器制作的技术与工艺并制作了可以在700℃以上高温环境中使用的耐高温光纤光栅温度传感器。针对光纤光栅温度与应变交叉敏感的问题,研究了消除交叉敏感又具有耐高温性能的温度传感器的封装技术与工艺。从低温-196℃到高温700℃的范围内系统全面地研究分析了金属锡掺杂光纤刻写的光纤光栅以及再生光纤光栅的温度传感特性,这对于光纤光栅传感应用具有重要的理论和实际意义。
     通过液氮环境中的拉伸实验研究了光纤光栅在低温环境下的应变传感特性,证明了其低温应变测量的可行性。利用光纤光栅体积小、易于嵌入到材料内部等优势将其应用到脉冲强磁场中,测量液氮环境中脉冲强磁体线圈励磁过程中应变的变化,这一测量方法对于脉冲强磁体领域的研究具有重要价值。
     为了解决光纤光栅高温条件下机械强度降低无法实现应变测量以及光纤传感器应变与温度交叉敏感等问题,开展了复合非本征型光纤法布里珀罗—光纤光栅温度应变同时测量传感技术的研究。分析了非本征型光纤法布里珀罗—光纤光栅复合传感信号的互扰问题。采用超高真空磁控溅射镀膜及激光焊接等先进技术实现了传感器的无胶化封装,克服了胶粘剂老化等问题对于传感器使用寿命的限制,同时这种封装方式具备耐高温的特性。通过实验证明了全金属化封装的非本征型光纤法布里珀罗—光纤光栅复合传感器可以在高温及低温环境中实现温度与应变的同时测量并且具有较好的传感性能。
With the advent of fiber and the development of fiber optic communication, fiber optic sensor has been becoming mature in recent years. And the technology popularization and formation of industry has also gradually become a reality. Optical fiber and light are used as the sensor medium and carrier to detect the force, deformation, displacement, temperature and different parameters of the object to be tested in the optical fiber sensing technology. As the optical sensor, optical fiber sensor technology possesses the unique advantages which are different from those of traditional sensors, including small size, light weight, good long-term stability, long distance transmission, immunity to electromagnetic interference and so on. According with the demand of modern sensor technology, fiber optic sensors which have the potential to be widely applied in the aircraft engine, metallurgy, fusion reactors and large superconducting magnet get continuous promotion and rapid development. High or low temperature hampers the application and popularization of the fiber optic sensing, therefore the theory and technology research on high and low temperature resistance fiber optic sensing are necessary and important.
     The characteristics of fiber Bragg grating in the high temperature and low temperature environment are studied. Experiments are operated to analyze microscopic theory of the fiber Bragg grating decay and to test the high temperature performance as well as temperature stability of the fiber Bragg grating. The chirp phenomenon of fiber Bragg grating in liquid nitrogen is also tested.
     High temperature resistance fiber Bragg grating which can be used at the temperature as high as700℃is fabricated to solve the problem of fiber Bragg grating decay at the high temperature. The encapsulation technology of the fiber Bragg grating temperature sensor is proposed and the temperature sensing characteristic of fiber Bragg grating is tested.
     Strain sensing technology of fiber Bragg grating at the low temperature is discussed. Fiber Bragg grating is embedded inside the pulsed magnet coil to accomplish strain measurement of the pulsed magnet coil in liquid nitrogen.
     Fiber optic sensors are sensitive to both strain and temperature. Fiber Bragg grating is too fragile to be used as the strain sensor at the high temperature. In order to solve these problems, the multiplexed fiber optic technology is studied, including simultaneous strain and temperature measurement, basic theory of multiplexed fiber optic sensor, high temperature resistance encapsulation technology of the multiplexed sensor and the strain characteristic of the sensor at the high and low temperature. Experiments show that the multiplexed fiber optic sensors have favorable sensing property.
引文
[1]尚柏林,宋笔锋,万方义.光纤传感器在飞行器结构健康监测中的应用[J].光纤与电缆及其应用技术,2008,3(3):7-10.
    [2]郭明金.恶劣飞行环境中光纤光栅传感方法和技术研究[D].武汉:武汉理工大学,2007.
