用户名: 密码: 验证码:
羊草对盐碱和刈牧的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松嫩平原是中国盐碱化土壤主要分布区之一。同时过度放牧使得草原的退化进一步加剧,这两者成为松嫩草原畜牧业发展的主要限制因子。羊草是松嫩草原的优势种,并被认为具有一定的耐盐耐牧性。然而对羊草能适应双重压力(盐碱和放牧)的机制还不清楚。可能的原因包括羊草本身的渗透调节能力或者生长补偿作用。然而在野外原位条件下进行2种因素交互作用的研究未见报道。本研究采用野外原位处理即混合盐碱浇灌(NaCl: NaHCO_3: Na_2CO_3 = 1:1:1)及刈割(剪掉地上生物量60%)两种处理来研究羊草耐盐性及补偿生长能力。并测定了羊草地上、地下生物量、再生量、光合作用及其他各项生理指标。这些信息可以丰富羊草的抗盐碱的理论,为盐碱化草地的恢复提生理生态学理论知识。
     结果表明,在盐碱处理下羊草具有一定的生物量补偿作用即羊草密度的显著降低以单株的生物量增加来抵消。羊草的净光合速率和水分利用效率表现为更有效的利用有利的气候环境,无论是日动态中水热条件较好的上午还是季节动态中降雨量高、温度适中的7、8月份,都表现为盐碱作用下显著高于对照。这一方面是由于盐碱处理下羊草比叶面积和叶面积指数高于无盐处理,而更主要是由于单位面积羊草密度的降低使单株获得的水分资源高于对照的高密度区。羊草为根茎型无性系禾草,各分株之间的生理整合作用可能使得它们之间存在一定的竞争,弱势植株被淘汰掉,而使存活下来的植株获得更好的生存条件。选择性的牺牲一部分分蘖株不仅降低了对根茎部位物质和能量的消耗,同时也能带走一部分盐离子,从而降低对整个种群的盐害。
     在刈割作用下羊草的相对生长速率和光合作用也有显著增加,这也说明羊草具有一定的补偿生长能力。结合可溶性糖含量的变化,我们可以推测出羊草的补偿生长能力可能主要是由于根茎部储存的大量储藏性碳水化合物的再分配,在受到放牧干扰后水解产生大量的可溶性碳水化合物,这部分碳水化合物被转移到地上部位供给受损地上叶片的再生能量需求。另一方面,重建后的叶片所含的色素捕光效率更强,光合作用效率更强,使得新生叶片成为物质输送和生产的集合地,所以表现出单位时间内植株高度显著增加。
     盐碱和刈割的交互作用表现为协同型,即在光合作用上表现为共同促进,而在根茎部可溶性糖含量变化上表现为共同抑制。盐碱环境中羊草的耐牧策略主要是通过根茎型无性系禾草的生理整合作用实现的。一方面根茎部作为整个无性系的“决策中心”即选择性牺牲策略,另一方面也是物质和能量“缓冲器”,当植株受到外界干扰或胁迫时,它就会调用其内的有机物质,特别是可溶性糖降低对本体的伤害。
Songnen plain is one of the main districts in which Chinese saline-alkali soil concentrates. Overgrazing often enhanced degradation processes and turned out to be an additional major threat for livestock farming. Leymus chinensis is dominant species in this grassland. It has been considered this species adapts grazing pressure under a certain salt stress. However, the adaptation mechanism is unclear. Field experiment was conducted with mixed salt-alkali solution (NaCl: NaHCO_3: Na_2CO_3 = 1:1:1) and clippings (removal 60% of aboveground green biomass) of L. chinensis. The regrowth biomass, plant density and photosynthesis were measured in the field.
     Our results indicated that individual plant biomass was increased under salt addition, while the tiller density was significant decreased. The net photosynthesis rate and water use efficiency were also higher under salt stress conditions. L. chinensis is rhizome grass and can produce lots of ramets along the rhizomes. The productivity improvement can by increasing the number of tillers, ramet biomass, or their combination. In our case they behaved as the total ramets decreased after salt addition, but the single ramet biomass increased to compensate the loss and finally increased biomass regrowth. On one hand, the reduction of density can not only decrease the material and energy consumption of the population, but also can take away part of salt ions to lower down the salt stress. One the other hand, the water resource can be used by per ramte increased since ramte number reduced. This is why the photosynthesis of L. chinensis was higher under salt addition conditions.
     The relative growth rate and photosynthesis were significant higher under clipping situation. Combined with the changes in soluble sugar content, we can speculate that the compensation capacity of L. chinensis was mainly due to stored carbohydrates hydrolyzed into soluble carbohydrate and then transferred to the aboveground. Besides, the new leaves contained more efficient light-harvesting pigment, thus photosynthesis was increased.
