用户名: 密码: 验证码:
抗UV-B辐射菌Pantoea agglomerans KFS-9的选育及其抗辐射机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用双定向筛选方法,筛选到一株胞外代谢产物具有紫外保护作用的抗UV-B辐射的菌株。经过多次富集和反复分离纯化,从深圳红树林海域中获得263株纯培养的菌株,从中筛选出5株具有较高抗UV-B辐射的菌株。通过考察胞外代谢产物对菌体细胞的辐射保护作用,最终确定KFS-9为出发菌株。采用16S rRNA基因测序与传统的表型特征结合的方法进行了菌种鉴定。最后确定菌株KFS-9为Pantoea agglomerans,提交到Genbank中的注册号为DQ350072。诱导获得了一株类胡萝卜素缺失的突变菌株KFS-98,确定野生菌株与突变菌株的抗UV-B辐射性能没有明显的差别。提示菌体的类胡萝卜素含量对其抗UV-B辐射性没有影响。
     为考察胞外小分子代谢产物对菌体抗辐射性的作用,对成团泛菌胞外具有紫外吸收作用的代谢产物进行了组分及性质研究。代谢产物通过一系列的硅胶柱层析、Sephadex LH-20凝胶柱层析、RP-18反相柱层析等方法,提取分离了具有紫外吸收作用的胞外小分子代谢产物,并利用LC-TOP-MS、GC-MS、1H NMR、13C NMR等技术分析组成和结构。Pantoea agglomerans KFS-9胞外代谢产物中具有高光稳定性的紫外吸收物质为一系列溶于2,3-丁二醇的高不饱和芳香族色素类化合物(BAPs),该类化合物在290~340 nm的波长范围内能有效的吸收紫外光辐射。
     从Pantoea agglomerans KFS-9发酵液中分离提取胞外多糖,并对其基本性质进行了初步的研究。确定泛菌胞外多糖的最佳提取条件为在70℃下旋转蒸发浓缩7倍体积后,加入3倍乙醇沉淀多糖。根据确定的工艺从Pantoea agglomerans KFS-9菌株发酵液中提取得到水溶性胞外多糖。采用5%三氯乙酸(TCA)除蛋白, Q-Sepharose Fast Flow阴离子交换柱层析及Sephacryl S-300HR凝胶柱层析进一步分离纯化,经Sephacryl S-300HR凝胶柱层析证实,获得均一较好的成团
One UV-B tolerance strain that its extro cellular metabolites can protect it from UV-B irradiation is isolated using the two-step isolation method. 263 Strains are isolated from the mangrove forest marine environment in Shenzhen after repeating enrichment and selection. 5 Strains with high UV-B tolerance are selected from the 263 strains. After selected according to the protection of metabolites against UV-B irradiation, strain KFS-9 is selected as the aim strain. The isolate is identified as Pantoea agglomerans by 16S rRNA gene sequence analysis and conventional identification method, and its accession number in Genbank is DQ350072. A mutant strain KFS-98 that lack of carotenoids gene is obtained, and its tolerance to UV-B irradiation is no obvious change vs. wild-type strain. That indicates that carotenoids have no active contribution to the tolerance of cells against UV-B.
     In order to study the contribution of small molecular metabolites on the anti-ultraviolet ability, the component and property of UV-B absorbing metabolites from Pantoea agglomerans are studied. From the cell free supernatant of cultures, the extro cellular metabolites with UV absorbing ability are extracted and separated. Their components and structures are analyzed by LC-TOP-MS, GC-MS, 1H NMR, 13C NMR. A series of high unsaturated aromatic pigments dissolved in 2,3-butanediol (BAPs) are obtained from the extro cellular metabolites of strain Pantoea agglomerans KFS-9, which effectively absorb UV irradiation range from 290~340 nm, and have high light stability.
     The exopolysaccharides from Pantoea agglomerans (PAEPS) is obtained and its basis characteristics are studied elementarily. The suitable procedure for extraction
引文
[1] 陈 拓, 安黎哲, 冯虎元,等. UV-B 辐射对蚕豆叶膜脂过氧化的影响及其机制. 生态学报, 2001, 21(4) : 79-583.
    [2] 段蓉芳, 杜泽吉. DNA 相对含量与抗辐射菌辐射抗性间的关系. 苏州医学院学报, 1999, 19(5):495-496.
    [3] 侯扶江. 增强的 UV-B 辐射对黄瓜不同叶位叶片生长、光合作用和呼吸作用的影响. 应用与环境生物学报, 2001, 7 (4) : 321-326.
    [4] 华跃进, 高冠军. 耐辐射异常球菌 DNA 损伤与修复相关基因的比较基因组研究. 微生物学报, 2003, 43(1):120-126.
    [5] 李 元, 王勋陵. 紫外辐射增加对春小麦生理、产量和品质的影响. 环境科学, 1998, 18(5) :504-509.
    [6] 李元,杨济龙,王勋陵, 等. 紫外辐射增加对春小麦根际土壤微生物种群数量的影响. 中国环境科学,1999, 19(6):157-160.
    [7] 李元,岳明. 紫外辐射生态学. 北京: 中国环境科学出版社. 2000, 117-130.
