用户名: 密码: 验证码:
低介电常数聚芳醚酮及其复合材料的设计和制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电子领域的飞速发展,对封装材料的介电性能提出了越来越高的要求,因此,近些年来利用高性能聚合物材料来替代传统的金属材料或陶瓷材料作为电子器件的封装或表面涂覆材料受到了广泛的重视。聚芳醚酮(PAEKs)是一类具有优异机械性能、良好耐溶剂性、良好尺寸稳定性、良好电性能以及较好热稳定性的高性能聚合物,使其在航空、车辆、电子等高技术领域都展现出广泛的应用前景。微电子器件对耐高温封装材料提出了越来越高的要求,因此本论文的工作主要围绕设计和制备具有优异综合性能的低介电常数聚芳醚酮展开。首先,通过分子设计,向聚合物中引入低极化率的含氟基团和非极性大体积的金刚烷基团,制备了含三氟甲基和金刚烷侧基的聚芳醚酮共聚物,考察了金刚烷基团的引入对材料各项性能的影响。研究表明,单纯向聚合物中引入低极化率的含氟基团或非极性大体积基团难以制备具有极低介电常数(k <2.0,1MHz)的材料。因此,通过溶液共混,在含氟低介电常数聚合物基体中引入具有多孔结构的杂多酸(PWA)纳米粒子,制备了低介电常数聚芳醚酮复合材料。进一步,利用硅烷偶联剂KH-550作为桥梁,将PWA通过化学键合作用接枝于低介电常数含氟聚合物的侧链,制备了无机PWA纳米粒子与有机聚合物基体相容性更加优异的纳米复合材料,得到了性能优异的介电常数为1.96(1MHz)的复合材料,系统研究了复合材料的构建机制和性能。为了进一步提高低介电常数纳米复合材料的机械性能、热性能,我们选取了同样具有空心结构并具有无机-有机混合结构的倍半硅氧烷(POSS)作为改性成分,通过不同的分子设计,利用化学键合的方式,将其引入低介电常数含氟聚芳醚酮基体中,分别制备了介电常数可降至1.71和1.64(1MHz)的含POSS聚芳醚酮纳米复合材料。同时,我们对上述制备的各种材料的性能进行了详细的研究和讨论,以为其能够作为封装或涂覆材料应用于微电子领域提供理论和实验基础。
High performance polymers have attracted considerable attention over the pastdecade owing to the increased demands for their use as replacements for metals orceramics. Poly(aryl ether ketone)s (PAEKs) are a class of important high-performancearomatic polymers with excellent mechanical properties, good solvent resistance,size-accuracy, electrical characteristics, and superior thermal stability, which possesssome potential applications in aerospace, automobile, electronics, and other hightechnology fields. In recent years, there has been a continuous demand forhigh-temperature materials in microelectronic devices. Therefore, aromatic polymerswith low dielectric constants, high thermal stabilities and good mechanical propertieshave been widely investigated. In the past decade, a number of techniques have beenexplored for the preparation of low dielectric constant high performance materials,including (i) introduction of voids into polymer matrix by foaming processes;(ii)incorporation of fluorinated substituent into polymers; and (iii) embedment ofnanoporous inorganic or organic particles into polymers. The low dielectric constantPAEKs obtained by first methods, sometimes, exhibit poor thermal and mechanicalproperties. So, we focus on the other two methods to prepare low dielectric constantPAEKs in our manuscript. First, a series of novel adamantane-based co-poly(arylether ketone)s with low dielectric constants (PAEK-CF_3-Ad) were prepared bypost-amidation reaction of co-poly(aryl ether ketone)s containing (3-trifluoromethyl)phenyl and carboxyl groups (PAEK-CF_3-COOH) with4-adamantyl aniline(NH_2-Ph-Ad). To compare with the preparation of adamantane containing PAEKs bydirectly polymerization of adamantyl-substituted monomers, this side chain grafting method could avoid some problems, such as the high polymerization temperature andthe difficult polymerization process of adamantyl-substituted monomers. Moreover,the dielectric, thermal, and mechanical properties of the synthesized PAEK-CF_3-Adwere characterized using a precision impedance analyzer, differential scanningcalorimetry, thermal gravimetric analyzer, and universal tester, respectively. Theresults indicate that PAEK-CF_3-Ad films had the low dielectric constants ranged from2.65to2.33at1MHz due to the introduction of the adamantyl groups. Besides, thesynthesized PAEK-CF_3-Ad copolymers exhibited good thermal and mechanicalproperties.
