用户名: 密码: 验证码:
北方滨海盐土高效改良技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滨海盐土一直被世界公认为“绿化禁区”,然而随着滨海地区经济和城市化的发展,滨海盐土改良绿化迫在眉睫。为了寻求低投入、可持续性强和生态环境效益强的滨海盐土改良方法,本研究以“节水型盐碱滩地物理-化学-生态综合改良及植被构建技术”为依托,在天津大港东河筒村开展了技术理论构建与优化田间试验、大土柱模拟试验和苗木耐盐性田间试验,利用Lysimeter蒸渗仪土柱开展了不同壤质滨海盐土淋洗脱盐动态试验,并分别在河北曹妃甸、天津临港和天津南港开展了不同壤质滨海盐土技术工程改良试验等。
     技术理论构建与优化田间试验、大土柱模拟试验结果表明砂柱间距以0.67m为最佳,其淋洗脱盐率是对照的1.81倍;砂柱填充物以秸秆最佳,其淋洗脱盐率较对照提高13.49%;淋层厚度以10cm为最佳,其淋洗脱盐率较对照提高26.72%;秸秆添加量以20%为最佳,其水分下渗速率是对照的3.50倍,淋洗脱盐效率较对照提高12.82%,有机质和全氮含量分别提高为1.87%和1.34g/kg;脱硫石膏添加量以1%为最佳,能够使pH值由8.77降低为7.85;设置浸泡时间能够提高8.82%的淋洗脱盐率和脱盐均匀度。因此,PCET核心技术最佳组合为:设置间距0.67m的砂柱+以秸秆填充砂柱+10cm厚度淋层+添加20%秸秆+添加1%脱硫石膏+一定时间的浸泡。
     利用优化后PCET改良滨海盐土结果表明:水分下渗速率、淋洗脱盐率、单位水量淋盐率、淋盐均匀度、养分含量等显著提高,脱盐碱化现象、表层强碱化现象和盐分累积现象得到有效缓解。
     不同壤质滨海盐土淋洗脱盐动态试验结果表明:砂质、壤质和粘质滨海盐土淋洗脱盐过程中电导率变化具有4个显著的阶段,技术改良改变了其淋洗脱盐过程,改良后砂质和壤质滨海盐土电导率变化具有2个显著的阶段,粘质滨海盐士电导率变化仍具有4个显著的阶段,但其每个阶段较未改良粘质滨海盐土有显著差异。底部有滤液持续析出所需时间粘质滨海盐土分别是壤质和砂质的3倍和6倍,利用技术改良可使砂质、壤质和粘质滨海盐土滤液析出时间分别缩短80%、80%和86%。将各层电导率淋洗至6mS/cm以下,砂质、壤质和粘质滨海盐土分别需要淋水396mm、1358mmm和2829mm,利用技术改良分别能够节水21.46%、35.42%和48%。同时,技术改良可以显著提高等量淋水条件下不同壤质滨海盐土总体脱盐率和表层脱盐率,能够缓解盐分逐层累积现象,显著提高有机质和全氮含量。
     苗木耐盐性田间试验结果表明植被的分布和土壤盐碱含量显著相关,盐地碱蓬、狗尾草、碱蓬和柽柳可直接应用于高盐度的滨海盐土原土改良和绿化,碱地肤、碱蓬、碱菀和芦苇可直接应用于碱性较高的盐碱土原土改良和绿化,红叶杨不适宜在滨海盐土地区进行原土栽植,可利用技术对滨海盐土进行改良后结合截干处理进行栽植。
     不同壤质滨海盐土技术工程改良试验结果表明“滨海盐土高效改良及植被构建”系列技术能够应用于砂质、壤质和粘质滨海盐土原土改良,能够使不同壤质滨海盐土快速脱盐,缓解脱盐碱化现象,养分含量显著提高,苗术成活率高达95%以上
Coastal saline soil area has long been recognized as the forbidden land for planting. However, it is urgent to improve those saline areas with rapid economic development and urbanization in coastal regions. To seek a soil improving method featured in low input, sustainability and desired environment benefits, several experiments were carried out, guided by water-saving technology to improve saline alkali marshes and build vegetation by integrating physical-chemical-ecological method. Field experiment for the technology theory construction and optimization, big soil column simulation experiment and the salt tolerance of seedlings experiment were carried out in Donghetong village, Tianjin; leaching desalinize tests in different texture coastal saline soil were carried out by using Lysimeter column; different texture coastal saline soil project testes were carried out in Caofeidian, Hebei province, Lingang and Nangang, Tianjin respectively.
     The results of field experiment for the technology theory construction and optimization and big soil column simulation experiment showed that the ideal sand column interval was0.67m, as leaching desalting rate is1.81times that of the CK; the best sand column filling was straw, as leaching desalting rate increased13.49%;10cm depth leached layer was optimum, since leaching desalting rate improved26.72%compared with the CK; the best straw addition was20%, after which water infiltration rate was3.50times that of the CK, leaching desalting rate went up12.82%, organic matter and total nitrogen content increased to1.87%and1.34g/kg respectively; the ideal FGD gypsum addition was1%. as the pH was reduced from8.77to7.85; set immersion could improve desalting uniformity and increased8.82%leaching desalting rate. The PCET best combination of core technology is sand columns with0.67m interval+sand columns filled with straw+10cm thickness leached layer+20%straw adding+1%FGD gypsum adding+immersion.