    [8] 刘正文, 钟平, 韩博平. 铜绿微囊藻中的紫外光保护物质类菌孢素氨基酸(MAAs)与水华形成机制探讨. 湖泊科学,2003, 15:359-363.
    [9] 强维亚. Cd 胁迫和增强 UVB 辐射对大豆根系分泌物的影响. 植物生态学报, 2003, 27(3):293-298.
    [10] 唐立,王意. 国外医学. 社会医学分册. 1998.04.
    [11] 阎世翔. 化妆品科学(上) , 北京:科学技术文献出版社,1995, 301-302.
    [12] 杨景宏, 陈 拓, 王勋陵. 增强紫外线 B 辐射对小麦叶绿体膜组分和膜流动性的影响. 植物生态学报, 2000, 24(1): 102-105.
    [13] 姚孝元. 我国防晒化妆品中紫外线吸收剂分类和紫外吸收光谱. 中国卫生检查杂志, 2005, 15(2): 236-241.
    [14] 尹彦秋, 刘云. 防晒剂及其应用. 日用化学工业, 2003, 33(3): 174-178.
    [15] 王小菁,潘瑞炽. UV-B 对高等植物生长和产量及某些生理代谢过程的影响. 植物生理学通讯, 1995, 31(5): 385-389.
    [16] 王英利,王勋陵,岳明. UV-B 及红光对大棚番茄品质的影响. 西北植物学报, 2000,20(4):590-595.
    [17] 王勋陵. 增强紫外 B 辐射对植物及生态系统影响研究的发展趋势. 中华人民共和国卫生部. 化妆品卫生规范,2002, 12.
    [18] Ambasht T N, Agrawal M. Physiological responses of field growth Zeamay L. plants to enhanced UV-B radiation. Biotro., 1995, 24(2):15-23.
    [19] Anesio A M, Denward C M T, Tranvik L J, et al. Decreased bacterial growth on vascular plant detritus due to photochemical modification. Aqua. Micro. Ecol., 1999, 17:159-165.
    [20] Anderson A W, Nordan H c, Cain R F. Studies on a radio resistant micrococcus R1, isolation, morphology, cultural characteristics and resistance to gamma radiation. Food technol., 1956, 10:575-578.
    [21] Arrieta J M, Weinbauer M G, Hemdi G J. Interspecific variability in sensitivity to UV radiation and subsequent recovery in selected isolates of marine bacteria. Appl. Environ. Microbio., 2000,66(4):1466-1473.
    [22] Azam F. Microbial control of oceanic carbon flux: the plot thickens. Sci., 1998, 280: 694-696.
    [23] Bassman J, Hkedwards G, Ekrobberecht R. Long-term exposure to enhanced UV-B radiation is not detrimental to growth and photosynthesis in Douglasfir. New Phytologist., 2002, 154:107-120.
    [24] Bailey C A, Neihof R A, Tabor P S. Inhibitory effect of solar radiation on amino acid uptake in Chesapeake Bay bacteria. Appl. Environ. Microbio., 1983, 46: 44-49.
    [25] Banaszak A T. Photoprotective physiological and biochemical responses of aquatic organisms. In: Helbling E W & Zagarese H eds. UV effects in Aquatic Organisms and Ecosystems. The Royal Society of Chemistry, Thomas Graham House, Science Park, Cambridge, UK, 2002, 329-357.
    [26] Brandt T, Giann N A, Lercar B. Photomorhogenic responses to UV radiation III a comparative study of UV-B effects on anthocyanin and flavonoid accumulation in wild-type and aurea mutant of tomato (Lycopersicon esculentum Mill). Photochem. Photobiol, 1995, 62: 1081-1087.
    [27] Bors W, Heller W, Michel C K. Electron paramagnetic resonance studies of flavonoid compounds. (Poli G, Albano E, eds.) Free radiacals from basic scienc to medicine. BaselBirkharse., 1993, 528.
    [28] Britt A B, Chen J J, Wykoff D, et al. A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine (6-4) pyrimidinone (6-4) dimmer. Sci., 1993, 261:1571-1579.
    [29] Britt A B. Repair of DNA damage induced by ultraviolet radiation. Plant Physiol., 1995, 108:891-899.
    [30] Coffin R B, Velinsky D, Devereux R, et al. Stable carbon isotope analysis of nucleic acids to trace sources of dissolved substrates used by estuarine bacteria. Appl. Environ. Microbio., 1990, 56: 2012-2020.
    [31] CenY P, Bomman J F. The effect of exposure to enhanced ultraviolet B radiation on the penetration of monochromatic and polychromatic ultraviolet B radiation in leaves of Brassica napus. Physio Plant, 1993, 87:247.
    [32] Chou F I, Tan S T. Manganese (II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture. J. Bacteriol., 1990, 172 (4): 2029-2035.
    [33] Cockell C S. Biological effects of high ultraviolet radiation on early Earth-a t heoretical evaluation. J. theor. Biol., 1998, 193: 717-729.
    [34] Cockell C S. Biological effects of high ultraviolet radiation on early Earth-a theoretical evaluation. J. theor. Biol., 1998, 193:717-729.