     Then, A material with low dielectric constant was produced using nanoparticlephosphotungstic acid (PWA) modified by the silane coupling agentγ-aminopropyltriethoxysilane (KH-550) dispersed in a poly(aryl ether ketone)containing (3-trifluoromethyl) phenyl side groups (FPEEK) matrix synthesized with(3-trifluoromethyl) phenyl hydroquinone (3FHQ) and4,4'-difluorobenzophenone(DFB). The material was fabricated using solution-blending. Moreover, the dielectric,thermal, and mechanical properties of this material were characterized using aprecision impedance analyzer, thermal gravimetric analyzer, and universal tester,respectively. The results indicate that modified PWA (m-PWA)/FPEEK compositesshow obvious improvement in the dielectric properties compared to unmodified PWA(p-PWA)/FPEEK composites. When the PWA contant reached10wt%, the dielectricconstant of (m-PWA)/FPEEK composites could achieve as low as2.28(1MHz). Thisshould be attributed to the good dispersion and compatibility of m-PWA in FPEEK, asproven by scanning electron microscope (SEM) and wide-angle X-ray diffraction(WAXD). Besides, m-PWA/FPEEK composites also exhibited the relatively goodthermal and mechanical properties. In addition, the novel ultra low dielectric constantpoly(ether ether ketone) hybrid films in which nanoscale phosphotungstic acid (PWA)clusters were grafted onto the side chains of poly(ether ether ketone) containing(3-trifluoromethyl) phenyl groups and carboxyl groups (PEEK-CF_3-COOH) in thepresence the silane coupling agent γ-aminopropyltriethoxysilane (KH-550) wereprepared and characterized. The chemical structures of the PWA/PEEK-CF_3-COOH hybrid films were confirmed by FT-IR spectroscopy and1H-NMR. The analysis ofwide-angle X-ray diffraction (WAXD) indicated that the PWA clusters could not formcrystalline structures in the PEEK-CF_3-COOH matrix, and the investigation of thescanning electron microscopy (SEM) and energy dispersive spectrometer (EDS)(W-mapping) revealed that the PWA particles were well dispersed in thePEEK-CF_3-COOH matrix with nanoscale. The influence of the incorporation of PWAparticles by side chain grafting reaction on the properties of PEEK-CF_3-COOH wasstudied. The dielectric constants of the PWA/PEEK-CF_3-COOH hybrid films wereremarkably lower than that of neat PEEK-CF_3-COOH film and the lowest value oftheir dielectric constant could achieve as low as1.96(1MHz) when the content ofgrafted PWA reached10wt%. Meanwhile, the hybrid films still retain the excellentthermal and mechanical properties as well as the good transparency.
     Further, a serious of novel ultra low dielectric constant soluble organic-inorganicnanocomposites in which nanoscale octa-aminophenyl polyhedral oligomericsilsesquioxanes (NH_2-POSS) were covalently linked onto the fluoropoly(ether etherketone)s (PEEK-CF_3-COOH) were prepared and characterized. The chemicalstructures of the polymer matrix and nanocomposites were confirmed by1H NMR andFT-IR spectra. The analysis of wide-angle X-ray diffraction (WAXD) and X-rayphotoelectron spectra (XPS) indicated that the POSS clusters were successfullyincorporated into the polymer matrix and the homogeneous dispersion of POSS cagesin the polymer matrix was evidenced by scanning electron microscopy (SEM) andenergy dispersive spectrometer (EDS)(Si-mapping). Further more, the influence ofthe incorporation of POSS particles on the properties of nanocomposites wasinvestigated. The dielectric constants of the organic-inorganic nanocomposites weredrastically reduced relative to neat PEEK-CF_3-COOH films and the dielectric constantcould achieve as low as1.71(1MHz). Besides, the thermal and mechanical propertiesof the nanocomposites were significantly improved by incorporation of NH_2-POSSmoieties.
     Finally, by Ullmann coupling reaction, ultra low dielectric constant solubleorganic-inorganic nanocomposites in which nanoscale octa-aminophenyl polyhedral oligomeric silsesquioxanes (NH_2-POSS) were covalently linked onto the iodinecontaining fluoropoly(ether ether ketone)s (PEEK-CF_3-I) were prepared. Thechemical structures of the polymer matrix and nanocomposites were confirmed by1HNMR and FT-IR spectra. The analysis of wide-angle X-ray diffraction (WAXD) andX-ray photoelectron spectra (XPS) indicated that the POSS clusters were successfullyincorporated into the polymer matrix and the homogeneous dispersion of POSS cagesin the polymer matrix was evidenced by scanning electron microscopy (SEM) andenergy dispersive spectrometer (EDS)(Si-mapping). Moreover, the influence of theincorporation of POSS particles on the properties of nanocomposites was investigated.The dielectric constants of the organic-inorganic nanocomposites were furtherdrastically reduced relative to neat PEEK-CF_3-I films and the dielectric constant couldachieve as low as1.64(1MHz). Besides, the nanocomposites also displayed excellentthermal and mechanical properties.