     With the optimized PCET to improve coastal saline soil, the results showed that water infiltration rate, leaching desalting rate, salt washing amount per unit water, desalting uniformity and nutrient content could significantly increase. Desalting alkalization, strong alkalization and salt accumulation in surface soil layer could be effectively alleviated.
     The results of leachins desalinization tests in different coastal saline soil texture showed that before the improvement the elution conductivity changes for sandy, loamy and clayey coastal saline soil had4significant stages during the desalination, while after the improvement sandy and loamy coastal saline soil had2significant stages and clayey coastal saline soil still had4significant stages, which, however, were quite different from those before the experiment. The time needed in continuous filtrate precipitation from the bottom for clayey coastal saline soil is3times for loamy soil and6times for sandy soil. With technical improvements, precipitation time for sandy, loamy and clayey coastal saline soil was reduced by80percent,80percent and86percent respectively. The leaching water needed to reduce elution conductivity to6mS/cm and below for sandy, loamy and clayey coastal saline soil was396mm,1358mm and2829mm. With technical improvements, water could be saved as high as21.46percent,35.42percent and48percent respectively. Meanwhile, after the technical improvements, we significantly raised the overall desalination rate and the desalination rate in the surface layer for different soils with the same amount of leaching water, alleviated the salt accumulation layer by layer, and significantly increased organic matter and total nitrogen content.
     The field experiment results of seedlings salt tolerance showed that there was a significant correlation between the vegetation distribution and soil salinity. Suaeda salsa and Setaira viridis(L.)Beauv and Suaeda glauca and Tamarix chinensis can be directly applied to the high salinity of coastal saline soil, Kochia scoparia var.sieversiana and Suaeda glauca and Tripolium vulgare and Phragmites communis can be directly applied to alkali soil, Popidus deltoids are unsuitable to directly plant in coastal saline soil.
     The experiment results of improvement projects in different coastal saline soil texture showed that a series of technologies to quickly and efficiently improve vegetation arrangement in coastal saline soil can be applied to sandy, loamy and clayey coastal saline original soil, where saline soil could be quickly desalted, the soil alkalization could effectively be relieved, and the nutrient content could be significantly improved and the seedlings survival rate reached over95%.
引文
[1]柏新富,朱建军,张萍等.不同光照强度下三角叶滨藜光合作用对盐激胁迫的响应[J].干旱地区农业研究,2005,9(5):118-12].
    [2]毕经纬,张佳宝,陈效民,等.应用HYDRUS-1D模拟农田土壤水渗漏及硝态氮淋失特征[J].农村生态环境,2004,20(2):28-32.
    [3]薄鹏飞,孙秀玲,孙同虎,等.NaCl胁迫对海滨木槿抗氧化系统和渗透调节的影响[J].西北植物学报,2008,28(1):113-118.
    [4]陈恩凤,王汝镛,王春裕.我国盐碱土改良研究的进展与展望[J].土壤通报,1979,01:1-4.
    [5]陈恩凤,王汝镛,王春裕.有机质改良盐碱土的作用[J].土壤通报,1984,15(5):193-196.
    [6]陈丽娟,冯起,王昱,等.微咸水灌溉条件下含黏土夹层土壤的水盐运移规律.农业工程学报,2012,28(8):44-51.
    [7]陈丽娟.疏勒河灌区洗盐条件下土壤水盐运移模拟研究[D].兰州:甘肃农业大学,2008.
    [8]迟道才,程世国,张玉龙,等.国内外暗管排水的发展现状与动态[J].沈阳农业大学学报,2003,34(3):312-316.
    [9]丁海荣,洪立洲.盐生植物碱蓬及其研究进展[J].江西农业学报.2008,20(8):35-37.
    [10]丁海荣,洪立州,王茂文,等.星星草耐盐生理机制及改良盐碱土壤研究进展[J].安徽农学通报,2007,13(16):58-59.
    [11]董志良,张功新,李燕,等.大面积围海造陆创新技术及工程实践[J].水运工程,2010,(10):54-67.
    [12]冯永军,陈为峰,张蕾娜,等.设施园艺土壤的盐化与治理对策[J].农业工程学报,2001,17(2):111-114.
    [13]冯永军,陈为峰,张蕾娜,等.滨海盐渍土水盐运动室内实验研究及治理对策[J].农业工程学报,2000,16(3):38-42.
    [14]甘肃省农科院土肥所.腐植酸类肥料的作用与效果[J].甘肃农业科技,1976,05.
    [15]郭太龙,迟道才,王全九,等.入渗水矿化度对土壤水盐运移影响的试验研究[Jl.农业工程学报,2005,21(S):84-87.
    [16]韩宏儒,魏开基,吴芝成.滨海盐碱土水稻高产土壤培肥技术的研究[J].北方水稻,1979,03.