    [35] Conde, F R, Churio, M S, Previtali C M. The photoprotector mechanism of mycosporine-like amino acids. Excited state properties and photo stability of porphyra-334 in aqueous solution. J. Photochem. Photobiol. B, Biol. 2000,56, 139-144.
    [36] Craige E W. What role does UV-B radiation play in freshwater ecosystem? Limnol Oceanogr., 1995, 40(2):386-393.
    [37] Daly M J, Long O Y, Kenneth W M. Interplasmidic Recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans. J Bacteriol., 1994, 7506-7551.
    [38] Daly M J, Kenneth W M. An alternative pathway of recombination of chromosomal fragment precedes recA-dependent recombination in the radioresistant bacterium Deinococus radiodurans. J Bacteriol., 1996, 4461-4471.
    [39] Daly M J, Kenneth W M. Recombination between a resident plamid and in the chromosome following irradiation of the radioresistant bacterium Deinococus radiodurans.Gene., 1997, 187:225-229.
    [40] Day T A. Ultraviolet radiation and plant ecosystems. Cockell C S, Blaustein A R, eds. Ecosystems, evolution, and ultraviolet radiation. New York: Springer-Verlag, 2001, 80-117.
    [41] Day T A, Kdemch IK SM. Influence of enhanced UV-B radiation on biomass allocation and pigment concentrations in leaves and reproductive structures of greenhouse-grown Brassica rap. Vegetatio., 1996, 127(2): 109- 116.
    [42] Dunlap W C, Masaki K, Yamamoto Y, et al. A novel antioxidant derived from seaweed. In New Developments in Marine Biotechnology, Y. LeGal and H. Halvorson, eds (New York: Plenum), 1998, 33-35.
    [43] Enling S M. UV-B induced synthesis of photo-ptotective pigments and extracellular polysaccharides in terrestrial cyanobaterium Nostoc commune. Bacteriol., 1997, 179(6):1 940-1948.
    [44] Eker A P M, Kooiman P, Hessels J K C, et al. DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans. J. Biol. Chem., 1990, 265:8009-8015.
    [45] Fischbach R J, Kossmann B, Panten H, et al. Seasonal accumulation of ultraviolet-B screening pigments in needles of Norway spruce (Picea abies (L.) karst). Plant Cell Environ., 1999, 22(1):27-37.
    [46] Flent S D, Caldw Ell M M. Partial inhibition of in vitro pollen germination by simulated solar ultraviolet-B radiation. Ecology., 1984, 65(3):792-795.
    [47] Foti M, Piattelli M, Amico V. Antioxidant activity of phenolic meroditerpenoids from marine algae. J. Photochem. Photobiol., 1994, 26:159-164.
    [48] Garcia-Pichel F, Castenholz R W. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol., 1991, 27:395-409.
    [49] Garcia-Pichel F, Wingard C E, Castenholz R W. Evidence regarding the UV-sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl. Environ. Microbiol., 1993,59:170-176.
    [50] Gerber S. Effects of solar radiation on motility and pigmentation of three species of phytoplankton. Environ. Exp. Bot., 1993, 33(4):515-522.
    [51] Glickman B W, Schaaper R M, Haseltine W A, et al. The C-C (6-4) UV photoproduct ismutagenic in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A., 1986, 83:6945-6949.
    [52] Greenberg B M, Gaba V, Canaani O, et al. Separate photosensitizers mediate degradation of the 32-kDa photosystem II reaction center protein in the visible and UV spectral regions. Proce..Nat. Acad. Sci., USA, 1989, 86: 6617-6620.
    [53] Grant P T, Middleton C, Plack P A, et al. The isolation of four aminocyclohexenimines (mycosporines) and a structurally related derivative of cyclohexane 1:3-dione (gadusol) from the brine shrimp. Artemia. Comp. Biochem. Physiol., 1985, 80:755-759.
    [54] Hader D P. Photomovement in “Physiology or movements encyclopedia of plant physiology”(Haupt W and Feinleib M E Eds.), 1978, 7:268-309.
    [55] Haeder D P. Effect of increased solar ultraviolet radiation on aquatic ecosystems. American Biology., 1995, 24(3):174-179.
    [56] Hader D P, Worrest R C, Kumar H D, et al. Effects of increased solar ultraviolet radiation on aquatic ecosystem. Am. Bio., 1995, 24(3):174-180.
    [57] Hansen M T. Four proteins synthesized in response to deoxyribonucleic acid damage in Micrococcus radiodurans. J. Bacteriol., 1980, 141(1): 81-86.
    [58] Herick F. Effect of ultraviolet light on stomata movement. Biol. Plant, 1994 , 6 :70-73.
    [59] Herndl G J, Mueller-Niklas G, Frick J. Major role of ultraviolet-B radiation in controlling bacterioplankton growth in the surface layer of the ocean. Nature, 1993, 361:717-719.
    [60] Hidema J, Kumagai T, Sutherland J C, et al. Ultraviolet B sensitive rice cultivar deficient in cyclobutyl pyrimidine dimmer repair. Plant Physilo, 1997, 113:38-44.