引文
[1] BONNER W H, et al. Compiler:US,3065205[P/OL].1962-11-20[1959-10-27].http://searchtel.patentstar.com.cn/cprs2010/docdb/docdbPatentDetails.html?id=US3065205A&idk=ZDIGZBHB6DAA9CIB9ICHDIHA9ICD9HECBFIAOHHA&Qy=%20(AROMATIC%2FAB%2BAROMATIC%2FTI%2BAROMATIC%2FIN%2BAROMATIC%2FPA)*(POLYKETONES%2FAB%2BPOLYKETONES%2FTI%2BPOLYKETONES%2FIN%2BPOLYKETONES%2FPA)*(AND%2FAB%2BAND%2FTI%2BAND%2FIN%2BAND%2FPA)&Nm=1&No=10670780#fragment-18.
    [2] MAZZANTI J B, et al. Compiler:US,4855387[P/OL].1989-8-8[1987-7-9].http://www.google.com/patents?hl=zh-CN&lr=&vid=USPAT4855387&id=O4EyAAAAEBAJ&oi=fnd&dq=Rose+JB+.%5BP%5D+USA+patent+4320224,+1976.&printsec=abstract#v=onepage&q&f=false.
    [3]吴忠文.特种工程塑料聚醚砜、聚醚醚酮树脂国内研究、开发、生产现状[J].化工新材料,2002(30):15-18.
    [4] ATTWOOD T E, DAWSON P C and FREEMAN J L. Synthesis and properties ofpoly aryl ether ketones[J]. Polymer,1981,22(8):1096-1103.
    [5] LAKSHMANA R V. Poly ether Ketones[J]. J. Macromol. Sci. Rev. Macromol.Chem. Phys.,1995,35(4):661-712.
    [6] HERGENROTHER P M, JENSEN B J and HAVENS S J. Poly(arylene ethers)[J].Polymer,1988,29(2):358-369.
    [7] JI X L, ZHANG W J and WU Z W. Miscibility of poly(ether etherketone)/poly(ether diphenyl ether ketone) blends[J]. Polymer,1996,37(18):4205-4208.
    [8] CAO J K, SU W C, WU Z W, KITAYAMA T and HATADA K. Synthesis andproperties of poly(ether ether ketone)-poly(ether sulfone) block copolymers[J].Polymer,1994,35(16):3549-3556.
    [9] JI X L, YU D H, ZHANG W J and WU Z W. The multiple melting behaviour ofimmiscible poly(ether ether ketone)/poly(ether diphenyl ether ketone) blend[J].Polymer,1997,38(14):3501-3504.
    [10] ROSE J B. Preparation and properties of poly(arylene ether sulphones)[J].Polymer,1974,15(7):456-465.
    [11] LAKSHMANA R V. Polyether Ketones[J]. J. Macromol. Sci. Rev. Macromol.Chem. Phys.,1995,35(4):661-712.
    [12] RAMA M, RAO V L, RADHAKRISHMAN T S, RAMACHANDRAN S.Synthesis characterization and thermal degradation studies of poly (ether etherketone) copolymers[J]. Polymer,1992,33:2834-2839.
    [13] CHEN M, CHEN J Y. Analysis of crystallization kineties of poly (ether etherketone)[J]. J. Polym. Sci. PartB: Polym. Phys,1998,36:1348-1355.
    [14]赵纯,张玉龙.聚醚醚酮[M].北京:化学工业出版社,2008:1-2.
    [15] MURARKA S P. Low dielectric constant materials for interlayer dielectricapplications[J]. Solid State Techno,1996,39(3):83-90.
    [16] JEN S P, HAVEMANN R H and CHANG M C. Process integration andmanufacturability issues for high performance multilevel interconnect[J]. MaterRes Soc Symp Proc.,1994,337:25-31.
    [17] BOHR M T. Interconnect scaling-The real limiter to high performance ULSI[J].Solid State Technol,1996,39(9):105-111.
    [18] LIDE D R. Handbook of Chemistry and Physics[M].76th ed. Boca Raton, FL:CRC Press,1996, p.12.62and13.12.
    [19] BRANDRUP J and IMMERGUT E H. Polymer handbook[M].3rd ed. New York:wiley,1989, p. V/1.
    [20] THEI W. Optical properties of porous silicon[J]. Surface Science Reports,1997,29(3-4):91-192.
    [21] HOUGHAM G, TESORO G, VIEHBECK A and CHAPPLE-SOKOL J D.Polarization Effects of Fluorine on the Relative Permittivity in Polyimides[J].Macromolecules,1994,27(21):5964-5971.
    [22] HOUGHAM G, TESORO G and VIEHBECK A. Influence of Free VolumeChange on the Relative Permittivity and Refractive Index in Fluoropolyimides[J].Macromolecules,1996,29(10):3453-3456.
    [23] JENS W, MARKUS A and ARNE T. Mesoporous Poly(benzimidazole)Networks Via Solvent Mediated Templating of Hard Spheres[J]. Macromolecules,2007,40:1299-1304.
    [24] WANG W C, VORA R H, KANG E T, NEOH K G, ONG C K, CHEN L F.Nanoporous Ultra-Low-k Films Prepared from Fluorinated Polyimide withGrafted Poly(acrylic acid) Side Chains[J]. Adv. Mater.,2004,16:54-57.