    [3]顾钧元,徐廷学,余仁波,等.基于FBG传感器的飞行器结构健康监测系统研究[J].质量与可靠性,2011,4(154):25-28.
    [4]常飞,韩庆,尚柏林.光纤技术在军用飞机结构健康监控中的研究[J].通信技术,2008,8(10):2641-2657.
    [5]K. O. Hill, Y. Fujii, D. C. Johnson, et al. Photo-sensitivity in optical fiber waveguildes: Application toreflection filter fabrication[J]. App. Phys. Lett.,1978(32):647-649.
    [6]Stephen J. Mihailov, Christopher W. Smelser, Dan Grobnic, et al. Bragg Gratings Written in All-SiO2 and Ge-Doped Core Fibers With 800-nm Femtosecond Radiation and a Phase Mask[J]. Journal of lightwave technology,2004,22(1):94-100.
    [7]R. P. Espindola, R. M. Atkins, N. P. Wang, et al. Highly Reflective Fiber Bragg Gratings Written Through a Vinyl Ether Fiber Coating[J]. IEEE Photonics Technology Letters,1999, 11(7):833-835.
    [8]Christopher W. Smelser, Dan Grobnic, Stephen. J. Mihailov. High-Reflectivity Thermally Stable Ultrafast Induced Fiber Bragg Gratings in H-Loaded SMF-28 Fiber[J]. IEEE Photonics Technology Letters,2009,21(11):682-684.
    [9]S. J. Mihailov, D. Grobnic, C. W. Smelser. Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask[J]. Electronics Letters,2007,43(8):442-443.
    [10]Dan Grobnic, Stephen J. Mihailov, Christopher W. Smelser, et al. Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers[J]. IEEE Photonics Technology Letters,2008,20(12):973-975.
    [11]K. Imamura, T. Nakai, K. Moriura, et al. Mechanical strength characteristics of tin-codoped germanosilicate fibre Bragg gratings by writing through UV-transparent coating[J]. Electronics Letters,1998,34(10):1016-1017.
    [12]D. S. Starodubov, V. Grubsky, J. Feinberg. Efficient Bragg grating fabrication in a fibre through its polymer jacket using near-UV light[J], Electronics Letters,1997,33(15): 1331-1333.
    [13]A. Martinez, I. Y. Khrushchev, I. Bennion. Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser[J], Electronics Letters,2005, 41(4):176-178.
    [14]C. G Askins, M. A. Putnam, H. J. Patrick, et al. Friebele. Fibre strength unaffected by on-line writing of single-pulse Bragg gratings[J]. Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,1997,33(15):1333-1334.
    [15]K. Imamura, T. Nakai, Y. Sudo, et al. High reliability tin-codoped germanosilicate fibre Bragg gratings fabricated by direct writing method[J]. Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,1998,34(18):1772-1773.
    [16]A. Martinez, M. Dubov, I. Khrushchev, et al. Direct writing of fibre Bragg gratings by femtosecond laser[J]. Electronics Letters,2004,40(19):1170-1172.
    [17]Amos Martinez, Student, Michael Dubov, et al. Photoinduced Modifications in Fiber Gratings Inscribed Directly by Infrared Femtosecond Irradiation[J]. IEEE Photonics Technology Letters,2006,18(21):2266-2268.
    [18]Stephen J. Mihailov, Christopher W. Smelser, Dan Grobnic, et al. Bragg Gratings Written in All-SiO2 and Ge-Doped Core Fibers With 800-nm Femtosecond Radiation pad a Phase Mask[J]. Journal of Lightwave Technology,2004,22(1):94-100.
    [19]Christopher W. Smelser, Stephen J. Mihailov, Dan Grobnic. Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask[J]. Optics Express,2005,13(14): 5377-5386.
    [20]Jacob Rathje, Martin Kristensen, Jens Engholm Pedersen. Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings[J]. Journal of Applied Physics,2000,88(2):1050-1055.
    [21]T. Erdogan, V. Mizrahi, P. J. Lemaire, et al. Decay of ultraviolet-induced fiber Bragg gratings[J]. Journal of Applied Physics,1994,76(1):73-80.