    [61] Ichiki H, Sakurada H, Kamo N, Takahashi TA, et al. Generation of active oxygens, cell deformation and membrane potential changes upon UV-B irradiation in human blood cells. Biol. Pharm. Bull., 1994, 17(8):1065-1069.
    [62] Jorgensen L V, Madsen H L, Thomsen M K, et al. Regulation of phenolic antioxidants from phenoxyl radicals: An ESR and electrochemical study of antioxidant hierarchy. Free Rad. Res., 1999, 30:207-230.
    [63] Joux F, Jefftrey WH, Lebaron P, et al. Marine bacterial isolates display diverse responses to UVB radiation. Appl. Environ. Microbio., 1999, 65(9):3820-3827.
    [64] John R B. Radiation rasistance: the fragments that remain. Current biol. 2000, 10:204-205.
    [65] John R B, Ashlee M E, Park M J. Why is Deinococcus radiodurans so resistant to ionizingradiation. Tren. Microbio., 1999, 7(9): 362-364.
    [66] Kenneth W M. Repair of ionizing-radiation damage in the radiation resistant bacterium Deinococcus radiodurans. Mutat. Res., 1996, 36(3): 1-7.
    [67] Kira S M, aravind L Y. Genome of the extremely radiation-resistant Bacterium Deinococcus radiodurans viewed from the perspective of comparative genomic. Microbio. Molec. Bio. Rev., 2001, 64(1): 44-79.
    [68] Leach C M. Ultraviolet-absorbing substances associated with light-induced sporulation in fungi. Can. J. Bot., 1965, 43:185-200.
    [69] Li J Y, Qulee T M, Raba R. Arabidopsis flavonoid mutants are hypersensitive to UV-B radiation. Plant Cell, 1993, 5:171-179.
    [70] Lippke J A, Gordon L K, Brash D L, et al. Distribution of UV light-induced damage in a defined sequence of human DNA: Detection of alkaline-sensitive lesions at pyrimidine nucleoside-cytidine sequences. Proc. Natl. Acad. Sci. U.S.A., 1981, 78:3388-3392.
    [71] Liu Y Q. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation Proc. Natl Acad. Sci. U. S. A., 2003, 100:4191-4196.
    [72] Lois R, Buchanan B B.. Severe sensitivity to UV radiation in an Arabidopsis mutant deficient in a flavonoid accumulation. Plant, 1994, 194:504-509.
    [73] Martin JP Jr, Burch P. Production of oxygen radicals by photosensitization. Meth. Enzymol., 1990, 186:635-45.
    [74] Middleton E M, Teramura A H. The role of flavonol glycosides and carotenoids in protecting soybean from ultraviolet-B damage. Plant Physiol., 1993, 103:741-752.
    [75] Mitchell D J, Jen J and Cleaver J E. Relative induction of cyclobutane dimes and cytosine hydrates in DNA irradiated in vitro and in vivo with UVC and UVB light. Photochem. Photobiol., 1991, 54:741-746.
    [76] Mitchell D L and Naim R S. The biology of the (6-4) photoproduct. Annual review. Photochem. Photobiol., 1989, 49:805-819.
    [77] Mittler R, Tel-Or. Oxidative stress responses in the unicellular cyanobacterium Synechococcus PCC7942. Free Rad.Res. Commun., 1991, 12:845-850.
    [78] Moseley B E, Evans D M. Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimmersradiation. Tren. Microbio., 1999, 7(9): 362-364.
    [66] Kenneth W M. Repair of ionizing-radiation damage in the radiation resistant bacterium Deinococcus radiodurans. Mutat. Res., 1996, 36(3): 1-7.
    [67] Kira S M, aravind L Y. Genome of the extremely radiation-resistant Bacterium Deinococcus radiodurans viewed from the perspective of comparative genomic. Microbio. Molec. Bio. Rev., 2001, 64(1): 44-79.
    [68] Leach C M. Ultraviolet-absorbing substances associated with light-induced sporulation in fungi. Can. J. Bot., 1965, 43:185-200.
    [69] Li J Y, Qulee T M, Raba R. Arabidopsis flavonoid mutants are hypersensitive to UV-B radiation. Plant Cell, 1993, 5:171-179.
    [70] Lippke J A, Gordon L K, Brash D L, et al. Distribution of UV light-induced damage in a defined sequence of human DNA: Detection of alkaline-sensitive lesions at pyrimidine nucleoside-cytidine sequences. Proc. Natl. Acad. Sci. U.S.A., 1981, 78:3388-3392.
    [71] Liu Y Q. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation Proc. Natl Acad. Sci. U. S. A., 2003, 100:4191-4196.
    [72] Lois R, Buchanan B B.. Severe sensitivity to UV radiation in an Arabidopsis mutant deficient in a flavonoid accumulation. Plant, 1994, 194:504-509.
    [73] Martin JP Jr, Burch P. Production of oxygen radicals by photosensitization. Meth. Enzymol., 1990, 186:635-45.
    [74] Middleton E M, Teramura A H. The role of flavonol glycosides and carotenoids in protecting soybean from ultraviolet-B damage. Plant Physiol., 1993, 103:741-752.