    [17]韩霁昌,解建仓,朱记伟,等.陕西卤泊滩盐碱地综合治理模式的研究[J].水利学报,2009,40(3):372-377.
    [18]韩霁昌,解建仓,王涛,等.蓄水条件下蓄水沟水体与相邻土壤的盐分运移规律研究[J].水利学报,2009,40(5):635-639.
    [19]郝芳华,孙雯,曾阿妍,等.HYDRUS-1D模型对河套灌区不同灌施情景下氮素迁移的模拟[J].环境科学学报,2008,28(5):853-858.
    [20]郝秀珍,周东美.沸石在土壤改良中的应用研究进展[J].土壤,2003,2:103-106.
    [21]虎胆·吐马尔白,王薇,孟杰,等.作物生长条件下沙拉塔纳农田水盐耦合运移模型[J].新疆农业大学学报,2008,31(1):93-96.
    [22]虎胆·吐马尔白,吴争光,苏里坦,等.棉帛花膜下滴灌土壤水盐运移规律数值模拟[J].土壤,2012,44(4):665-670.
    [23]胡小多,刘兴亮,石溪婵等.盐胁迫对五叶地锦生理指标的影响[J].黑龙江生态工程职业学院学报,2008,7(4):10-11.
    [24]黄明勇,邳学杰,赵凌云.海湾泥、粉煤灰和碱渣综合利用中环境影响分析[J].四川农业大学学报,2005,23(4):442-445.
    [25]纪永福,蔺海明,杨自辉.解冻期覆盖盐渍土地表对土壤盐分和水分的影响[J].干旱区研究,2005,22(1):17-24.
    [26]景峰,吴震,朱金兆,等.不同隔离层措施台田水盐动态研究[J].水土保持通报,2011,31(6):68-71.
    [27]景峰,朱金兆,郑柏青,等.穴状衬膜基盘造林模式应用效果研究[J].应用基础与工程科学学报,2011,19(3):398-407.
    [28]景峰,朱金兆,张学培,等.滨海泥质盐碱地衬膜造林技术[J].生态学报,2012,32(1):326-332.
    [29]康俊水,张淑英,李牧,等.滨海盐碱地耐盐地被植物引种开发的研究[J].山东林业科技,2003,4:1-7.
    [30]柯丽丽,黄明勇,苏德荣,等.海砂和电石渣对吹填土理化性状的影响及水盐动态研究[J].水土保持学报,2010,24(2):92-95,101.
    [31]孔旭晖,高丽霞.印度的盐碱地造林[J].世界林业研究,1992,01.
    [32]李保国,胡克林,黄元仿,等.土壤溶质运移模型的研究及应用[J].土壤,2005,37(4):345-352.
    [33]李昌华.松嫩平原地下水和土壤近代积盐过程[J].土壤学报,1964,12(1):31-42.
    [34]李春友,任理,李保国.秸杆覆盖条件下土壤水热盐耦合运动规律模拟研究进展[J].水科学进展,2000,11(3):325-331.
    [35]李国华,岳增璧,朱金兆,等.滨海盐碱地基盘法造林试验[J].中国水土保持科学,2008,6(6):8-13.
    [36]李景信,马义,傅喜林.种植星星草改良碱斑地的研究[J].中国草原,1985,2:53-55.
    [37]李亮,史海滨,贾锦凤,等。内蒙古河套灌区荒地水盐运移规律模拟[J].农业工程学报,2010,26(1):31-35.
    [38]李培夫.盐碱地的生物改良与抗盐植物的开发利用[J].垦殖与稻作,1999(3):37-40.
    [39]李万海,田永峰,张延新,等.采用隔离层阻碱法进行盐碱地造林[J].林业科技,2001,26(4):12-13.
    [40]李伟强,雷玉平,张秀梅,等.硬壳覆盖条件下土壤冻融期水盐运动规律研究[J].冰川冻土,2001,23(3):251-257.
    [41]李瑞云,鲁纯养,凌礼章.植物耐盐性研究现状与展望[J].盐碱地利用,1989,(1):38-41.
    [42]李瑞平,史海滨,赤江刚夫,等.季节性冻融土壤水盐动态预测BP网络模型研究[J].农业工程学报,2007,23(11):125-128.
    [43]李秀军,李取生.松嫩平原西部盐碱地特点及合理利用研究.农业现代化研究[J].2002,09,23(5):361-364.
    [44]李学麒.一种改良盐碱地土壤的营养基质及其制备方法.CN 102336614A.
    [45]李韵珠,胡克林.蒸发条件下粘土层对土壤水和溶质运移影响的模拟[J].土壤学报,2004,41(4):493-502.
    [46]李增新,张启军.天然沸石及其在农业中的应用.农业环境保护,1995,14(1):41-42.
    [47]林栖凤,李冠一.植物耐盐性研究进展[J].生物工程进展,2000,20(2):20-25.
    [48]梁兴,王玉民,张红利.抗盐碱中华红叶杨在天津滨海新区栽植试验[J].园林绿化,2009,5:62-63.