引文
[1]李建东,郑慧莹.松嫩平原盐碱化草地改良治理的研究[J].东北师大学报自然科学版,1995 (1): 110-115.
    [2]李建东,吴榜华.盛连喜主编,吉林植被[M].长春:吉林科学技术出版社,2001.
    [3]李建东,郑慧莹.松嫩平原盐碱草地恢复和生物生态学机制[M].北京:科学出版社,1997.
    [4]祝廷成.羊草生物生态学[M].长春:吉林科学技术出版社,2004.
    [5]王华,于化英,冈本智伸,王昱生.东北西部草地建设经济技术对策的研究[J].东北农业大学学报,2004,35 (1):109-112.
    [6]高英志,王艳华,王静婷等.草原植物碳水化合物对环境胁迫响应研究进展[J].应用生态学报,2009,11:2827-2831.
    [7]周秉荣,马宗泰,李红梅等.刈割及放牧对牧草生长的补偿效应[J].青海大学学报(自然科学版),2006,24:18-24.
    [8]滕星,王德利,程志茹等.不同放牧强度下绵羊采食方式的变化特征[J].草业学报,2004,13(2):67-72.
    [9] Grant S. Beauty and the beast: the coevolution of plants and animals [M]. New York: Charles Scribner’s Sons. 1984.
    [10]王国良,李向林,万里强等.刈割强度对羊草可溶性碳水化合物含量及根茎构件的影响[J].中国草地学报,2007,29(4):74-80.
    [11]李金华,张莹,李晓峰等.羊草愈伤组织状态的调控[J].西北农林科技大学学报(自然科学版),2002,5:5-23.
    [12] Briske DD. Strategies of plant survival in grazed systems: a functional interpretation [J]. In: J. Hodgson, A. W. Illius eds. Ecology and Management of Grazing Systems. Wallingford: CAB International.1996, 37-60.
    [13]王旭,王德利,刘颖等.羊草草地生长季放牧山羊采食量和食性选择[J].生态学报,2003,22: 661-667.
    [14]董鸣.异质性生境中的植物克隆生长:风险分摊[J].植物生态学报,1996,20: 543-548.
    [15] Evans JP. The effect of local resource availability and clonal integration on ramet functional morphology in hydrocotyle bonariensis [J]. Oecologia, 1992, 89: 265-276.
    [16]李永宏,汪诗平.草原植物对家畜放牧的营养繁殖对策初探[M].草原生态系统研究(第5集).北京:科学出版社. 1997,23-31.
    [17] Trlica MJ, Rittenhouse LR. Grazing and plant performance [J]. Ecological Applications, 1993, 3: 21-23.
    [18] McNaughton SJ. Compensatory growth as a response to herbivore [J]. Oikos, 1983, 40: 329-336.
    [19] Briske DD. Developmental morphology and physiology of grasses. In: Heitschmidt RK, Stuth JW. Grazing Management: an ecological perspective [M]. Portland, Oregon: Timber Press, 1991, 85-108.
    [20] Nowak RS, Caldwell MM. A test of compensatory photosynthesis in the field: implications for herbivory tolerance [J]. Oecolgia, 1984, 61: 311-318.
    [21] De Kroon H, Knops J. Habitat exploration through morphological plasticity in two chalkgrassland perennials [J]. Oikos, 1990, 59: 39-49.
    [22] Schlichting CD. The evolution of phenotypic plasticity in plants [J]. Annual Review of Ecology and Systematics, 1986, 17: 667-693.
    [23] Oesterheld M, McNaughton SJ. Intraspecifi c variation in the response of Themeda triandra to defoliation: the effect of time of recovery and growth rates on compensatory growth [J].Oecologia, 1988, 77:181-186.
    [24] Anten NPR, Martinez-Ramos M, Ackerly DD. Defoliation and growth in an understory palm: quantifying the contributions of compensatory responses [J]. Ecology, 2003, 84: 2905-2918.
    [25] McPherson K, Williams K. The role of carbohydrate reserves in the growth, resilience, and persistence of cabbage palm seedlings (Sabal palmetto) [J]. Oecologia, 1998, 117: 460-468.
    [26] Strauss SY, Agrawal AA. The ecology and evolution of plant tolerance to herbivory [J]. Trends in Ecology and Evolution, 1999, 14: 179-185.
    [27] Leriche K, Le Roux X, Desnoyers F, et al. Grass response to clipping in an African savanna: testing the grazing optimization hypothesis [J]. Ecological Applications, 2003, 13: 1346-1354.
