用户名: 密码: 验证码:
微型压力传感器芯片的力学性能分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传感器技术是现代科学技术发展水平的重要标志,是构成现代信息产业的三大支柱之一。在各种传感器中,硅压力传感器是应用最为广泛的一种,主要包括压阻式、电容式和谐振式三种类型。目前应用最广泛的是压阻式,其中主要是扩散硅压力传感器,其扩散电阻与硅衬底之间是PN结隔离,但当工作温度超过120℃时,PN结漏电加剧,使传感器特性严重恶化以至失效。
     随着MEMS中新工艺和新材料的出现,压力传感器向微型化和低量程发展,必须进一步提高传感器的灵敏度,在不增加压力和芯片面积的情况下增加电阻上受到的应力,即使硅膜应力集中在电阻上。通常的做法是减小硅膜的厚度。但这样做一方面难以在工艺上控制薄膜的厚度,增大不均匀性;另外,当膜厚度小时,硅膜弯曲属于大挠度的非线性弯曲,导致传感器的非线性急剧增加,从而降低了测量精度,为了同时获得较高灵敏度和较好的线性度,必须对硅膜结构加以改进,代替原来的PN结,提高耐高温性能和稳定性。本文开展微型压力传感器芯片的力学性能分析与研究,为微型高温压力传感器的研究与开发提供理论依据。
     首先,运用材料力学、弹性力学和板壳理论,分析对比了C型平膜、E型膜和双岛膜三种应变膜结构的应力分布,为下一步的计算机模拟分析和力敏电阻在应变膜上的布置提供理论依据。
     其次,用有限元分析方法并借助ANSYS仿真软件,对上述三种应变膜进行了计算机模拟,探讨了应变膜表面应力分布、应力模型简化的合理性、应变膜尺寸参数对应力分布,温度对应变膜温度场分布和热应力分布的影响。
     接着,研究如何用ANSYS软件实现芯片的结构优化,建立了双岛型应变膜结构的简化力学模型、优化参数和数学模型、优化分析和控制文件。在设计空间内获得最优结果及其输出输入关系,设计变量和目标函数的变化关系。并设计了传感器上力敏电阻的分布、尺寸及其阻值大小和传感器的制作工艺流程。
     最后,运用ANSYS软件分别从模态分析、谐响应分析、瞬态结构动力学三个方面对传感器芯片的动态特性进行了研究,得出其动态响应特性。
Sensor technology is important in the development of modern science and technology. It is one of three greatest technique of the information industry. Silicon pressure sensor is the mostly widely used among all the kinds of sensors, which includes piezoresistive, capacitive and resonant sensors. At present, piezoresistive pressure sensors are applied most widely, that mostly are made by forming diffused strain gauges on the thin silicon diaphragm. This sensor uses isolation by reverse biased pn-juncitons, whose junction leakage current rises at elevated temperature over 120℃, which deteriorate sensor characteristic so serious that it would disable the sensor.
     With the emergence of new technology and new materials in MEMS industry, pressure sensor develops along the direction of microminiaturization and low range. In order to improve the device's sensitivity, the stress on the resistance must be increased at the same pressure and chip area, namely make the stress concentrate on the resistance. The usually used method is to reduce the thickness of silicon membrane. But on the one hand, it would be more difficult to control the thickness in process, and increase the uneven of thickness. On the other hand, when the thickness is very small, silicon membrane bending is the nonlinear bending of large deflection, resulting in sharp increase in nonlinearity, consequently reduces the accuracy of device. To obtain higher sensitivity and better linearity simultaneously, the structure of silicon diaphragm must be improved to replace original pn-juncitons, to enhance the working temperature and stability. In this thiesis analysis and research on Mechanical properties of micro pressure sensor chip is to provide theoretical basis for the research and development of micro high temperature pressure sensor.
     Firstly, stress distributions of three types of strain diaphragm: C-type flat diaphragm, E-type diaphragm and double-island diaphragm are analyzed and compared by material mechanics, elastic mechanics theory and theory of plates and shells to provide theoretical basis for simulation, analysis and the disposition of sensing resister on strain membrane.
     Secondly, three types of pressure sensor chips are simulated by using ANSYS software on the account of Finite Element Analysis (FEA) theory. The stress distribution of strain diaphragm, rationality of the simplified model, the effect of dimension of strain diaphragm on the difference between stresses and temperature on the distribution of thermal stress and temperature field on the strain membrane is discussed.
     Then, the paper investigates how to realize the structure optimization of chip by using the ANSYS software. The simplified mechanics model of double-island diaphragm is established, parameter model and mathematics model are optimized, and analysis file and control document are also optimized. The optimal result, the output-input relation of optimum design and the relation between design variables and object function are obtained by using ANSYS. The distribution, dimensions and resistance of sensitive resistor on sensor and the manufacture technology process are designed.
     At last, dynamic characteristic of sensor chip is studied in modal, harmonic and transient structure dynamics by ANSYS software, and dynamic response characteristic is attained from the analysis result.