    [22]孙英志,余重秀,林金桐.基于色心模型掺杂硼锗光纤材料紫外光诱导光敏特性的实验分析[J].通信学报,2000,21(7):45-49.
    [23]王宏亮,张晶,乔学光,等.一种耐高温光纤Bragg光栅温度传感器[J].传感技术学报,2008,21(6):964-966.
    [24]王文华,宋世德,王晓旭,等.光纤布拉格光栅的高温特性研究[J].光电子·激光,2005,16(7):806-808.
    [25]李彬,傅永军,魏淮,等.高温封装实现光纤光栅的长期稳定[J].光电子·激光,2006,17(7):798-802.
    [26]Pang Dandan, Sui Qingmei, Jiang Mingshun. A new high temperature resistant FBG sensing system[J]. Journal of Optoelectronics Laser,2011,22(10):1459-1462.
    [27]Pang Dandan, Sui Qingmei, Jiang Mingshun. New fiber Bragg grating high temperature sensing network based on diffraction demodulation[J]. Chinese Journal of Lasers,2011, 38(11):11050051-6.
    [28]Shuqiang Zhang, Feng Tu, Weijun Tong, et al. Research on the FBG's high-temperature sustainability influenced by the doping process[J]. Biomedical Optics and Imaging,2011, 7894(789403):1-3.
    [29]Guoyu Li, Baiou Guan.2010 Asia Communications and Photonics Conference and Exhibition[C]. Shanghai, IEEE Computer Society,2010:226-227.
    [30]E. Lindner, C. Chojetzki, S. Bruckner, et al. Thermal regeneration of fiber Bragg gratings in photosensitive fibers[J]. Optics Express,2009,17(15):12523-12531.
    [31]E. Lindner, J. Canning, C. Chojetzki, et al. Thermal regenerated type IIa fiber Bragg gratings for ultra-high temperature operation[J]. Optics Communications,2011,284(1):183-185.
    [32]S. Bandyopadhyay, J. Canning, M. Stevenson, et al. Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm[J]. Optics Letters, 2008,33(16):1917-1919.
    [33]Yonghang Shen, Tong Sun, T. V. Kenneth, et al. Highly photosensitive Sb-Er-Ge-codoped silica fiber for writing fiber Bragg gratings with strong high-temperature sustainability [J]. Optics Letters,2003,28(21):2025-2027.
    [34]Yonghang Shen, Jinglei He, Yanqing Qiu, et al. Thermal decay characteristics of strong fiber Bragg gratings showing high-temperature sustainability[J]. Optical Society of America,2007 24(3):430-438.
    [35]Yonghang Shen, Jie Xia, Tong Sun, et al. Photosensitive Indium-Doped Germano-Silica Fiber for Strong FBGs with High Temperature Sustainability [J]. IEEE Photonics Technology Letters,2004,16(5):1319-1321.
    [36]Jiangtao Guo, Feng Tu, Huifeng Wei, et al. Optical Sensors and Biophotonics II[C]. Shanghai:IEEE Photonics Society,2011:282-283.
    [37]Michael Fokine. Formation of thermally stable chemical composition gratings in optical fibers[J]. Optical Society of America,2002,19(8):1759-1765.
    [38]Michael Fokine. Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers[J]. Optics Letters,2002,27(22):1794-1796.
    [39]Bowei Zhang, Mojtaba Kahrizi. High Temperature Resistance Fiber Bragg Grating Temperature Sensor Fabrication[J]. IEEE Sensors Journal,2007,7(4):586-591.
    [40]John Canning, Michael Stevenson, Somnath Bandyopadhyay, et al. Extreme Silica Optical Fibre Gratings[J]. Sensors,2008,8(10):6448-6452.
    [41]O. V. Butov, E. M. Dianov, K. M. Golant. Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures[J]. Measurement Science and Technology, 2006,17(5):975-979.
    [42]J. Mihailov, Christopher W. Smelser, Ping Lu, et al. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation[J]. Optics Letters,2003,28(12):995-997.