    [25] SIMPSON J O, CLAIR A K S. Fundamental insight on developing low dielectricconstant polyimides[J]. Thin Solid Films,1997,308–309:480-485.
    [26] TOWERY D, FURY M A. Chemical Mechanical Polishing of Polymer Films[J].J. Electron. Mater.,1998,27:1088.
    [27] HENDRICKS N H, LAU K S Y, SMITH A R, Wan W B. Synthesis AndCharacterization Of Fluorinated Poly(Arylethers): Organic Polymers For IcImd[J]. Polym. Mater. Sci. Symp. Proc.,1995,381:59.
    [28] IRVIN J A, NEFF C J, KANE K M, CASSIDY P E, CLAIR S A K. Polyethersderived from bisphenols and highly fluorinated aromatics[J]. J. Polym. Sci. PartA: Polym. Chem.,1992,30:1675-1679.
    [29] LABADIE J W, HEDRICK J L. Perfluoroalkylene-activated poly(aryl ether)synthesis[J]. Macromoleules,1990,23:5371-5373.
    [30]王贵宾,陈春海,周宏伟,姜振华,吴忠文.含氟侧基聚芳醚酮的合成与表征[J].高等学校化学学报,2000,21(8):1325-1327.
    [31]王贵宾,王东,姜振华,陈春海,吴忠文.含氟聚芳醚酮的合成与性能研究[J].高等学校化学学报,2001,22(6):1053-1056.
    [32]王贵宾.含氟聚芳醚酮的研究[D].吉林:吉林大学化学学院,2000.
    [33] LIU B J, HU W, CHEN C H, JIANG Z H, ZHANG W J, WU Z W,MATSUMOTO T. Soluble aromatic poly(ether ketone)s with a pendant3,5-ditrifluoromethylphenyl group[J]. Polymer,2004,45:3241-3247.
    [34] GOTO K, KAKUTA M, INOUE Y, MATSUBARA M. Low dielectric andthermal stable polyimides with fluorene structure[J]. Journal of PhotopolymerScience and Technology,2000,13:313-316.
    [35]朱晓亮.含金刚烷侧基的聚芳醚酮的分子设计与性能研究[D].吉林:吉林大学化学学院,2008.
    [36] GENG Z, ZHU X L, ZHANG S L, LIU X, WANG G B. Synthesis andCharacterization of Soluble Low-k Poly (aryl ether ketone) Copolymers withPendent Adamantyl Groups[J]. High Performance Polymers,2010,22:779-798.
    [37] CHERN Y T, WANG J J. Hydrolytic Stability and High Tg of PolyimidesDerived from the Novel4,9-Bis[4-(3,4-dicarboxyphenoxy)phenyl]-diamantaneDianhydride[J]. Journal of Polymer Science: Part A: Polymer Chemistry,2009,47:1673-1684.
    [38] TAN L, LIU S M, ZENG F, ZHANG S K, ZHAO J Q and YUB Y. A lowdielectric constant polyimide/polyoxometalate composite[J]. Polym. Adv.Technol.,2011,22:209-214.
    [39] LEU C M, REDDY G M, WEI K H, SHU C F. Synthesis and DielectricProperties of Polyimide-Chain-End Tethered Polyhedral OligomericSilsesquioxane Nanocomposites[J]. Chem. Mater.,2003,15:2261-2265.
    [1] ATTWOOD T E, DAWSON P C and FREEMAN J L. Synthesis and properties ofpoly aryl ether ketones[J]. Polymer,1981,22:1096-1103.
    [2] LAKSHMANA R V. Poly ether ketones[J]. J. Macromol. Sci. Rev. Macromol.Chem. Phys.,1995,35:661-712.
    [3] HERGENROTHER P M, JENSEN B J and HAVENS S J. Poly(arylene ethers)[J].Polymer,1998,29:358-369.
    [4] LI X J, ZHANG S L, WANG H, ZHANG C F, WANG G B and JIANG Z H.Study of blends of linear poly(ether ether ketone) of highmelt viscosity andhyperbranched poly(ether ether ketone)[J]. Polym. Int.,2011,60:607-612.
    [5] JI X L, ZHANG W J and WU Z W. Miscibility of poly(ether etherketone)/poly(ether diphenyl ether ketone) blends[J]. Polymer,1996,37:4205-4208.
    [6] CAO J K, Wu Z W and HATADA K. Synthesis and properties of poly(ether etherketone)-poly(ether sulfone) block copolymers[J]. Polymer,1994,35:3549-3556.
    [7] JI X L, YU D H and Wu Z W. The multiple melting behaviour of immisciblepoly(ether ether ketone)/poly(ether diphenyl ether ketone) blend[J]. Polymer,1997,38:3501-3504.
    [8] ROSE J B. Preparation and properties of poly(arylene ether sulphones)[J].Polymer,1997,15:456-465.