    [75] Mitchell D J, Jen J and Cleaver J E. Relative induction of cyclobutane dimes and cytosine hydrates in DNA irradiated in vitro and in vivo with UVC and UVB light. Photochem. Photobiol., 1991, 54:741-746.
    [76] Mitchell D L and Naim R S. The biology of the (6-4) photoproduct. Annual review. Photochem. Photobiol., 1989, 49:805-819.
    [77] Mittler R, Tel-Or. Oxidative stress responses in the unicellular cyanobacterium Synechococcus PCC7942. Free Rad.Res. Commun., 1991, 12:845-850.
    [78] Moseley B E, Evans D M. Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimmersseven Medicage species. Crop Sci., 1995, 35: 805-808.
    [92] Proteau P J, Gerwick W H, Garcia-Pichel F, et al. The structure of scytonemin: an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experi. 1993, 49: 825-829.
    [93] Rail C. Algal responses to enhanced ultraviolet-B: Proceedings of the Indian National Science Academy Part B. Biolog. Sci., 1998, 64(2): 125-129.
    [94] Ral L C. Interactive effects of UV-B and copper on photosynthetic activity of the cyanobacterium Anabaena doliolum. Environ. Exp. Bot., 1995, 35(2):177-184.
    [95] Rice-Evans C A, Miller N J, Bolwell P G. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Rad. Res., 1995, 22:375-383.
    [96] Roba K J, Shrd I F, Wolbism, et al. Screening of the influence of flavonoids on lipoxygenase and cyclooxygenase activity, as well as nonenzymic lipid oxidation. Pol J. Pharmacol Pharm., 1990, 40:793-797.
    [97] Robberech T R, Caldw Ell M M. Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenotherza strieta. Plant. Cell Environ., 1983, 6: 477- 485.
    [98] Rosa T M, Julkunen-Tiitto R, Lehto T, et al. Secondary metabolites and nutrient concentrations on silver birch seedlings under five levels of daily UV-B exposure and two relative nutrient addition rates. New Phytol., 2001, 150:121-131.
    [99] Rozema J, Joe van de Staaij, Bjorn L O, et al. UVB as an environmental factor in plant life: stress and regulation. Tree, 1997, 12(1):22-28.
    [100] Rupp J, Bohringer A, Yonenaga A, Hilded J. Textiles for protection against harmful ultraviolet radiation. Inter. Texti. Bull., 2001, 47(6):8-20
    [101] Ryan K G, Markham K R, Bloor S J, et al. UV-B radiation inducd increase in quercetin kaempferol ratio in wild-type and transgenic lines of Petunia. Photochem. photobio., 1998, 68(3):323-330.
    [102] Sancar A, Rupp W D. A novel repair enzyme: UvrABC excision nuclease of Escherichia colicuts a DNA strand on both sides of the damaged region. Cell, 1983, 33:249-260.
    [103] Sinha R P, Klisch M, Gr?niger A, et al. Responses of aquatic algae and cyanobacteria to solar UV-B. Plant Ecol, 2001, 154:221-236.
    [104] Sinha R P, Htier D P. Effects of ultraviolet-B radiation in three rice field cyanobacteria,Plant Physiol., 1998,153:763-769.
    [105] Sinha R P, Klisch M, Helbling E W, et al. Induction of mycosporine-like amino acids (MAAs) in cyanobacteria by solar ultraviolet-B radiation. J. Photochem.Photobiol. B. Biologl., 200l, 60, 129-135.
    [106] Shiodell D T, Rind D, Lonergan P. Increased polar stratospheric ozone losses and delayed eventual recovery owing to the increading greenhouse-gas concentrations. Nature, 1998, 392(9):589-597.
    [107] Smith K C, Martignoni K D. Protection of Escherichia coli cells against the lethal effects of ultraviolet and x irradiation by prior x irradiation: a genetic and physiological study. Photochem Photobiol., 1976, 24:515-532.
    [108] Stapleton A E. Ultraviolet radiation and plants: burning questions. Plant Cell, 1992, 4:1 353-1359.
    [109] Stapleton A E, Walbo T V. Flavonoids can protect maize DNA from the inducing of UV radiation damage. Plant Physioogy., 1994, 105:881-889.
    [110] Sullivan C W, Cota G F, Kremrin D W, et al. Distribution and activity of bacterioplankton in the marginal ice zone of the Weddell-Scotia Sea during austral spring. Mar. Ecol. Prog. Seri., 1990, 63: 239-252.
    [111] Taguchi S. Enhanced photosynthesis rate of natural phytoplankton assemblages in the absence ultraviolet radiation in Akkeshi Bay, Japan. Bull Plankton-Soc Japan, 1994, 41(2):143-150.
    [112] Takeuchi Y, Marakami M, Nakajima N, et al. Induction and repair of damage to DNA in cucumber teotyledons irradiation with UV-B. Plant Cell Physio., 1996, 37(2): 181-186.
    [113] Taylor C B. Damages control. Plant Cell, 1997, 9:111-119.
    [114] Teramura A H, Sullivan J H, Lydon J. Effect of UV-B radiation on soybean yield and seed quality: a 6-year field study. Phydiol Plant. 1990, 80: 5-13.