    [49]蔺娟,苏力坦.土壤盐渍化的研究进展[J].新疆大学学报(自然科学版),2007,24(3):318-323,328.
    [50]刘炳成,李庆领.土壤中水、热、盐耦合运移的数值模拟[J].华中科技大学学报(自然科学版),2006,36(1):14-16.
    [51]刘春成,李毅,郭丽俊,等.微咸水灌溉对斥水土壤水盐运移的影响[J].农业工程学报,2011,27(8):39-45.
    [52]刘春卿,杨劲松,陈小兵,等.滴灌流量对土壤水盐运移及再分布的作用规律研究[J].土壤学报,2007,44(6):1016-1021.
    [53]刘丹,李娜,李志东.脱硫装置的经济性和脱硫石膏改良盐碱地的探讨[J].电力环境保护,2009,25(1):33-35.
    [54]刘东兴.改良物质对盐碱土的改良作用及对植物生长发育的影响[D].东北林业大学,2009.
    [55]刘虎.稳定流条件下吹填土的水盐运移及植物生长适应性研究[D].呼和浩特:内蒙古农业大学,2010.
    [56]刘会超,贾文庆等.盐胁迫对白三叶茎的POD、CAT的影响研究[J].吉林农业科学,2009,34(1):43-46.
    [57]刘萍,魏雪莲.耐盐碱乔木在盐碱地环境中的应用概况[J].山东林业科技,2005(6):60-61.
    [58]刘思义,魏山庆,梁国庆,等.粘土夹层土体构型水盐运动的试验研究[J].土壤学报,1992,29(1):109-112.
    [59]刘太祥,马履一,毛建华.天津滨海新区土壤盐渍化及节水型盐碱滩地物理一化学一生态综合改良与植被构建技术[c].北京:中国环境科学学会,2007:209-213.
    [60]刘阳春.盐碱地改良利用研究进展[J].农业科学研究,2007,28(2):68-71.
    [61]刘一明,程凤枝,王齐,等.四种暖季型草坪植物的盐胁迫反应及其耐盐阈值值[J].草业学报,2009,6(3):192-199.
    [62]刘寅.天津滨海耐盐植物筛选及植物耐盐性评价指标研究[D].北京林业大学,2011.
    [63]吕凤山.粉煤灰改良盐碱地的试验研究[J].内蒙古农业科技,1998,(3):8-10.
    [64]罗金明,邓伟.苏打盐渍土的微域特征以及水分的迁移规律探讨[J].土壤通报,2009,40(3):482-486.
    [65]龙明杰,曾繁森.高聚物土壤改良剂的研究进展[J].土壤通报,2000,31(5):199-202,223.
    [66]卢树昌,苏卫国.重盐碱区耐盐植物筛选试验研究[J].西北农林科技大学学报(自然科学版),2004,11:19-24.
    [67]卢翔,黄超彬,楼炉焕,等.山菅等5种植物抗盐性试验初报[J].农业科技通讯,2009(1):72-73.
    [68]马增辉,韩雯昌,解建仓,等.基于Hydrus-3D的陕西卤泊滩水盐运移建模方法研究[J].陕西农业科学,2011,(1):62-65.
    [69]毛桂莲,许兴,张渊,等NaC1胁迫对枸杞叶绿素荧光特性和活性氧代谢的影响[J].干旱地区农业研究,2005,9(5):118-121.
    [70]毛建华,刘太祥.天津滨海东丽湖地区改土绿化的对策及措施[J].天津农业科学,2008,14(1):1-3.
    [71]毛建华,王正祥,刘太祥,等.资源节约环境友好的滨海盐土改良与绿化创新技术[J].中国农学通报,2009,25(11):169-172.
    [72]毛学森.硬覆盖对盐渍土水盐运动及作物生长发育影响的研究[J].土壤通报,1998,29(6):264-266.
    [73]孟凡娟,王秋玉,王建中,等.四倍体刺槐的抗盐性[J].植物生态学报,2008,32(3):654-663.
    [74]孟江丽,董新光,周金龙,等HYDRUS模型在干旱区灌溉与土壤盐化关系研究中的应用[J].新疆农业大学学报,2004,27(1):45-49.
    [75]牛东玲,王启基.盐碱地治理研究进展[J].土壤通报,2002,6(12):449-455.
    [76]钦佩,周春林,安树青,等.海滨盐土农业生态工程[M].北京:化学工业出版社,2002.
    [77]裘丽珍,黄有军,黄坚钦,等.不同耐盐性植物在盐胁迫下的生长与生理特性比较研究[J].浙江大学学报(农业与生命科学版),2006,32(4):420-427.
    [78]邱收,于晓英,谢明亨,等.盐胁迫对萱草细胞膜透性和渗透调节物质的影响[J].信阳农业高等专科学校学报,2008,6(2):115-117.
    [79]瞿兴业,张友义.考虑蒸发影响和脱盐要求的田间排水沟(管)间距计算[J].水利学报,1981,12(5):1-11.
    [80]邵伟,冯杰,张小娜,等.两域模型在原状土柱水盐运移模拟中的应用比较[J].水电能源科学,2010,28(12):13-15.