    [9] MATHIAS L J, LEWIS C M and WIEGEL K N. Poly(ether ether ketone)s andPoly(ether sulfones) with Pendent Adamantyl Groups[J]. Macromolecules,1997,30:5970-5975.
    [10] JENNIFER J, JENSEN, GRIMSLEY M and MATHIAS L J.Adamantyl-Substituted Phenolic Polymers[J]. J. Polym. Sci.: Part A: Polym.Chem.,1996,34:397-402.
    [11] CHEM Y T and SHIUE H C. Low dielectric constant polyimides derived from1,3-bis(4-aminophenyl) adamantine[J]. Macromol. Chem. Phys.,1998,199:963-969.
    [12] HSIAO S H, LEE C T and CHEM Y T. Synthesis and Properties of NewAdamantane-Based Poly(ether imide)s[J]. J. Polym. Sci.: Part A: Polym. Chem.,1999,37:1619-1628.
    [13] GENG Z, ZHU X L, ZHANG S L, LIU X and WANG G B. Synthesis andCharacterization of Soluble Low-k Poly (aryl ether ketone) Copolymers withPendent Adamantyl Groups[J]. High Performace Polymers,2010,22:779-798.
    [14] WANG G B, CHEN C H and ZHOU H W. Synthesis and characterization ofnovel PEEK with pendant group containing fluorine[J]. Chem. J. ChineseUniversities,2000,21:1325-1327.
    [15] WANG G B, JIANG Z H, ZHANG S L, CHEN C H and WU Z W. Synthesis andcharacterization of thermotropic liquid crystalline poly(aryl ether ketone)copolymers with pendant3-(trifluoromethyl) phenyl groups[J]. Polym. Int.,2006,55:657-661.
    [16] LIU B J, CHEN C H and JIANG Z H. Soluble aromatic poly(ether ketone)s witha pendant3,5-ditrifluoromethylphenyl group[J]. Polymer,2004,45:3241-3247.
    [17] HOUGHAM G, CHAPPLE-SOKOL J D. Polarization Effects of Fluorine on theRelative Permittivity in Polyimides[J]. Macromolecules,1994,27:5964-5971.
    [18] HOUGHAM G, VIEHBECK A. Influence of Free Volume Change on theRelative Permittivity and Refractive Index in Fluoropolyimides[J].Macromolecules,1996,29:3453-3456.
    [1] CHEN Y W, WANG W C, VORA R H. Ultra-low-κ materials based onnanoporous fluorinated polyimide with well-defined pores via theRAFT-moderated graft polymerization process[J]. J. Mater. Chem.,2004,14:1406-1412.
    [2] CHEN Y W, WANG W, NEOH K G. Nanoporous low-κ polyimide films viapoly(amic acid)s with grafted poly(ethylene glycol) side chains from a reversibleaddition-fragmentation chain-transfer-mediated process[J]. Adv. Funct. Mater.,2004,14:471-478.
    [3] HEDRICK J L, CARTER K R, VOLKSEN W. High-temperature polyimidenanofoams for microeletronic applications[J]. Reactive and Functional Polymers1996,30:43-53.
    [4] RISSE W and SOGAH D Y. Synthesis of soluble high molecular weight poly(ary1ether ketones) containing bulky substituents[J]. Macromolecules,1990,23:4029-4033.
    [5] MYUNG B Y, AHN C J, YOON T H. Synthesis and characterization ofpolyimides from novel1-(3',5'-bis (trifluoromethyl) benzene)pyromelliticdianhydride (6FPPMDA)[J]. Polymer,2004,45:3185-3193.
    [6] NIU Y M, ZHU X L and LIU L Z. Synthesis and characterization of poly(arylether ketone) with trifluoromethyl-substituted benzene in the side chain[J]. React.Funct. Polym.,2006,66:559-566.
    [7] WANG G B, CHEN C H and ZHOU H W. Synthesis and characterization of novelPEEK with pendant group containing fluorine[J]. Chem. J. Chinese Universities,2000,21:1325-1327.
    [8] LIU B J, HU W, CHEN C H and WU Z W. Soluble aromatic poly(ether ketone)swith a pendant3,5-ditrifluoromethylphenyl group[J]. Polymer,2004,45:3241-3247.
    [9] LEU C M, CHANG Y T, WEI K H. Polyimide-side-chain tethered polyhedraloligomeric silsesquioxane nanocomposites for low-dielectric film applications[J].Chem. Mater.,2003,15:3721-3727.
    [10] ECKSTORFF F, ZHU Y Z, MAURER R, MULLER T E, SCHOLZ S. Materialswith tunable low-k dielectric constant derived from functionalized octahedralsilsesquioxanes and spherosilicates[J]. Polymer,2011,52:2492-2498.
    [11] LEU C M, REDDY G M, WEI K H, SHU C F. Synthesis and DielectricProperties of Polyimide-Chain-End Tethered Polyhedral OligomericSilsesquioxane Nanocomposites[J]. Chem. Mater.2003,15:2261-2265.