引文
[1]Feynman R.There's plenty of room at the bottom.IEEE J.MEMS,1992,1(1):60-66
    [2]Feynman R.Infinitesimal machinery.IEEE J.MEMS,1993,2(1):4-14
    [3]L.S.Fan,Y.C.Tai,R.S.Muller.IC-processed electrostatic micromotors.IEEE International Electron Devices Meeting(IEDM),San Francisco,USA.1988,666-669
    [4]C.M.Ho,Y.C.Tai.Micro-Electro-Mechanical systems(MEMS)and fluid flows.Annual Review of Fluid Mechanics,1998,30(1):579-612
    [5]刘光辉,亢春梅.MEMS技术的现状和发展趋势.传感器技术,2001,20(1):52-56
    [6]D.Niarchos.Magnetic MEMS:key issues and some applications.Sensors and Actuators A 2003(109):166-173
    [7]苑伟政,马炳和.微机械与微细加工技术.西安:西北工业大学出版社,2000.1-31,36-40
    [8]湛贵辉,张万里,彭斌等.MEMS微致动器的研究.微纳电子技术,2004,9:32-36
    [9]杨友文,王建华.MEMS技术应用及现状.微纳电子技术,2003,3:29-32
    [10]蒋庄德,卢德江.微构件的机械性能测量.微米/纳米科学与技术,1997,3(1):25-28
    [11]Jiang Zhuangde,Lu Dejiang.Functional Units in MEMS and the Pertinent Research.Proceedings ofICMT 99'Xi'an,1999:88-91
    [12]孙立宁,周兆英,龚振邦.MEMS国内外发展状况及我国MEMS发展战略的思考.机器人技术与应用,2002(2):2-4
    [13]Malti Goel.Recent developments in electroceramics:MEMS applications for energy and environment.Ceramics International,2004,30:1147-1154
    [14]Liwei Lin,Member,IEEE,Huey-Chi Chu,and Yen-Wen Lu.A Simulation Program for the Sensitivity and Linearity of Piezoresistive Pressure Sensors.JOURNAL OF MICROELECTROMECHANICAL SYSTEMS,1999(4):514-522
    [15]S.Mir,L.Rufer,A.Dhayni.Built-in-self-test techniques for MEMS.Microelectronics Journal,2006(37):1591-1597
    [16]Francesca Campabadal,Josep Lluis Carreras,Enric Cabruja.Flip-chip packaging of piezoresistive pressure sensors.Sensors and Actuators A,2006(132):415-419
    [17]Per Dannemand Andersen,Birte Hoist J(?)rgensen,Lars Lading.Sensor foresight-technology and market.Technovation,2004(24):311-320
    [18]刘迎春,叶湘滨.传感器原理设计与应用.长沙:国防科技大学出版社,2002.1-4,23-24
    [19]李德胜.MEMS技术及其应用.哈尔滨:哈尔滨丁业大学出版社,2002.1-58
    [20]梅涛,伍小平.微机电系统.北京:化学工业出版社,2003.1-13
    [21]陶家渠,李应选,万达等译.硅微机械传感器.北京:中国宇航出版社.2003.25-59
    [22]刘泽文,王晓红,黄庆安等译.微系统设计.北京:电子工业出版社,2004.19-64
    [23]谢大刚.金属薄膜压敏技术探讨.仪表技术与传感器,1996(1):43-46
    [24]刘金生.离子束沉积溅射技术及应用.北京:国防工业出版社,1986.13-20
    [25]Stephen A.Campbell.微电子制造科学原理与工程技术.第二版.曾莹,严利人,王纪民等译.北京:电子工业出版社,2003.304-320
    [26]李科杰,王文襄.新编传感器技术手册.北京:国防工业出版社,2002.486-487
    [27]孙以材,刘玉岭,孟庆浩.压力传感器的设计、制造与应用.北京:冶金工业出版a)社,2000.114-115,366-381
    [28]王元庆.新型传感器原理及应用.北京:机械工业出版社,2002.1
    [29]张为,姚素英,张生才.高温压力传感器发展现状与展望.仪表技术与传感器,2002(4):a)6-8
    [30]王权,丁建宁,薛伟,凌智勇.耐高温压阻式压力传感器研究与进展.仪表技术与传感器,2005(12):1-3
    [31]MeriosA.,Santander J.,and Campabadal F,Optimized technology for the fabrication of piezoresistive pressure sensors.Journal of Micromechanics and Microengineering,2000,10:204-208
    [32]V.M.Stuchebnikov,SOS strain gauge sensors for force and pressure transducers,Sensors and Actuators,1991,A28(3):207-213
    [33]B.Diem,P.Rey and S.Renard,SOI 'SIMOX';from bulk to surface micromachining,a new age for silicon sensors and actuators,Sensors and Actuators,1995,A46-A 47:8-16
    [34]Anatoly Druzhinin,Elena Lavitska and Inna Maryamova,Medical pressure sensors on the basis of silicon microcrystals and SOI layers,Sensors and Actuators,1999,B58:415-419
    [35]Zhao Yulong,Zhao Libo and Jiang Zhuangde.A novel high temperature pressure sensor on the basis of SOl layers.Sensors and Actuators,2003,A 108:108-111
    [36]Robert O,kojie S.Operation of 6H-SiC pressure sensor at 500℃.Sensors andActuators,1998,A66(3):200-204