    [81]邵孝侯,刘才良,俞双恩.暗管排水对滨海新垦区土壤盐分动态的影响及脱盐效果[J].河海大学学报,1995,23(2):88-93.
    [82]史同广.黄河三角洲盐碱地“农基鱼塘”生态农业开发模式[J].国土与自然资源研究,1998,03:32-35.
    [83]史文娟,沈冰,汪志荣,等.蒸发条件下浅层地下水埋深夹砂层土壤水盐运移特性研究[J].农 业工程学报,2005,21(9):23-26.
    [84]石国亮,江萍.NaC1盐胁迫对锦鸡儿保护酶系的影响[J].安徽农业科学,2009,37(17):7963-7965.
    [85]石玉林.西北地区土地荒漠化与水土资源利用研究[M].北京:科学出版社,2004.
    [86]石元春.盐渍土的水盐运动[M].北京:农业大学出版,1986:1-5.
    [87]宋丹,张华新,白淑兰,等.植物耐盐种质资源评价及滨海盐碱地引种研究与展望[J].内蒙古林业科技,2006(1):37-38.
    [88]孙海菁,王树凤,陈益泰.盐胁迫对6个树种的生长及生理指标的影响[J].林业科学研究,2009,22(3):315-324.
    [89]孙建书,余美.不同灌排模式下土壤盐分动态模拟与评价[J].干旱地区农业研究,2011,29(4):157-162.
    [90]孙玉珂.一种适用于盐碱土壤的农作物肥料及其制备方法.CN 102603429A.
    [91]苏芳莉,王铁良,王政,等.不同浓度NaC1处理对芦苇和香蒲叶片某些生理特性的影响[J].林业科学研究,2009,3(2):302-306.
    [92]谭丹,谭芳.明沟排水条件下盐碱地改良优化配水模式[J].灌溉排水学报,2008,28(1):97-100.
    [93]唐超世.星星草栽培驯化的研究[J].中国草原,1980,4:13-18.
    [94]唐亚莉.典型试验区土壤水盐运移模型的建立及数值模拟[D].乌鲁木齐:新疆农业大学,2007:40-50.
    [95]田丽萍,徐敏,郑晓峰.盐碱地改良及造林技术的探讨[J].防护林科技,2005,65(2):76,89.
    [96]王春裕,王汝镛,李建东.中国东北地区盐渍土的生态分区[J].土壤通报,1999,30(5):193-197.
    [97]王桂君,张丽辉,赵骥民,等.盐性条件下的AM真菌以及AM真菌提高植物耐盐性研究[J].长春师范学院学报,2004,23(4):64-68.
    [98]王金芬,刘雪梅.浅谈滨州市区立地盐碱条件下的绿化技术[J].北方园艺,2008(2):160-162.
    [99]王金龙,阮维斌.4种填闲作物对天津黄瓜温室土壤次生盐渍化改良作用的初步研究[J].农业环境科学学报,2009,28(9):1849-1854.
    [100]王立春,谢佳贵,秦裕波,等.测土配方施肥方法研究[J].土壤通报,2008,39(4):865-870.
    [101]王利军.不同种源沙枣对水分和盐分胁迫生长的响应[D].北京林业大学,2010,06:49-53.
    []02]王苹,李建东,欧勇玲.松嫩平原盐碱化草地星星草的适应性及耐盐生理待性研究[J].草地学报,1997,5(2):80-84
    [103]王全九,王文焰,吕殿青,等.膜下滴灌盐碱地水盐运移特征研究[J].农业工程学报,2000,16(4):54-57.
    [104]王少丽,瞿兴业.盐渍兼治的动态控制排水新理念与排水沟管间距计算方法探讨[J].水利学报,2008,39(11):1204-1210.
    [105]王顺明,徐辉,韩贵清,等.盐碱土改良试验简介[J].黑龙江畜牧兽医,1990,04.
    [106]王文杰,贺海升.施加改良剂对重度盐碱地盐碱动态及杨树生长的影响[J].生态学报,2009,29(5):2272-2278.
    [107]王学峰.河口区盐碱地改良“上农下渔”模式研究[D].北京:年中国农业大学,2006.
    [108]王艳玲,韩秀英,刘元生,等.粉煤灰改良盐碱土植树法[J].防护林科技,1999,48(3).
    [109]王宇超,王得祥,彭少兵等.盐胁迫对木本滨藜植物细胞膜透性及生理特性的影响[J].干旱地区农业研究,2007,7(4):225-229.
    [110]王玉江,吴涛.磷石膏改良盐碱地的研究进展[J].安徽农业科学,2008,36(17):7413-7414.
    [111]王玉祥,刘静,乔来秋,等.41个引种树种的耐盐性评定与选择[J].西北林学院学报,2004,19(4):55-58.
    [112]王遵亲,祝寿泉,俞仁培,等.中国盐渍土[M].北京:科学出版社,1993,64-65.
    [113]魏坤峰.德州推出园艺盐碱土改良肥[J].科技成果纵横,1995,01.