    [115] Teramura A H, Kziskal H. Changes in growth and photo synthetic capacity of rice with increased UV-B radiation. Physiol. Plant., 1999, 83:373-380
    [116] Tev N M, Braun J, Fieser G. The protective function of the epidermal layer of seedling against ultraviolet B radiation. Photochem. Photobiol, 1991, 53:329-333.
    [117] Van T K, Garrard L A, West S H. Effects of UV-B radiation on net photosynthesis ofsome crop plants. Crop Sci., 1976, 16 :715-718.
    [118] Vernet M. UV radiation in anarctic waters: Response of phytoplankton pigments, in: Response of Marine Phytoplankton to Natural Variations in UV-B Flux (Mitchell B G, Holm-Hansen O and Sobolev I, eds) c 138-088, Scipps Insitution of Oceanography, La Jolla, 1990, 1:1-12.
    [119] Warren J M, Bassman J H, Mattnson D S, et al. Alteration of foliar flavonoid chemistry induced by enhanced UV-B radiation in field-grown Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii. J. Photochem. Photobio.: B-Bio., 2002, 66(2): 125-133.
    [120] Woodall G S, Steward G R. Do anthocynins play a role in UV protection of the red juvenile leaves of Syzygium. Exp. Bot., 1998, 49:1447-1450.
    [121] Xiong F. Screening of freshwater algae (chlorophyta, chromophyta) for ultraviolet-B sensitivity of photosynthetic apparatus. Plant Physiol., 1996, 148(1-2):42-51.
    [122] Xiong F. Strategies of ultraviolet-B protection in microscopic algae. Physiol. Plant., 1997, 10(2): 378-384.
    [123] Xiong F. The occurrence of UVB absorbing MAAs in freshwater and terrestrial microalgae. Aquat. Bot., 1999, 63(1):37-44.
    [124] Yabe K. The influence of ultraviolet radiation on Marine organisms: the secretion of UV-absorbing from Palmatia palmata. Phycol., 1998, 46(3):167-174.
    [125] Zavala J A, Ravetta D A. The effect of solar UV-B radiation on terpenes and biomass production in Grindelia chiloensis (Asteraceae), a woody perennial of Patagonia, Argentina. Plant Eco., 2002, 161(2):185-191.
    [126] Zepp R G, Callaghan T V, Erickson D J. Effects of increased solar ultraviolet radiation on biogeochemical cycles. Am Bio., 1995, 24:181-187.
    [1] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册. 北京: 科学出版社, 2001.
    [2] 涂国荣,王武尚,张利兴. 复合天然紫外吸收剂在防晒化妆品中的应用研究. 日用化学工业, 2000, 5:18-20.
    [3] 杨桥,张俊祥,朱石桥,等. 耐辐射奇球菌抗辐射物质的研究. 分析科学学报, 2004, 20(5):465-467.
    [4] 尹彦秋,刘云. 防晒剂及其应用. 日用化学工业, 2003, 33(3): 174-178.
    [5] 袁昌齐. 中药化妆品的研制. 中国野生植物资源, 1996, 3:13.
    [6] Arrieta J M, Weinbauer M G, Hemdi G J. Interspecific variability in sensitivity to UV radiation and subsequent recovery in selected isolates of marine bacteria. Appl. Environ. Micro., 2000, 66 (4) :1466- 473.
    [7] De Mora, Stephen J, Serge Demers, et al. The Effects of UV Radiation in the Marine Environment. Cambridge University Press, 2000: 1-334.
    [8] Delong E F, Wickham G S, Pace N R. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Sci.,1998, 243 :1360-1363.
    [9] Di Mascio P, Kaiser S, Sies H. Lycopene as the most biological carotenoid singlet . Arch. Biochem. Biphys. 1989, 274:532-538.
    [10] Di Mascio P, Kaiser S, Sies H. Carotenoids, tocopherols and thiols and biological oxygen. Biochem. Soc. Trans., 1990, 18:1054-1056.
    [11] Di Mascio P, Kaiser S, Sies H. Antioxidant defense system: the role of carotenoid. Arch. Biochem. Biophys., 1991, 24:431-436.
    [12] Drancourt M, Bollet C, Carlioz A, et al. 16S Ribosomal DNA Sequence Analysis of a Large Collection of Environmental and Clinical Unidentifiable Bacterial Isolates. J Clinl. Microbiol, 2000, 38: 3623-3630.
    [13] Edwards P R. Edwards & Ewing of identification of Enterobacteriaceae (4th ed.). New York, Elsevier, 1986, 391-415.
    [14] Eker A P M, Kooiman P, Hessels J K C, et al. DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans. J. Biol. Chem., 1990, 265: 8009-8015.
    [15] Eisenstark A, Bacterial genes involved in response to near-ultra- violet radiation, Adv. Genet., 1989,26: 99-147.
    [16] Enlings M. UV-B induced synthesis of photo-ptotective pigments and extracellular polysaccharides in terrestrial cyanobaterium Nostoc commune. Bacteriol., 1997, 179(6):1940-1948.