    [43]江超,王东宁.飞秒激光脉冲刻写光纤布拉格光栅的研究进展[J].激光与光电子学进展,2008,45(6):59-66.
    [44]C. W. Smelser, S.J. Mihailov, D. Grobnic. Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask[J]. Optics Letters,2004,29(18):2127-2129.
    [45]黄国君,邵进益,王秋良.液氮温度光纤Bragg光栅的应变传感特性[J].光电子·激光,2007,18(7):773-775.
    [46]T. Mizutani, N. Takeda, Hajime Takeya. On-board Strain Measurement of a Cryogenic Composite Tank Mounted on a ReusableRocket using FBG Sensors[J]. Structural Health Monitoring,2006,5(3):0205-0210.
    [47]邓凡平,邵进益,黄国君.光纤Bragg光栅在77 K环境下的温度传感性能研究[J].光电子·激光,2007,18(4):404-406.
    [48]张红洁,邓凡平,肖剑.光纤Bragg光栅液氦环境下温度传感特性的研究[J].光电子·激光,2008,19(5):581-583.
    [49]Yizheng Zhu, Anbo Wang. Miniature Fiber-Optic Pressure Sensor[J]. IEEE Photonics Technology Letters,2005,17(2):447-449.
    [50]Jiajun Wang, Bo Dong, Evan Lally, et al. Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers[J]. Optics Letters,.2010,35(5): 619-621.
    [51]Yunjiang Rao, Ming Deng, Tao Zhu, et al. In-Line Fabry-Perot Sensors based on Hollow-Core Photonic Bandgap Fibers for High Temperature Applications[J]. Journal of Lightwave Technology,2009,27(19):4360-4365.
    [52]Yizheng Zhu, Zhengyu Huang, Fabin Shen, et al. Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements[J]. Optics Letters,2005,30(7): 711-713.
    [53]张桂菊.应用于高温高压测量的非本征型光纤法布里任白罗传感器系统研究[D].大连:大连理工大学,2005.
    [54]Hae Young Choi, Kwan Seob Park, Seong Jun Park, et al. Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer [J]. Optics Letters,2008,33(21):2455-2457.
    [55]邓明.新型光纤F-P干涉传感结构及特性研究[D].重庆:重庆大学,2009.
    [56]Rao YunJiang, Zeng Xiangkai, Zhu Yong, et al. Temperature strain discrimination sensor using a WDM chirped in fiber bragg gratings and an ectrinsic Fabry perot[J]. Chin. Phys. Lett,2001,18(5):643-645.
    [57]Yunjiang Rao, Ming Deng, Dewen Duan, et al. Micro Fabry-Perot Interferometers in Silica Fibers_Machined by Femtosecond Laser[J].Optics Express,2007,15(21):14123-14128.
    [58]Zhengyu Huang, Yizheng Zhu, Xiaopei Chen, et al. Intrinsic Fabry-Perot Fiber Sensor for Temperature and Strain Measurements[J]. IEEE Photonics Technology Letters,2005,17(11): 2403-2405.
    [59]Y. J. Rao, Z. L. Ran, C. X. Zhou. Fiber-optic Fabry-Perot sensors based on a combination of spatial-frequency division multiplexing and wavelength division multiplexing formed by chirped fiber Bragg grating pairs[J].Applied Optics,2006,45(23):5815-5818.
    [60]Z. L. Ran, Y. J. Rao, H. Y. Deng, et al. Miniature in-line photonic crystal fiber etalon fabricated_by 157nm laser micromachining[J]. Optics Letters,2007,32(21):3071-3073.
    [61]Anbo Wang, Sridhar Gollapudi, Kent A. Murphy, et al. Sapphire-fiber-based intrinsic Fabry-Perot interferometer [J]. Optics Letters,1992,17(14):1021-1023.
    [62]Y. J. Rao, C. X. Zhou, T. Zhu. SFDM_CWDM of Fiber-Optic Fizeau Strain Sensors[J]. IEEE Photonics Technology Letters,2005,17(6):1259-1261.