    [114]吴忠东,王全九.不同微咸水组合灌溉对土壤水盐分布和冬小麦产量影响的田间试验研究[J].农业工程学报,2007,23(11):71-76.
    [115]吴亚坤,周连仁,杨劲松.堆肥对苏打草甸碱土植被重建的影响[J].土壤,2007,39(5):801-805.
    [116]吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响[J].南京林业大学学报,2002,5(3):19.
    [117]谢小丁,邵秋玲,李扬.九种耐盐植物在滨海盐碱地的耐盐能力试验[J].湖北农业科学,2007,7(4):559-560.
    [118]谢福春,张文婷,刘富强等.土壤盐胁迫对海州常山生理生化特性的影响[J].江西农业大学学报,2008,10(5):839-844.
    [119]徐恒刚.中国盐生植被及盐渍化生态治理[M].北京:中国农业科学技术出版社,2004.
    [120]徐鲜钧,沈宝川,祁建民,等.植物耐盐性及其生理生化指标的研究进展[J].亚热带农业研究,2007,11(4):275-280.
    [121]严慧峻.培育淡化肥沃层对盐渍土改良效果的影响[J].土壤肥料,1992,(3):5-8.
    [122]阎艳霞,王玉魁,张东.不同枣品种对NaCl胁迫的适应性研究[J].河南农业大学学报,2008,8(4):398-401.
    [123]杨帆,丁菲,杜天真,等.构树抗氧化酶系统对盐胁迫对的响应[J].浙江林业科学,2008,1(1)1-4.
    [124]杨劲松,祝寿泉.《国际盐渍土动态学术讨论会》在南京举行.土壤,1990,01.
    [125]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845.
    [126]杨艳,王全九.微咸水入渗条件下碱土和盐土水盐运移特征分析[J].水土保持学报,2008,22(1):13-19.
    [127]叶妙水,钟克亚.盐生经济作物北美海蓬子与盐渍地生态环境改造[J].草业科学,23(6):6-13.
    [128]尹大凯,胡和平,惠士博.青铜峡银北灌区井灌井排水盐运动数值模拟[J].农业工程学报,2002,18(3):1-4.
    [129]尹勤瑞,张兴昌,王丹丹.初始含水量对盐碱土饱和导水能力和盐分淋洗的影响[J].水土保持通报,2011,31(3):71-74.
    [130]俞仁培,陈德明.我国盐渍土资源及其开发利用[J].土壤通报,1999,4:158-159.
    [131]袁剑舫,周月华.粘土夹层对地下水上升运行的影响[J].土壤学报,1980,17(1):94-100.
    [132]袁琳,克热木·伊力,张利权.NaCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响[J].植物生态学报,2005,29(6):985-991.
    [133]张川红,沈应柏,尹伟伦,等.盐胁迫对几种苗木生长及光合作用的影响[J].林业科学,2002,3(2):27-31.
    [134]张桂荣,刘艳芳,王瑞兵,等.不同盐分胁迫对3种胡枝子萌发的影响[J].辽宁林业科技,2008(4):30-33.
    [135]张风娟,陈凤新,徐兴友.河北省昌黎县黄金海岸几种单子叶植物叶耐盐碱结构的研究[J].草业科学,2006,9:19-23.
    [136]张化,王静爱,张峰,等HYDRUS-2D模型对海冰水灌溉情景下水盐迁移的模拟[J].资源科学,2011,33(2):377-382.
    [137]张建锋,张旭东,周金星,等.世界盐碱地资源及其改良利用的基本措施[J].水土保持研究,2005,12(6):28-30.
    [138]张洁,常婷婷,邵孝侯.暗管排水对大棚土壤次生盐渍化改良及番茄产量的影响[J].农业工程学报,2012,28(3):81-86.
    [139]张金龙,张清,王振宇,等.排水暗管间距对滨海盐土淋洗脱盐效果的影响[J].农业工程学报,2012,28(9):85-89.
    [140]张金龙,张清,王振宇.天津滨海盐碱土灌排改良工程技术参数估算方法[J].农业工程学报,2011,27(8):52-55.
    [141]张蕾娜,冯永军,张红,等.滨海盐渍士水盐运动规律模拟研究[J].山东农业大学学报(自然科学版),2000,31(4):381-384.
    [142]张立宾,宋曰荣,吴霞.柽柳的耐盐能力及其对滨海盐渍士的改良效果研究[J].安徽农业科学,2008,36(13):5424-542.
    [143]张黎明,邓万刚.土壤改良剂的研究与应用现状[J].华南热带农业大学学报,2005,11(2):32-34.
    [144]张玲菊,黄胜利,周纪明,等.常见绿化造林树种盐胁迫下形态变化及耐盐树种筛选[J].江西农业大学学报,2008,10(5):833-838.
    [145]张琼,李光永,柴付军.棉花膜下滴灌条件下灌水频率对土壤水盐分布和棉花生长的影响[J].水利学报,2004(9):123-126.
    [146]张妙仙.士壤水盐动态预测及调控[M].北京:科学出版社,2012.4.