    [17] Favre A, Hajnsdorf E, Thiam K, et al. Muta- growth delay induced in Escherichia coli by near ultraviolet radiations, Biochemi., 1985, 67: 335-342.
    [18] Fox G E, Wisotzkey J D, Jurtshuk P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol., 1992, 42: 166-170.
    [19] Gavini F, Mergaert J, Beji A, et al. Transfer of Enterobacter agglomerans (Bjeijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int. J. Syst. Bacteriol., 1989, 39: 337-345.
    [20] Joux F, Jefftrey W H, Lebaron P, et al. Marine bacterial isolates display diverse responses t o UV-B radiation . Appl. Environ. Microbio., 1999 ,65 (9) :3820-3827.
    [21] Middleton E M, Teramura. A H. The role of flavonol glycosides and carotenoids in protecting soybean from ultraviolet-B damage. Plant Physiol., 1993, 103:741-752.
    [22] Mittler, R., Tel-Or E. Oxidative stress responses in the unicellular cyanobacterium Synechococcus PCC7942. Free Radical Res. Commun., 1991, 12:845-850.
    [23] Nicholson, W L, Munakata N, Horneck G, et al. Resistance of Bacillus endopsores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev, 2000, 64: 548-572.
    [24] O’Brian P A, Houghton J A. Photoreactivation and excision repair of UV induced pyrimidine dimers in the unicellular cyanobacterium Gloeocapsa alpicola (Synechocystis PCC 6308). J. Phot. Photobiol., 1982, 35: 359-364.
    [25] Oppezzo O J, Pizarro R A. Sublethal effects of ultraviolet a radiation on Enterobacter cloacae. J Photochem Photobiol B: Biol, 2001, 62: 158-165.
    [26] Osborn F, Blinder R, Justin R E, et al. 精编分子生物学实验指南. 颜子颖, 王海林, 译. 第一版. 北京: 科学出版社, 1998, 39-401.
    [27] Reznichenko O G, Tsikhon Lukanina E A, Lukasheva T A. Effects of ultraviolet radiationon ocean biota. Russ. J. Mari. Bio., 1999, 25 (1) :23-29.
    [28] Stackebrandt E, Goebel B M. A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol., 1994, 44: 846-849.
    [1] Ferrer I, Thurman E M. Measuring the mass of an electron by LC/TOF-MS. Analytical Chemistry, 2005, 77:3394-3400.
    [2] Flickinger M C. Current biological research in conversion of cellulosic carbohydrates into liquid fuels: how far have we come? Biotechnol. Bioengng, 1980,22,27-48.
    [3] Garcia-Pichel, F., and R. W. Castenholz. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 1991,27:395-409.
    [4] Garcia-Pichel, F., C. E. Wingard, and R. W. Castenholz. Evidence regarding the UV-sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl. Environ. Microbiol. 1993,59:170-176.
    [5] Garg S K, Jain A. Fermentative production of 2,3-butanediol: a review. Biores。 Tech., 1995, 51:103-109.
    [6] Grover B S, Garg S K, Verma J. Production of 2,3-butanediol from wood hydrolysate by Klebsiella pneumoniae. World J. Microbiol. Biotechnol., 1990, 6:328-32.
    [7] Jansen N B, Tsao G T. Bioconversion of pentoses to 2,3-butanediol by Klebsiella pneumoniae. Adv. Biochem. Engng Biotechnol., 1983,27:85- 100.
    [8] Long S K, PatrickR. The present status of the 2,3-butylene glycol fermentation. Adv. Appl. Microbiol., 1963,5:135-55.
    [9] Motwani M, Seth R, Daginawala H F, et al. Microbial production of 2,3-butanediol from water hyacinth. Biores. Technol., 1993,44:187-95.
    [10] Shirasaka N,Nishi K,Shimizu S. Occurrence of a furan fatty acid in marine bacteria. Biochimica et Biophysica Acta, 1995, 1258:225-227.
    [1] 董群,郑丽伊,方积年. 改良的苯酚-硫酸法测定多糖和寡糖含量的研究. 中国药学杂志. 1996, 31(9): 32-36.
    [2] 戈苏国,杨寿钧,张树政. 经曲霉葡萄糖淀粉酶中糖肽结合方式的研究.微生物学报,1983, 23(3):265-269
    [3] 刘方明,李志孝,孟延发,等. 多糖 RHG 的分离纯化及化学结构. 药学学报, 1997, 32(8):603-606.
    [4] 强亦忠,王崇道,邵源. 几种制剂清除辐射所致自由基的 ESR 研究. 辐射防护, 1999, 19 :371-376.
    [5] 虞志光 编 . 高聚物分子量及其分布的测定 . 上海科学技术出版社 . 上海 1984:129-146.
    [6] 张惟杰 主编. 糖复合物生化研究技术. 第一版. 浙江:浙江大学出版社. 1994, 63.
    [7] Amellal N, Burtin G, Bartoli F, et al. Colonization of Wheat Roots by an Exopolysaccharide-Producing Pantoea agglomerans Strain and Its Effect on Rhizosphere Soil Aggregation. Appl. Environ. Microbiol., 1998, 64(10): 3740-3747.