    [63]David Gahan, Stephen Fasham, Arnold Harpin. High Temperature Optic Pressure Sensors for Engine Dynamics and Health Monitoring[J]. Applied Optics,2005,44(16):23-24.
    [64]Xingwei Wang, Juncheng Xu, Zhuang Wang, et al. Intrinsic Fabry-Perot Interferometer with a Micrometric Tip for Biomedical Applications[J]. Applied Optics,2005,44(16):55-56.
    [65]张磊.光纤EFPI-FBG复用温度与压力传感器系统研究[D].大连:大连理工大学,2009.
    [66]Bing Yu, Anbo Wang, Gary R. Pickrell. Analysis of Fiber Fabry-Perot Interferometric Sensors Using Low-Coherence Light Sources[J]. Journal of Lightwave Technology,2006, 24(4):1759-1767.
    [67]周智,边玉明,田石柱.土木工程健康监测用F-P光纤应变测量技术[J].传感器技术,2001,20(4):9-13.
    [68]王晓娜.光纤EFPI传感器系统及其在油气井中应用的研究[D].大连:大连理工大学,2007.
    [69]Yuan Gong, Yunjiang Rao, Yu Guo, et al. Temperature-Insensitive Micro Fabry-Perot Strain Sensor Fabricated by Chemically Etching Er-Doped Fiber[J]. IEEE Photonics Technology Letters,2009,21(22):1725-1727.
    [70]Yunjiang Rao, Wei Wang, Tao Zhu, et al. IEEE Sensors 2009 Conference[C]. Christchurch: Institute of Electrical and Electronics Engineers Inc.,2009:858-860.
    [71]Yunjiang Rao, Bing Xu, Zengling Ran, et al. IEEE Sensors 2009 Conference[C]. Christchurch:Institute of Electrical and Electronics Engineers Inc.,2009:861-864.
    [72]Ming Deng, Tao Zhu, Yunjiang Rao, et al.2008 1st Asia-Pacific Optical Fiber Sensors Conference [C]. Christchurch:IEEE Computer Society,2008:1-4.
    [73]Yun-Jiang Rao, Zeng-Ling Ran, Xian Liao, et al.19th International Conference on Optical Fibre Sensors[C]. Wuhan:Proc. of SPIE,2008:70043H1-4.
    [74]Yunjiang Rao, Ming Deng, Tao Zhu, et al. In-Line Fabry-Perot Etalons Based on Hollow-Core Photonic Bandgap Fibers for High-Temperature Applications[J]. Journal of Lightwave Technology,2009,27(19):4360-4365.
    [75]Tafulo PAR, Jorge PAS, J. L. Santos, et al. Fabry-Perot cavities based on chemical etching for high temperature and strain measurement[J]. Optics Communications,2012,285(6): 1159-1162.
    [76]Ming Deng, Changping Tang, Tao Zhu. PCF-Based Fabry-Perot Interferometric Sensor for Strain Measurement at High Temperatures[J]. IEEE Photonics Technology Letters,2011, 23(11):700-702.
    [77]D.W. Duan, Y. J. Rao, W. P. Wen, et al. In-line all-fibre Fabry-Perot interferometer high temperature sensor formed by large lateral offset splicing[J]. Electronics Letters,2011,47(6): 401-403.
    [78]饶云江,王义平,朱涛.光纤光栅与原理及应用[M].科学出版社,2006:2-5.
    [79]K. O. Hill, Y. Fujii, D. C. Johnson, et al. Phosensitivity in opticanl Fiber waveguides: Application to reflection fiber fabrication[J]. Applied Physics Letter,1978(32):647-649.
    [80]B. S. Kawasaki, K. O. Hill, D. C. Johnson, et al. Narrow-band Bragg Reflectors in optical fibers[J]. Optics Letters,1978,3(2):66-68.
    [81]G.. Meltz, W. W. Morey, W. H. Glenn. Formation of Bragg grating in optical fibers by transverse holographic method[J]. Optics Letters,1989(14):823-825.
    [82]M. L. Dockney, J. W. James, R. P. Tatam. Fiber Bragg grating fabricated using a wavelength tunable source and a phase-mask based interferometer[J]. Measurement Science and Technology,1996,7(44):445-448.