    [147]张士功,邱建军,张华.我国盐渍土资源及其综合治理[J].中国农业资源与区划,2000,21(1):52-56.
    [148]张秀玲.盐碱植物罗布麻的栽培技术[J].中国林副特产,2005,8(4):5-6.
    [149]张亚年,李静.暗管排水条件下土壤水盐运移特征试验研究[J].人民长江,2011,42(22):70-72,88.
    [150]赵明范.世界土壤盐渍化现状及研究趋势[J].世界林业研究,1994,(1):84-86.
    [151]赵可夫.盐生植物资源及盐碱土改良利用[J].资源与环境,1989,1(1):40-43.
    [152]赵可夫.中国盐生植物[M].北京:科技出版社,1999.
    [153]赵可夫,李法曾,樊守金,等.中国的盐生植物[J].植物学通报,1999,16(3):201-207.
    [1 54]赵可夫,范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社,2005.
    [155]赵扩元,李俊良,刘庆花,等.填闲作物对日光温室土壤理化性状及黄瓜产量的影响[J].青岛农业大学学报(自然科学版),2007,24(4):286-290.
    [156]赵名彦.滨海盐碱地造林技术与效果研究[D].北京林业大学,2011.
    [157]赵旭,彭培好,李景吉.盐碱地土壤改良试验研究[J].河南师范大学学报(自然科学版),2011,39(4):70-74.
    [158]左建,孔庆瑞.沸石改良碱化土壤作用的初步研究[J].河北农业大学学报,1987,10(3):58-60.
    [159]仲秀珍.应用天然沸石矿粉改良盐碱土的研究[J].吉林农业大学学报,1985,7(1):85-91.
    [160]仲秀珍,吴江.天然沸石改良苏打盐碱土吸附机理的探讨[J].吉林农业大学学报,1990,12(1):40-45.
    [161]周明耀,陈朝如,毛春生,等.滨海盐土地区稻田暗管排水效果试验研究[J].农业工程学报,2000,16(2):54-57.
    [162]邹桂梅,苏德荣,黄明勇,等.人工种植盐地碱蓬改良吹填士的试验研究[J].草业科学,2010,27(4):51-56.
    [163]Abd-alla M H, Omar S A. Wheat Straw and Cellulolytic Fungi Application Increase Nodulation, Nodule Efficiency and Growth of Fenugreek Grown in Saline Soil[J]. Biol Fert Soil,1998,26 (1): 58-65.
    [164]Bahceci I, Nacar A S. Subsurface Drainage and Salt Leaching in Irrigated Land in South-east Turkey[J]. Irrigation and Drainage,2009,58(3):346-356.
    [165]BallM C, Farquhar G P. Photosynthetic and Stomatal Response of the Mangrove Avicennia Marina to Transient Salinity Conditions[J]. Plant Physicol,1984,4:7211.
    [166]Bhattia U, Khan Q, Gurmani A H, et al. Effect of Organic Manure and Chemical Amendments on Soil Properties and Crop Yield on a Salt Affected Entisol[J]. Pedosphere,2005,15(1):46-51.
    [167]Bresler E, Mcneal BL, Carter DL. Saline and Sodic Soils(Principles Dynamics Modeling) [J]. Advanced Series in Agricultural Science,1982,10.
    [168]Buschde, Ingrahamnl, Smithsd. Effects of Fire on Water and Salinity Relations of Riparian Woody Taxa[J].Oecologia,1993,94:186-194.
    [169]Christen E, Skehan D. Design and Management of Subsurface Horizontal Drainage to Reduce Salt Loads[J].Journal of irrigation and drainage engineering,2001, (5):148-155.
    [170]Don Bennett, Richard George. Environmental Impacts and Production Effects of Subsurface Drainage at an Intensive Apple Orchard Near Donnybrook, WA[R]. Resource Management Technical Report,2002,03.
    [171]Doran.John C, Turnbull J.W. Australian Trees and Shrubs:Species for Land Rehabilitation and Farm Planting in the Tropics[M]. Canberra:Australian Centre for International Agricultural Research,1997.
    [172]Dovile B, Emmanuel F, Kelly J J. Shifts in Microbial Community Composition Following Surface Application of Dredged River Sediments[J]. Micro. Ecol.,2009,57:160-169.
    [173]Gardner W R. Laboratory Studies of Evaporation from Soil Columns in the Presence of a Water TablefJ]. Soil Sci.1958,85:244-249.
    [174]Ghazi Nu, Alkarakim. Wheat Response to Phosphogypsum and Mycorrhizal Fungi in Alkaline Soil [J].Journal of Plant Nutrition,2002,25(4):873-883.
    [175]Grunberger O, Macaigne P. Salt Crust Development in Paddy Fields Owing to Soil Evaporation and Drainage:Contribution of Chloride and Deuterium Profile Analysis[J].Joumal of Hydrology, 2008,348:11-123.
    [176]Hassam FA. Evaporation and Salt Movement in Soil in the Present of Water Table[J].Soil Sci. Soc.Ameri.J.,1977,41(3):470-478.