    [12] CHEN H G, XIE L, LU H B and YANG Y L. Ultra-low-k polyimide hybrid filmsvia copolymerization of polyimide and polyoxometalates[J]. J. Mater. Chem.,2007,17:1258-1261.
    [13] TAN L, LIU S M, ZENG F, ZHANG S K, ZHAO J Q. A low dielectric constantpolyimide/polyoxometalate composite[J]. Polym. Adv. Technol.,2011,22:209-214.
    [14] WANG G B, CHEN C H and ZHOU H W. Synthesis and characterization ofnovel PEEK with pendant group containing fluorine[J]. Chem. J. ChineseUniversities,2000,21:1325-1327.
    [15] WANG G B, JIANG Z H, ZHANG S L, CHEN C H and WU Z W. Synthesis andcharacterization of thermotropic liquid crystalline poly(aryl ether ketone)copolymers with pendant3-(trifluoromethyl) phenyl groups[J]. Polym. Int.,2006,55:657-661.
    [16] COLFEN H, ANTONIETTI M. Mesocrystals: Inorganic superstructures made byhighly parallel crystallization and controlled alignment[J]. Angew. Chem. Int. Ed.,2005,44:5576-5591.
    [17] FRANCESCHETTI A, WILLAMSON A, ZUNGER A. Addition spectra ofquantum dots: the role of dielectric mismatch[J]. J. Phys. Chem. B.,2000,104:3398-3401.
    [18] SZYMCZYK A, SBAI M, FIEVET P. Transport properties and electrokineticcharacterization of an amphoteric nanofilter[J]. Langmuir,2006,22:3910-3919.
    [19] LONG D L and CRONIN L. Towards Polyoxometalate-IntegratedNanosystems[J]. Chem. Eur. J.,2006,12:3698-3706.
    [20] TSU R and BABIC D. Doping of a quantum dot[J]. Appl. Phys. Lett.,1994,64:1806-1808.
    [21] DENG Z Y, GUO J K and LAI T R. Effects of dielectric mismatch on shallowdonors and acceptors in a spherical GaAs-Ga1-xAIxAs quantum dot[J]. J. Phys.:Condens. Matter,1994,6:5949-5955.
    [22] FONOBEROV V A, POKATILOV E P and BALANDIN A A. Exciton states andoptical transitions in colloidal CdS quantum dots: Shape and dielectric mismatcheffects[J]. Phys. Rev. B,2002,66:085310.
    [23] MOVILLA J L and PLANELLES J. Dielectric mismatch effects in two-electronzero-dimensional nanosystems[J]. Phys. Rev. B,2006,74:125322.
    [24] ALEGAONKAR P S, BHORASKAR V N, BALAYA P and GOYAL P S.Dielectric properties of1MeV electron-irradiated polyimide[J]. Appl. Phys. Lett.,2002,80:640-642.
    [25] GLEZOS N, ARGITIS P, VELESSIOTIS D and DIAKOUMAKOS C D.Tunneling transport in polyoxometalate based composite materials[J]. Appl. Phys.Lett.,2003,83:488-490.
    [26] MOVILLA J L and PLANELLES J. Off-centering of hydrogenic impurities inquantum dots[J]. Phys. Rev. B,2005,71:075319.
    [27] NI J, ZHANG G, ZHAO C J and NA H. Crosslinked hybrid membranes based onsulfonated poly(ether ether ketone)/γ-methacryloxypropyltrimethoxysilane/phosphotungstic acid by an in situ sol–gel process for direct methanol fuelcells[J]. J. Mater. Chem.,2010,20:1-8.
    [28] LEU C M, CHANG Y T and WEI K H. Synthesis and Dielectric Properties ofPolyimide-Tethered Polyhedral Oligomeric Silsesquioxane (POSS)Nanocomposites via POSS-diamine[J]. Macromolecules,2003,36:9122-9127.
    [29] KHARDANI M, BOUAICHA M and BESSAIS B. Bruggeman effective mediumapproach for modelling optical properties of porous silicon: comparison withexperiment[J]. physica status solidi (c),2007,4:1986-1990.
    [1] KANNAN R Y, SALACINSKI H J, BUTLER P E, SPEIFALIAN A M. Polyhedraloligomeric silsesquioxane nanocomposites: the next generation material forbiomedical applications[J]. Acc. Chem. Res.,2005,38:879-884.
    [2] ZHANG C, LAINE R M. Hydrosilylation of allyl alcohol with [HSiMe2OSiO1.5]8:octa(3-hydroxypropyldimethylsiloxy)octasilsesquioxane and its octamethacrylatederivative as potential precursors to hybrid nanocomposites[J]. J. Am. Chem. Soc.,2000,122:6979-6988.
    [3] CHOI J, TAMAKI R, KIM S G, LAINE R M. Organic/Inorganic ImideNanocomposites from Aminophenylsilsesquioxanes[J]. Chem. Mater.,2003,15:3365-3375.