    [83]K. O. Hill, B. Malo, F. Bilodeau, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure thotough a phase mask[J]. Applied Physics Letter,1993,62(10):1035-1037.
    [84]D. Z. Anderson, V. Mizrahi, T. Erdogan, et al. Production of in fiber gratings using a diffractive optical element[J]. Electron. Letters,1993,29(6):566-568.
    [85]B. Malo, K. O. Hill, F. Bilodeau, et al. Point by point fabrication of micro Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques[J]. Electron. Letters,1993,29(18):1668-1669.
    [86]靳伟,阮双琛.光纤传感技术新进展[M].科学出版社,2005:254-257.
    [87]曾楠.干涉型光纤传感器用于声场和加速度检测的研究[D].北京:清华大学,2003.
    [88]St. Russell, J. Phillip, D. P. Hand, et al. Optically induced creation, transformation and organization of defects and colour-centes in optical fiber [J]. Proceedings SPIE,1991, 15(16):47-54.
    [89]D. P. Hand, J. Russsell. Photoinduced refractive index changes in germanosolicate fibers[J]. Optics Letters,1990(15):102-104.
    [90]T. E. Tsai, E. J. Fribele, D. L. Griscom, et al. Thermal stability of photoinduced gratings and paramagnetic in Ge and GeO doped silica optical fibers[J]. Opt. Lett,1993,18(12):935-937.
    [91]R. M. Atrkins, V. Mizrahl. Observations of changes in UV absorption bands of single mode Germanosilicate core optical fibers on writing and thermally erasing refractive index grating[J]. Electron. Lett,1992,28(18):1743-1744.
    [92]H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, et al. Compaction-and photoelastic-induced index changes in fiber Bragg gratings[J]. Applied Physics Letters,1996,68(22):3069-3071.
    [93]C. Fiori, R. A. B. Decine. Ultraviolet irradiation induced compaction and photoetching in amorphous thermal SiO2[J]. Materials Research Society,1986(61):187-195.
    [94]C. Fiori, R. A. B. Decine. Evidence for a wide continuum of polymorphs in a SiO2[J]. Physical Review B,1986(33):2927-2974.
    [95]B. Poumellec, P. Guenot, I. Riantb, et al. UV induced densification during Bragg grating inscription in Ge:SiO2 preforms[J]. Optical Materials,1995(4):441-449.
    [96]M. G. Sceats, G. R. Atkins, S. B. Poole. Photolytic index changes in optical fibers[J]. Annual Reviews of Material Science,1993(23):2771-2778.
    [97]D. Wong, S. B. Poole, S. M. Gceats. Stress birefringence reduction in elliptical-core fibers under ultraviolet[J]. Optics Letters,1992,17(24):1773-1775.
    [98]Yonghang Shen, Jinglei He, Tong Sun, et al. High-temperature sustainability of strong fiber Bragg gratings written into Sb-Ge-codoped photosensitive fiber:decay mechanisms involved during annealing[J]. Optics Letters,2004,29(6):554-556.
    [99]T. Erdogan, V. Mizrahi, P. J. Lemaire, et al. Decay of ultraviolet-induced fiber Bragg gratings[J]. Applied Physics Letters,1994,76(1):73-80.
    [100]A. E. Attard. Fermi level shift in Bil2SiO20 vis photon-induced trap level occupation[J]. Journal of Applied Physics,1992(71):922-937.
    [101]F. P. Phyne. Photorefractive gratings in single_mode optical fibres[J]. Electronics Letters, 1989,25(8):498-499.
    [102]Bagratashvili, N. Victor. Direct observation of ultraviolet laser induced photocurrent in oxygen deficient silica and germanosilicate glasses[J]. Applied Physics Letters,1996, 68(12):1616-1618.
    [103]E. M. Dianov, K. M. Golant, et al. Grating formation in a germanium free silicon oxynitride fibre[J]. Electron. Letters,1997,33(37):236-238.