    [37]Eickhoff,M..Moller and H..Kroetz.G.A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates,Sensors and Actuators,1999,A74(1):56-59
    [38]王晓红,朱惠忠,董永贵.石英谐振式压力传感器及几个工程问题的研究.仪器仪表学报,1999,20(2):275-279
    [39]马丽杰.溅射型应变计与传感器.传感器技术,1989(3):29-33
    [40]Robert A.P.Optical pressure and temperature sensors for aerospace applications.Sensor Review,1998,18(1):32-38
    [41]Mitsuhiro Shikida,Kazuo Sato,Kenji Tokoro etal.Differences in anisotropic etching properties of KOH and TMAH solution.Sensors and Actuators 2000,A80:179-188
    [42]A.Koide,K.Sato,Sand Tanaka.Orientation-dependent etching rate of single crystal silicon related to etching temperature.J.Jpn.Soc.Precision Eng.1995 61(4):547-551
    [43]K.Sato,M.Shikida,Y.Matsushima etal.Characterization of orientation-dependent etching properties of single-crystal silicon:effects of KOH concentration.Sensors and Actuators.1998,A 64(2):87-93
    [44]Du,Jiangang,Ko,Wen H.,Young,Darrin J.Single crystal silicon MEMS fabrication based on smart-cut technique,Sensors and Actuators,2004,A112(1):116-121
    [45]YAO Suying,MAO Ganru,QU Nongwei.Nosie effect on characteristics of flip-flop sensor,Transaction of TianJin University,1998,4(1):82-85
    [46]Kanda Y,Yasukawa A.Optimum design considerations for silicon Piezoresistive sensors.Sensors and Actuators,A 1997(62):539-542
    [47]H.Sandmaier,K.Kuhl.A square-diaphragm piezoresistive pressure sensor with a Rectangular central boss for low-pressure ranges.IEEE Transactions on Electron Devices,1993,40(10):1754-1759
    [48]黄克智,夏之熙等.板壳理论.北京:清华大学出版社,1987,1-2
    [49]杨骊先.弹性力学及有限单元法.杭州:浙江大学出版社,2002,143-158
    [50]韩小强,黄小清,宁建国.高等板壳理论.北京:科学出版社,2002,3-6
    [51]成祥生.应用板壳理论.济南:山东科学技术出版社,1989:67-85
    [52]Bao M H.Micro Mechanical Transducers-Pressure Sensors,Accelerometers and Gyroscopes.Amsterdam:Elsevier publisher,2000,247-252
    [53]Shih-Chin Gong.Effects of pressure sensor dimensions on process window of membrane thickness Sensors and Actuators A,2004(112):286-290
    [54]任钧国,王洪业,欧阳勇.平膜式压力传感器有限元分析.传感技术学报,2001,152-156
    [55]Meyyappan K,McCluskey P,LiangYu Chen.Thermomechanical analysis of gold-based SiC die-attach assembly.Device and Materials Reliability,IEEE Transactions on.2003,3(4):152-158.
    [56]B.P.Gogoi,C.H.Mastrangelo.A low-cost batch sealed capacitive pressure sensor,in:Proceedings of the IEEE Conference on Microelectromechanical System,January 1999,12:493-498
    [57]Rudolf Krondorfer,Yeong K.Kim,Jaeok Kim.Finite element simulation of package stress in transfer molded MEMS pressure sensors.Microelectronics Reliablity,2004(44),1995-2002
    [58]姜勇,张波编著.ANSYS7.0实例精解.北京:清华大学出版社,2004,382-427
    [59]王国强.实用工程数值模拟技术及其在ANSYS上的实践.西安:西北工业大学出版社.1999:255-282
    [60]龚曙光,谢桂兰,邱爱红.ANSYS工程应用实例解析.北京:机械工业出版社,2003(4):246-250
    [61]Vitor Garcia,Fabiano Fruett.A mechanical-stress sensitive differential amplifier.Sensors and Actuators A,2006(132):8-13
    [62]Jia-Jang Wu.Finite element analysis and vibration testing of a three-dimensional crane structure. Measurement,2006(39):740-749
    [63]贾柏年,俞朴.传感器技术.南京:东南大学出版社,2000(8):11-20
    [64]李黎明.ANSYS有限元分析实用教程.北京:清华大学出版社,2005:266-295
    [65]Il-Kwon Oh.Dynamic characteristics of cylindrical hybrid panels containing viscoelastic layer based on layerwise mechanics.Composites:Part B,2007(38):159-171
    [66]叶先磊,史亚杰.ANSYS工程分析软件应用实例.北京:清华大学出版社,2003(9):237-269

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700