    [4] TAMAKI R, CHOI J, LAINE R M. A Polyimide Nanocomposite fromOcta(aminophenyl)silsesquioxane[J]. Chem. Mater.,2003,15:793-797.
    [5] MYA K Y, HE C, HUANG J, XIAO Y, DAI J, SIOW Y P. Preparation andThermomechanical Properties of Epoxy Resins Modified by OctafunctionalCubic Silsesquioxane Epoxides[J]. J. Polym. Sci. Part A: Polym. Chem.,2004,42:3490-3503.
    [6] HUANG J, XIAO Y, MYA K Y, LIU X, HE C, DAI J, SIOW Y P.Thermomechanical properties of polyimide-epoxy nanocomposites from cubicsilsesquioxane epoxides[J]. J. Mater. Chem.,2004,14:2858-2863.
    [7] HUANG J, HE C, XIAO Y, MYA K Y, DAI J, SIOW Y P. Polyimide/POSSnanocomposites: interfacial interaction, thermal properties and mechanicalproperties[J]. Polymer,2003,44:4491-4499.
    [8] KIM K, CHUJO Y. Polymer Hybrids with Functionalized Silsesquioxanes via TwoPhysical Interactions in One System[J]. J. Polym. Sci. Part A: Polym. Chem.,2003,41:1306-1315.
    [9] LIANG K, TOGHIANI H, LI G, PITTMAN J C U. Synthesis, Morphology, andViscoelastic Properties of Cyanate Ester/Polyhedral Oligomeric SilsesquioxaneNanocomposites[J]. J. Polym. Sci. Part A: Polym. Chem.,2005,43:3887-3898.
    [10] LI G, CHO H, WANG L, TOGHIANI H, PITTMAN J C U. Synthesis andProperties of Poly(isobutyl methacrylateco-butanedioldimethacrylate-co-methacryl polyhedral oligomeric silsesquioxane)Nanocomposites[J]. J. Polym. Sci. Part A: Polym. Chem.,2005,43:355-372.
    [11] YE Y, CHEN W Y, WANG Y Z. Synthesis and Properties ofLow-Dielectric-Constant Polyimides with Introduced Reactive FluorinePolyhedral Oligomeric Silsesquioxanes[J]. J. Polym. Sci. Part A: Polym. Chem.,2006,44:5391-5402.
    [12] STRACHOTA A. Epoxy Networks Reinforced with Polyhedral OligomericSilsesquioxanes (POSS) Thermomechanical Properties[J]. Macromolecules,2004,37:9457-9464.
    [13] NI Y, ZHENG S. Morphology and thermal properties of inorganic–organichybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes[J].Polymer,2004,45:5557-5568.
    [14] LIU Y L, LEE H C, NIE K. Preparation and Properties of PolyhedralOligosilsequioxane Tethered Aromatic Polyamide Nanocomposites throughMichael Addition between Maleimide-Containing Polyamides and anAmino-Functionalized Polyhedral Oligosilsequioxane[J]. J Polym Sci Part A:Polym Chem,2006,44:4632-4643.
    [15] LIU H, ZHENG S, NIE K. Morphology and Thermomechanical Properties ofOrganic-Inorganic Hybrid Composites Involving Epoxy Resin and anIncompletely Condensed Polyhedral Oligomeric Silsesquioxane[J].Macromolecules,2005,38:5088-5097.
    [16] ZHENG L, FARRIS R J, COUGHLIN E B. Novel Polyolefin Nanocomposites:Synthesis and Characterizations of Metallocene-Catalyzed Polyolefin PolyhedralOligomeric Silsesquioxane Copolymers[J]. Macromolecules,2001,34:8034-8039.
    [17] XU H, KUO S W, LEE J S, CHANG F C. Preparations, Thermal Properties, andTg Increase Mechanism of Inorganic/Organic Hybrid Polymers Based onPolyhedral Oligomeric Silsesquioxanes[J]. Macromolecules,2002,35:8788-8793.
    [18] CHOI J, HARCUP J, YEE A F, ZHU Q, LAINE R M. Organic/Inorganic HybridComposites from Cubic Silsesquioxanes[J]. J. Am. Chem. Soc.,2001,123:11420-11430.
    [19] PAN Y Z, XU Y, AN L, LU H B. Hybrid Network Structure and MechanicalProperties of Rodlike Silicate/Cyanate Ester Nanocomposites[J]. Macromolecules,2008,41:9245-9258.
    [20] TSENG C H, WANG C C, CHEN C Y. Functionalizing Carbon Nanotubes byPlasma Modification for the Preparation of Covalent-Integrated EpoxyComposites[J]. Chem. Mater.,2007,19:308-315.
    [21] YANG B X, PRAMODA K P, XU G Q, GOH S H. Mechanical Reinforcement ofPolyethylene Using Polyethylene-Grafted Multiwalled Carbon Nanotubes[J]. Adv.Funct. Mater.,2007,17:2062-2069.