    [104]Z. Xiong, G D. Peng, B. Wu, et al. Highly tunable Bragg grating in single-mode polymer optical fibers[J]. IEEE Photonics Technology Letters,1999,11(3):352-354.
    [105]李杰燕,张东生,张倩.基于嵌入式FBG的脉冲强磁体应变测量研究[J].光电子·激光,2012,23(12):2378-2381.
    [104]G. Heremans, F. Herlach, L. Van Bockstal, et al. High Performance Coils for Pulsed Magnets[J]. IEEE Transactions on Magnetics,1992,28(1):790-793.
    [107]A. K. Soika, I. O. Sologub. Measurements of strong pulsed magnetic fields by Hall effect devices [J]. Instruments and Experimental Techniques,2010,53(1):122-123.
    [108]Peng Tao. Development of Pulsed Magnets at WHMFC[J]. Transactions on Applied Superconductivity,2010,20(3):652-655.
    [109]吴永红,邵长江,屈文俊,等.大型工程长期健康监测用FBG应变传感器的研究[J].光电子·激光,2010,21(4):481-484.
    [110]王宏亮,邬华春,冯德全.高温高压油气井下光纤光栅传感器的应用研究[J].光电子·激光,2011,22(1):16-19.
    [111]黄国君,邵进益,王秋良,等.液氮温度光纤Bragg光栅的应变传感特性[J].光电子·激光,2007,18(7):773-775.
    [112]Guo Zhan-Sheng, Feng Jiemin, Wang Hui. Cryogenic temperature characteristics of the fiber Bragg grating sensors[J]. Cryogenics.2012,52(10):457-460.
    [113]周建华,张东生,付荣.低温环境下光纤光栅啁啾异常现象研究[J].武汉理工大学学报,2010,32(5):733-737.
    [114]付荣.液氮温度光纤Bragg光栅的应变传感特性[D].武汉:武汉理工大学,2011.
    [115]T. Okabe, S. Yashiro. Damage detection in holed composite laminates using an embedded FBG sensor[J], Composites Part A:Applied Science and Manufacturing,2012,43(3): 388-397.
    [116]Asrul Izam Azmi, Raju Raju, Peng Gangding. Third Asia Pacific Optical Sensors Conference[C]. Sydney:SPIE,2012:38-41.
    [117]Hao Song, Wenjuan Wang, Yujing Zhou. Proceedings of the 2011 IEEE 5th International Conference on Cybernetics and Intelligent Systems[C]. Qingdao:IEEE Computer Society, 2011:52-56.
    [118]Wenjuan Wang, Hao Song, Jingfeng Xue. Proceedings of the 2011 IEEE 5th International Conference on Cybernetics and Intelligent Systems [C]. Qingdao:IEEE Computer Society, 2011:47-51.
    [119]L. Dong, J. L. Archambault, L. Reekie, et al. Single Pulse Bragg Gratings Written During Fiber Drawing[J]. Electronics Letters,1993,29(17):1577-1578.
    [120]C. G Askins, M. A. Putnam, H. J. Patrick, et al. Fibre strength unaffected by on-line writing of single-pulse Bragg gratings[J]. Electronics Letters,1997,33(15):1333-1334.
    [121]B. Christopher, Jr. Walker, Dora Paolucci. UV-curable silicone write-through coatings for Fiber Bragg Gratings[J]. Gratings And Filters,2002(3):1-2.
    [122]D. S. Starodubov, V. Grubsky, J. Feinberg. Efficient Bragg grating fabrication in a fibre through its polymer jacket using near-UV light[J]. Electronics Letters,1997,33(15): 1331-1333.
    [123]K. Imamura, T. Nakai, Y. Sudo, et al. High reliability tin-codoped germanosilicate fibre Bragg gratings fabricated by direct writing method[J]. Electronics Letters,1998,34(18): 1772-1773.
    [124]Dan Grobnic, Stephen J. Mihailov, et al. Ultrafast IR Laser Writing of Strong Bragg Gratings Through the Coating of High Ge-Doped Optical Fibers[J]. IEEE Photonics Technology Letters,2008,20(12):973-975.