    [177]Kenneth K. Agricultural Salinity Assessment and Managemen[M].New York:American Society of Civil Engineers,1990.
    [178]Kovdava. Loss of Productive Land Due to Salinazation[J]. Ambio.,1983,14(2):91-93.
    [179]Kristensen H L, Thorup K. Root Growth and Nitrate up Take of Three Different Catch Crops in Deep Soil Layers[J]. Soil Science Society of America Journal,2004,68:529-537.
    [180]Lee G J, Carrow R N, Duncan R R. Growth and Water Relations Responses to Salt Stress in Halophytic Seashore Paspalum Ecotypes[J].Science Horticulture,2004,104:221-236.
    [181]Levitt J..Response of Plants to Environmental Stress[M]. New York:Aedemic Press,1980.
    [182]Mathew E K, Panda R K, Nair M. Influence of Subsurface Drainage on Crop Production and Soil Quality in a Low-lying Acid Sulphate SoilfJ]. Agricutural Water Management,2001, 47(3):191-209.
    [183]Michael D Peel, Blair L Waldron, Kevin B Jensen, et al. Screening for Salinity Tolerance in Alfalfa:A Repeatable Method[J]. Crop Science,2004,11:2049-2053.
    [184]Mirjat M S, Rose D A, Adey M A. Desalinization by Zone Leaching:Laboratory Investigations in a Model Sand-tank[J]. Australian Journal of Soil Research,2008,46(2):91-100.
    [185]Muhammad Ashraf. Some Important Physiological Selection Criteria for Salt Tolerance in Plants[J]. Flora,2005,199:361-376.
    [186]Munns R. Comparative Physiology of Salt and Water Stress[J]. Plant, Cell and Environment 2002,25:239-250.
    [187]Niu X.Bressan R A, Hasegawa P M,et al. Ion Homeostasis in NaCl Stress Environments^]. Plant Physiol,1995, (109):735-742.
    [188]Parker, J.C. Flux Averaged and Volume Averaged Concentrations in Continuous Approach to Solute Transport [J]. Water resources research,1988,24:886-872.
    [189]Porro I, Wierenga P J, Hills R G. Solute Transport Through Large Uniform and Layered soil CoIumns[J]. Water Resour. Research,1993,29(4):1321-1330.
    [190]Rassam D.W., Cook F.J. Numerical Simulations of Water Flow and Solute Transport Applied to Acidsulfate Soils[J].Journal of Irrigation and Drainage Engineering,2002,128(2):107-115.
    [191]R.Nielsen.Water Flow and Solute Transport Processes in the Unsaturated Zone [J]. Resource Research,1986,22(9).
    [192]Santa-Cruz A, AcostaM, RusA, et al. Short-term Salt Tolerance Mechanisms in Differentially Salt Tolerant Tomato Species [J].Plant Physiol Biochem,1999,37(1):65-71.
    [193]Sebastiaan L. Preliminary Result s of Afforestation of Brackish Sludge Mounds[J]. Ecological, Engineering,2001,16:567-572.
    [194]Sembiring H, Raun W R, Johnson G V, et al. Effect of Wheat Straw Inversion on Soil Water Conservation[J].Soil Sciene,1995,2:81-89.
    [195]Sharma A D. Salt-stress-induced Proline Accumulation in Germinating Embryos:Evidence Suggesting a Roof Proline Inseed Germination[J].Journal of Arid Environments,2005,62:517-523.
    [196]Simunek J., M.Sejna, M.Th.van Genuchten. The HYDRUS-1D Software Package for Simulating the One Dimensional movement of water, heat and multiple solutes in Variably Saturated Media(Version 2.0)[M].Riverside, California:Colorado School of mines Publishers,1998.
    [197]Simunek J., M.Th.van Genuchten, M.Sejna. The HYDRUS Software Package for Simulating Two and Three Dimensional Movement of Water, Heat and Multiple Solutes in Variably Saturated Media, Technical Manual(Version 1.0)[M]. Prague:PC Progress,2006.
    [198]Siyal A A, Skaggs T H. Reclamation of Saline Soils by Partial Ponding:Simulations for Different Soils[J].Vadose Zone Journal,2010,9(2):486-495.
    [199]Twarakavi N K C, Simunek J, SeoS. Evaluating Interactions between Groundwater and Vadose Zone Using the HYDRUS-based Flow Package for Modflow[J]. Vadose Zone Journal,2008, 7(5):757-768.
    [200]Van Horn J W. Drainage for Salinity Control[R].The Netherlands:Wageningen Agricultural University,1997:1-55.
    [201]YouCB, LinM, SongW, et al. Agricultural Biotechnology[M].China:Science and Technology Press,1992,733.
    [202]Youngs E G, Leeds Harrison P B. Improving Efficiency of Desalinization with Subsurface Drainage[J]. Journal of Irrigation and Drainage Engineering,2000, 126(6):375-380.
    [203]Zhang Jianfeng, Xing Shangjun. Zhang Xudong. Principles and Practice of Forestation in Saline Soil in China[J].Chinese Forestry Science And Technology,2004,3(2):62-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700