    [8] Achouak W, Heulin T, Villemin G, et al. Root colonization by symplasmata-forming Enterobacter agglomerans. FEMS Microbiol. Ecol., 1994, 13:287-294.
    [9] Achouak W, Villemin G, Balandreu J, et al. Specificity of root colonization by symplasmata-forming Pantoea agglomerans. In “Nitregen Fixation with Rice Production”. Rahaman M (eds), Kluwer Academic Publishers., 1996, 191-201.
    [10] Dubios M. Colorimetric method for determination of sugar and related substances. Anal. Chem., 1956, 28:350.
    [11] Kamei J, Iwamoto Y, Suzuki T, et al. Antinociceptive effect of lipopolysaccharide from Panroea agglomerans on streptozotocin-induced diabetic mice. Eur. J. Pharmacol., 1994, 251:95-98.
    [12] Mizuno D, Soma D I, Oral or percutaneous administration of lipopolysaccharide of small molecular size may cure various intractable diseases: a new version of Coley's toxin. Mol. Biother., 1992, 4:166-169.
    [13] Nishizawa T, Inagawa H, Oshima H, et al. Homeostasis as regulated by activated macrophage. I. Lipopolysaccharide (LPS) from wheat flour: isolation, purification and some biological activities, Chem. Pharm. Bull., 1992, 40:479-483.
    [14] Okutomi T, Nishizawa T, InagawaH et al. dependence by lipopolysaccharide from Panroea agglomerans. Eur. Cytokine Netw., 1992, 3 : 417-420.
    [15] Ressing J L, Strominger L J, Leloir F L. A modified calorietric method for the estimation of N-acetylamino sugars. J. Biol. Chem., 1955, 217: 959-1006.
    [16] Staub A M. Removal of proteins Sevag method. Methods Carbohydr. Chem. 1965, 5:5-6.
    [17] Sprebt J I, James E K, et al. N2-fixation by endophytic bacteria: Question of entry and operation. In “Azospirillum VI and related microorganisms”, Istvan Fendrik et al. (eds), Springer-Verlag, 1995, 15-30.
    [18] Suzuki T, Funada M, Sugano Y, et al. Effects of lipopolysaccharide from Panroea agglomerans on the cocaine-induced place preference. Life Sci., 1994, 54:75-80.
    [19] Tsukioka D, Nishizawa T, Miyase T, et al. Structural characterization of lipid A obtained from Pantoea agglomerans lipopolysaccharide. FEMS Microbiology Letters, 1997, 149: 239-244.
    [20] Wharton C W. Studies of the structure and mechanism of enzymes using FT-IR spectroscopy. New York: John Wiley and Sons, 1985, 155-159.
    [21] Wei W S, Tan J Q, Guo F, et al. Effect of coriolus versicolor polysaccharides on superoxide dismutase activities in mice. Act. Pharmac. Sinica., 1996, 17:174-178.
    [1] 郑荣梁主编. 自由基生物学. 北京:高等教育出版社, 1992,272-279.
    [2] 林金明. 活性氧的化学发光测定法. 环境科学学报,2003,23(2):230-238.
    [3] 强亦忠, 王崇道, 邵源. 几种制剂清除辐射所致自由基的 ESR 研究. 辐射防护, 1999, 19:371-376.
    [4] 张尔贤,俞丽君. 鼠尾藻多糖清除氧自由基作用的研究Ⅱ Uvc 鼠尾藻对多糖抗氧化作用的影响.中国海洋药物, 1997, 3: 1-4.
    [5] 张尔贤, 俞丽君, 肖湘, 等. 鼠尾藻多糖清除自由基作用的研究. 中国海洋药物, 1995, 1:1-4
    [6] 邹国林, 桂兴芬.一种 SOD 的测活方法——邻苯三酚自氧化法的改进. 生物化学与生物物理进展, 1986,4: 71-73.
    [7] 周志刚,刘志礼,刘雪娴. 极大螺旋藻多糖的分离、纯化及其抗氧化特性的研究. 植物学报, 1997, 39(1):77-81.
    [8] Conde, F R, Churio, M S, Previtali C M. The photoprotector mechanism of mycosporine-like amino acids. Excited state properties and photo stability of porphyra-334 in aqueous solution. J. Photochem. Photobiol. B, Biol. 2000, 56:139-144.
    [9] Eiko, M.K., Toshi, T., Shizuko, K. 2005. Reduction of UVB/A-generated free radicals by sodium L-ascorbyl-2-phosphate in cultured mouse skin, J. Heal. Sci. 51: 122-129.
    [10] Nakayama, S., Takehana, M., Kanke, M. 1999. Protective effects of sodium-L-ascorbyl-2-phosphate on the development of UVB-induced damage in cultured mouse skin. Biol. Pharm. Bull. 22:1301-1305.
    [11] Pryor W.A. Oxy-radicals and related species: Their formation, life-times and reactions. Annu Rev Physiol, 48, 1986, 657-667
    [12] Wei W S, Tan J Q, Guo F, et al. Effect of coriolus versicolor polysaccharides on superoxide dismutase activities in mice. Act. Pharmac. Sinica., 1996, 17:174-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700