    [125]Jiajun Wang, Bo Dong, Evan Lally, et al. Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers[J]. Optics Letters,2010, 35(5):619-621.
    [126]Paula A. R. Tafulo, P. A. S. Jorge, J. L. Santos, et al. Fabry-Perot cavities based on chemical etching for high temperature and strain measurement[J]. Optics Communications,2012, 285(6):1159-1162.
    [127]C. Gouveia, P. A. S. Jorge, J. M. Baptista. Fabry-Perot Cavity Based on a High-Birefringent Fiber Bragg Grating for Refractive Index and Temperature Measurement [J]. Sensors Journal,2012,12(1):17-20.
    [128]Tao Zhu, Tao Ke, Yunjiang Rao, et al. Fabry-Perot optical fiber tip sensor for high temperature measurement[J]. Optics Communications,2010,283(19):3683-3685.
    [129]D. W. Duan, Y. J. Rao, W. P. Wen, et al. In-line all-fibre Fabry-Perot interferometer high temperature sensor formed by large lateral offset splicing[J]. Electronics Letters.2011, 47(6):401-403.
    [130]Dora Juan Juan Hu, Yixin Wang, Jun Long Lim, et al. Novel Miniaturized Fabry-Perot Refractometer Based on a Simplified Hollow-Core Fiber With a Hollow Silica Sphere Tip[J]. Sensors Journal,2012,12(5):1239-1245.
    [131]Ming Deng, Chang-Ping Tang, Tao Zhu. PCF-Based Fabry-Perot Interferometric Sensor for Strain Measurement at High Temperatures[J]. Photonics Technology Letters.2011,23(11): 700-702.
    [132]于清旭,王晓娜,宋世德,等.光纤F-P腔压力传感器在高温油井下的应用研究[J].光电子·激光,2007,18(3):299-302.
    [133]翟宪立,陈爽.光纤光栅温度传感器研究进展[J].计测技术,2011,31(3):35-43.
    [134]Qi Wang, Lei Zhang, Changsen Sun, et al. Multiplexed Fiber-Optic Pressure and Temperature Sensor System for Down-Hole Measurement[J]. Sensoers Journal,2008,8(11): 1879-1883.
    [135]孟展,陈瑞霞,金何,等.基于双材料悬臂梁的光纤光栅应力与温度传感器[J].光电子·激光,2011,22(3):343-346.
    [136]张东生,姚开方,罗裴,等.一种新型的光纤光栅高频加速度传感器[J].仪器仪表学报,2009,30(7):1400-1403.
    [137]蔡茜玮,江毅,丁文慧.一种光纤EFPI高温传感器[J].光学技术,2012,38(1):36-39.
    [138]C. Gouveia, P. A. S. Jorge, J. M. Baptista. Fabry-Perot Cavity Based on a High-Birefringent Fiber Bragg Grating for Refractive Index and Temperature Measurement[J]. Sensors Journal,2012,12(1):17-20.
    [139]熊金平.环氧树脂粘合剂环境行为与老化机理研究[D].北京:北京化工大学,2006.
    [140]L. Dong, W. F. Liu. Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber[J]. Applied Optics, 1997,76(31):8222-8226.
    [141]文伟.环氧胶粘剂大气环境老化行为研究[D].武汉:武汉材料保护研究所,2008.
    [142]宋青竹,张以忱,孙足来,等.磁控溅射镀膜膜厚均匀性设计方法[J].真空,2010,47(6):6-9.
    [143]J.N. Broughton, M.J. Brett, S.K. Dew, et al. Titanium sputter deposition at low pressures and long throw distances[J]. IEEE Transactions on Semiconductor Manufacturing,1996, 9(1):122-127.
    [144]王某,余欧明,杭凌侠,等.磁控溅射镀膜中工作气压对沉积速率的影响[J].真空,2004,41(1):9-12.
    [145]吴代方,童强,侯炳林,等.双靶磁控溅射镀膜机及镀膜工艺[J].核聚变与等离子体物理,1998,18(2):61-64.
    [146]余东海,王成勇,成晓玲,等.磁控溅射镀膜技术的发展[J].真空,2009,46(2):19-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700