    [28] Stowe KA, Marquis RJ, Hochwender CG, et al. The evolutionary ecology of tolerance to consumer damage [J]. Annual Review Ecology Systematics, 2000, 31: 565-95.
    [29]汪诗平,王艳芬.不同放牧率下糙隐子草种群补偿性生长的研究[J].植物学报,2001,43:413-418.
    [30] Anten NPR, Ackerly DD. Canopy-level photosynthetic compensation after defoliation in a tropical understory palm [J]. Functional Ecology, 2001, 15: 252-262.
    [31] Mack MC, Antonio CMD. Impacts of biological invasions on disturbance regimes [J]. Trends in Ecology and Evolution, 1998, 13:195-198.
    [32] Milchunas DG, Sala OE, Lauenroth WK. A Generalized Model of the Effects of Grazing by Large Herbivores on Grassland Community Structure [J]. The American Naturalist, 1988, 132:87-106.
    [33] Xie Y, Wittig R. Growth parameters of characteristic species of Stipa steppes in northern China as indicators of the grazing intensity [J]. Journal of Applied Botany, 2003, 77: 68-74.
    [34] Fernandez-Gimenez M, Allen-Diaz B. Vegetation change along gradients from water sources in three grazed Mongolian ecosystems [J]. Plant Ecology, 2001, 157: 101-118.
    [35]刘颖,王德利.不同放牧率下羊草和芦苇可溶性碳水化合物和氮素含量的变化[J].应用生态学报,2003,14(12):2167-2170.
    [36] Marja A, van Staalduinen,Niels PR, et al. Differences in the compensatory growth of two co-occurring grass species in relation to water availability [J]. Oecologia, 2005, 146: 190-199.
    [37] Gao Y, Wang DL, Ba L, et al. Interactions between herbivory and resource availability on grazing tolerance of Leymus chinensis [J]. Environmental and Experimental Botany, 2008, 63: 113-122.
    [38] Breckle SW. Salinity tolerance of different halophyte types. In: El Bassam N, et al. Genetic Aspects of Plant Mineral Nutrition [M]. Kluwer Academic Publishers, Dordrecht, The Netherlands. 1990, 167-175.
    [39]陆静梅,李建东.松嫩草地五种耐盐碱植物叶表皮的解剖观察[J].东北师大学报(自然科学版),1994,03:79-82.
    [40]陆静梅.二色补血草叶片泌盐结构的扫描电镜观察[J].应用生态学报,1995,6(4):355-358.
    [41]石德成,盛艳敏,赵可夫.不同盐浓度的混合盐对羊草苗的胁迫效应[J].植物学报,1998,40(12):1136-1142.
    [42]王云龙,许振柱,周广胜.水分胁迫对羊草光合产物分配及其气体交换特征的影响[J].植物生态学报,2004,28(6):803-809.
    [43]陈德明.盐渍环境中的植物耐盐性极其影响因素[J].土壤学进展,1994,22(5):22-29.
    [44]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6:379-387.
    [45] Flowers TJ, Hajibagheri MA, Clipson NJW. Halophytes [J]. The Quarterly Review of Biology, 1986, 61: 313-337.
    [46]周婵,张卓,杨允菲.实验羊草种群幼苗对不同梯度盐碱胁迫的生理响应[J].东北师范大学学报(自然科学版),2003,35(4):62-67.
    [47] Michelet B, Boutry M. The Plasma Membrane H2ATPase: A highly regulated enzyme with multiple physiological functions [J].Plant Physiology, 1995, 108(1): 1-6.
    [48] Voilmm K M, Hu Y, Steppuhn H. Physiological responses of plant salinity [J].Canadian Journal of Plant Science, 1998,78(1): 19-27.
    [49]王萍,殷立娟,李建东.松嫩平原盐碱化草地羊草的生长适应性及耐盐生理特性的研究[J].生态学报,1994,14(3):306-311.
    [50] Rygol J, Zimmermann U. Radial and axial turgor pressure measurements in individual root cells of Mesembryanthemum crystallinum grown under various saline conditions [J]. Plant, Cell and Environment, 1990, 13: 15-26.
    [51]陈托兄,张金林,陆妮等.不同类型抗盐植物整株水平游离脯氨酸的分配[J].草业科学,2006,15(1):36-41.
    [52]彭志红,彭克勤,胡家金等.渗透胁迫下植物脯氨酸积累的研究进展[J].中国农学通报,2002,18(4):80-83.
    [53]汪建飞,沈其荣.有机酸代谢在植物适应养分和铝毒胁迫中的作用[J].应用生态学报,2006,17(11):2210-2216.