    [1]胡跃飞,林国强.现代有机反应:金属催化反应[M].北京:化学工业出版社,2008.
    [2] VENKATRAMAN S, LI C J. The effect of crown-ether on thepalladium-catalyzed Ullmann-type coupling mediated by zinc in air and water[J].Tetrahedron Letters,2000,41:4831-4834.
    [3] NAIDU A B, SEKAR G. An efficient intermolecular BINAM-copper(I) catalyzedUllmanntype coupling of aryl iodides/bromides with aliphatic alcohols[J].Tetrahedron Letters,2008,49:3147-3151.
    [4] SHEN G, LV X, QIAN W, BAO W. Cu2O-catalyzed Ullmann-type reaction ofvinyl bromides with imidazole and benzimidazole[J]. Tetrahedron Letters,2008,49:4556-4559.
    [5] CAI Q, ZOU B, MA D. Mild Ullmann-Type Biaryl Ether Formation Reaction byCombination of ortho-Substituent and Ligand Effects[J]. Angew. Chem.,2006,118:1298-1301.
    [6] MONNIER F, TAILLEFER M. Catalytic C-C, C-N, and C-O Ullmann-TypeCoupling Reactions: Copper Makes a Difference[J]. Angew. Chem. Int. Ed.,2008,47:3096-3099.
    [7] MONNIER F, TAILLEFER M. Catalytic C-C, C-N, and C-O Ullmann-TypeCoupling Reactions[J]. Angew. Chem. Int. Ed.,2009,48:6954-6971.
    [8] HASSAN J, SEVIGNON M, GOZZI C, SCHULZ E, LEMAIRE M. Aryl-ArylBond Formation One Century after the Discovery of the Ullmann Reaction[J].Chem. Rev.,2002,102:1359-1469.
    [9] SHAFIR A, BUCHWALD S L. Highly Selective Room-TemperatureCopper-Catalyzed C-N Coupling Reactions[J]. J. AM. CHEM. SOC.,2006,128:8742-8743.
    [10] JONES G O, LIU P, HOUK K N, BUCHWALD S L. ComputationalExplorations of Mechanisms and Ligand-Directed Selectivities ofCopper-Catalyzed Ullmann-Type Reactions[J]. J. AM. CHEM. SOC.,2010,132:6205-6213.
    [11] ZHANG H, CAI Q, MA D. Amino Acid Promoted CuI-Catalyzed C-N BondFormation between Aryl Halides and Amines or N-Containing Heterocycles[J]. J.Org. Chem.,2005,70:5164-5173.
    [12] NIU J J, ZHOU H, LI Z G, XU J W, HU S J. An Efficient Ullmann-Type C-OBond Formation Catalyzed by an Air-Stable Copper(I)-Bipyridyl Complex[J]. J.Org. Chem.,2008,73:7814-7817.
    [13] MA D W, CAI Q, ZHANG H. Mild Method for Ullmann Coupling Reaction ofAmines and Aryl Halides[J]. Organic Letters,2003,5:2453-2455.
    [14] HENNINGS D D, IWAMA T, RAWAL V H. Palladium-Catalyzed(Ullmann-Type) Homocoupling of Aryl Halides: A Convenient and GeneralSynthesis of Symmetrical Biaryls via Inter-and Intramolecular CouplingReactions[J]. Organic Letters,1999,1:1205-1208.
    [15] LI L, LIU S Y, LIU Z, JING L W, GUAN S W, JIANG Z H, LIU B J,MATSUMOTO T. Halogenated polyaryletherketones with enhanced thermalstability[J]. High Performance Polymers,2012,24:425-431.
    [16] LEE J W, KONG S, KIM W S. Preparation and characterization of SiO2/TiO2core-shell particles with controlled shell thickness[J]. Materials Chemistry andPhysics,2007,106:39-44.
    [17] STRACHOTA A. Epoxy Networks Reinforced with Polyhedral OligomericSilsesquioxanes (POSS) Thermomechanical Properties[J]. Macromolecules,2004,37:9457-9464.
    [18] NI Y, ZHENG S. Morphology and thermal properties of inorganic–organichybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes[J].Polymer,2004,45:5557-5568.
    [19] LIU Y L, LEE H C, NIE K. Preparation and Properties of PolyhedralOligosilsequioxane Tethered Aromatic Polyamide Nanocomposites throughMichael Addition between Maleimide-Containing Polyamides and anAmino-Functionalized Polyhedral Oligosilsequioxane[J]. J Polym Sci Part A:Polym Chem,2006,44:4632-4643.
    [20] LIU H, ZHENG S, NIE K. Morphology and Thermomechanical Properties ofOrganic-Inorganic Hybrid Composites Involving Epoxy Resin and anIncompletely Condensed Polyhedral Oligomeric Silsesquioxane[J].Macromolecules,2005,38:5088-5097.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700