    [54] Yang C, Chong J, Kim C, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions [J]. Plant Soil, 2007, 294: 263-276.
    [55] Yang C, Jianaer A, Li C, et al. Comparison of the effects of salt-stress and alkali-stress on the photosynthetic production and energy storage of an alkali-resistant halophyte Chloris virgata [J]. Photosynthetica, 2008a, 46: 273-278.
    [56] Yang C, Zhang M, Liu J, et al. Effects of buffer capacity on growth, photosynthesis, and solute accumulation of a glycophyte (wheat) and a halophyte (Chloris virgata) [J]. Photosynthetica, 2009a, 47 (1): 55-60.
    [57] Yang C, Xu HH, Wang L, et al. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants [J]. Photosynthetica, 2009b, 47 (1): 79-86.
    [58] Zheng HY, Li JD. A preliminary study on the formation of saline-alkaline plant communities in the Songnen Plain [J]. Acta phytoecol, 1995(19): 1-12.
    [59] Zhu GL, Deng XW, Zuo WN. Determination of free proline in plants [J]. Plant physiology, communication, 1983, 1: 35-37.
    [60] Zhu JK. Regulation of ion homeostasis under salt stress [J]. Current Opinions Cell Biolology, 2003, 6: 441-445.
    [61]杨春武,李长有,张美丽等.盐、碱胁迫下小冰麦体内的pH及离子平衡[J].应用生态学报,2008,19(5): 1000-1005.
    [62]杨春武,李长有,尹红娟等.小冰麦(Triticum aestivum-Agropyron intermedium)对盐胁迫和碱胁迫的生理响应[J].作物学报,2007,33(8):1255-1261.
    [63]尹尚军,颜宏,石德成.碱胁迫下星星草的主要胁变反应[J].草业学报,2003,8:51-57.
    [64]杨春武,李长有,尹红娟等.小冰麦对盐胁迫和碱胁迫的生理响应[J].作物学报,2007,8:1255-1261.
    [65]颜宏,石德成,尹尚军.盐、碱胁迫对羊草体内N及几种有机代谢产物积累的影响[J].东北师范大学学报(自然科学版),2000,32(3):47-52.
    [66] Balibera ME, Rus-Alvarez AM, Bolarin MC, et al. Fast changes in soluble carbohydrates and proline contents in tomato seedlings in response to ionic and non-ionic iso-osmotic stresses [J]. Journal of Plant Physiology (Germany), 1997, 151(2): 221-226.
    [67] Ibrahim AH. Efficacy of exogenous glycine betaine application on sorghum plants grown under salinity stress [J]. Acta Botanica Hungarica, 2004, 43(3-4): 307-318.
    [68] Melis A. Light regulation of photosynthetic membrane structure, organization, and function [J]. Journal of Cellular Biochemistry, 1984, 24: 27-285.
    [69] Caldwell MM, Richards JH, Johnson DA, Nowak RS, Dzurec RS. Coping with herbivory: photosynthetic capacity and resource allocation in two semiarid Agropyron bunchgrasses. Oecologia, 1981, 50: 14-24.
    [70] Gold WG, Caldwell MM. The effects of the spatial pattern of defoliation on regrowth of a tussock grass III. Photosynthesis, canopy structure and light interception [J]. Oecologia, 1990, 82: 12-17.
    [71] Blumwald E, Aharon GS, Apse MP. Sodium transport in plant cells [J]. Biochemical Biophysical Acta, 2001, 465: 140-151.
    [72] Almodares A, Hadi MR, Ahmadpour H. Sorghum stem yield and soluble carbohydrates under different salinity levels [J]. African Journal of Biotechnology, 2008, 7(22): 4051-4055.
    [73] De Lacerda CF, Cambraia J, Oliva MA, et al. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery [J]. Environmental and Experimental Botany, 2005, 54: 69-76.
    [74]刘华,舒孝喜,赵银.盐胁迫对碱茅生长及碳化合物含量的影响[J].草业科学,1997,14(1):18-20.
    [75]白可喻,韩建国,王培等.放牧强度新麦草人工草地植物地下部分生物量及其氮素含量动态的影响[J].中国草地,2000,2:15-20.
    [76]赵广东,刘世荣,马全林.沙木蓼和沙枣对地下水位变化的生理生态响应1.叶片养分、叶绿素、可溶性糖和淀粉的变化[J].植物学报,2003,27(2):228-234.
    [77]何文兴,易津,李洪梅.根茎禾草乳熟期净光合速率日变化的比较研究[J].应用生态学报,2004, 2:205-209.
    [78]杜占池,杨宗贵.土壤水分充足条件下羊草和大针茅光合速率午间降低的原因.植物生态学与植物学报[J].1989,13(2):106-113.
    [79]常杰,祝廷成.羊草群落水分状况的初步研究[J].植物生态学与植物学报.1989,13(3):219-229.
    [80]李维立,鲍雅静,孙丽等.基于植物能量功能群的草原植物光合作用研究[J].草业科学.2011, 28(4):567-571.
    [81]杜占池,杨宗贵.羊草和大针茅光合作用午间降低与生态因子关系的研究[J].自然资源学报.1990,5(2):177-188.
    [82] Parida AK, Das AB.Salt tolerance and salinity effects on plants: a review [J]. Ecotoxicology and Environmental Safety, 2005, 60: 324-349.
    [83] Wang SM, Wan CG, Wang YR, et al. The characteristics of Na+, K+ and free pralinedistribution in several drought-resistant plants of the Alxa Desert, China [J]. Journal of Arid Environments, 2004, 56: 525-539.
    [84]原保忠,王静,张荣等.刈割对幼苗期春小麦生长和产量的影响[J].应用生态学报,2002,13(4): 413-416.
    [85] Sbrissia AF, Da Silva SC, Carvalh CAB. Tiller size/population density compensation in Coastcross grazed swards [J]. Scientia Agricola, 2001, 58(4): 655-665.
    [86] Bircham JS, Hodgson J. The influence of sward conditions on rates of herbage growth and senescence in mixed swards under continuous grazing management [J]. Grass and Forage Science, 1983, 38: 323-331.
    [87] Grant SA, Barthram GT, Torvell L, et al. Sward management lamina turnover and tiller population density in continuously stocked Lolium perenne–dominated swards [J]. Grass and Forage Science, 1983, 38: 333-344.
    [88] Mcmahon C. Size and shape in biology [J]. Science. 1973, 179: 1201-1204.
    [89] Kays S, Harper JL. The regulation of plant and tiller density in a grass sward [J]. Journal of Ecology, 1974, 62: 97-105.
    [90] Staalduinen MAV, Anten NPR. Differences in the compensatory growth of two cooccurring grass species in relation to water availability [J]. Oecologia, 2005, 65-81.
    [91] Turner LR, Donaghy DJ, Lane PA and Rawnsley RP. Patterns of leaf and root regrowth, and allocation of water-soluble carbohydrate reserves following defoliation of plants of prairie grass (Bromus willdenowii Kunth.)[J]. Grass and Forage Science, 2007, 62: 497-506.
    [92]章家恩,刘文高,陈景青等.不同刈割强度对牧草地上部和地下部生长性状的影响[J].应用生态学报,2005,16(9):1740-1744.
    [93] Davidon JL, Milthorpe FL. The Effect of Defoliation on the Carbon Balance in Dactylis glomerata [J]. Annals of Botany, 1966, 30: 185-198.
    [94] Mason TG, Maskell EJ. Studies in the transport of carbohydrate in the cotton plant. The factors determining the rate and the direction of movement of sugars [J]. Annals of Botany. Bot, 1928, 42: 571-636.
    [95] Roitsch T. Source-sink regulation by sugar and stress [J]. Current Opinion in Plant Biology, 1999, 2: 198-206.
    [96] Paul MJ, Driscoll SP. Sugar repression of photosynthesis: the role of carbohydrates in signaling nitrogen deficiency through source: sink imbalance [J]. Plant, Cell and Environment, 1997, 20: 110-116.
    [97] Dyer MI, Acra MA, Wang GM, et al. Source-sink carbon relations in two Panicum coloratum ecotypes in response to herbivory [J]. Ecology, 1991, 72: 1472-1483.
    [98] Netting AG. pH, abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions: cellular responses to stress and their implication for plant water relations [J]. Journal of Experimental Botany, 2000, 51: 147-158.
    [99] Kamel M. K+/Na+ soil-plant interactions during low salt stress and their role in osmotic adjustment in faba beans [J]. Spanish Journal of Agricultural Research, 2004, 2: 257-265.
    [100]常会宁,李固江,王文焕.刈割对羊茅黑麦草叶片生长的影响[J].中国草地,1998,3:9-12.
    [101] Wise MJ, Abrahamson WG. Beyond the compensatory continuum: environmental resource levels and plant tolerance of herbivory [J]. Oikos, 2005, 109, 417-428.
    [102] Wise MJ, Abrahamson WG. Effects of resource availability on tolerance of herbivory: a review and assessment of three opposing models [J]. The American Naturalist, 2007, 169, 443-454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700